mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	Format the code (#402)
* isort the code * format the code * Add yapf config file * Remove torch cuda memory profiler
This commit is contained in:
		
							parent
							
								
									c709fcf0e7
								
							
						
					
					
						commit
						76e9427657
					
				
							
								
								
									
										393
									
								
								.style.yapf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										393
									
								
								.style.yapf
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,393 @@
 | 
				
			|||||||
 | 
					[style]
 | 
				
			||||||
 | 
					# Align closing bracket with visual indentation.
 | 
				
			||||||
 | 
					align_closing_bracket_with_visual_indent=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Allow dictionary keys to exist on multiple lines. For example:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   x = {
 | 
				
			||||||
 | 
					#       ('this is the first element of a tuple',
 | 
				
			||||||
 | 
					#        'this is the second element of a tuple'):
 | 
				
			||||||
 | 
					#            value,
 | 
				
			||||||
 | 
					#   }
 | 
				
			||||||
 | 
					allow_multiline_dictionary_keys=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Allow lambdas to be formatted on more than one line.
 | 
				
			||||||
 | 
					allow_multiline_lambdas=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Allow splitting before a default / named assignment in an argument list.
 | 
				
			||||||
 | 
					allow_split_before_default_or_named_assigns=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Allow splits before the dictionary value.
 | 
				
			||||||
 | 
					allow_split_before_dict_value=True
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#   Let spacing indicate operator precedence. For example:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     a = 1 * 2 + 3 / 4
 | 
				
			||||||
 | 
					#     b = 1 / 2 - 3 * 4
 | 
				
			||||||
 | 
					#     c = (1 + 2) * (3 - 4)
 | 
				
			||||||
 | 
					#     d = (1 - 2) / (3 + 4)
 | 
				
			||||||
 | 
					#     e = 1 * 2 - 3
 | 
				
			||||||
 | 
					#     f = 1 + 2 + 3 + 4
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# will be formatted as follows to indicate precedence:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     a = 1*2 + 3/4
 | 
				
			||||||
 | 
					#     b = 1/2 - 3*4
 | 
				
			||||||
 | 
					#     c = (1+2) * (3-4)
 | 
				
			||||||
 | 
					#     d = (1-2) / (3+4)
 | 
				
			||||||
 | 
					#     e = 1*2 - 3
 | 
				
			||||||
 | 
					#     f = 1 + 2 + 3 + 4
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					arithmetic_precedence_indication=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Number of blank lines surrounding top-level function and class
 | 
				
			||||||
 | 
					# definitions.
 | 
				
			||||||
 | 
					blank_lines_around_top_level_definition=2
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Insert a blank line before a class-level docstring.
 | 
				
			||||||
 | 
					blank_line_before_class_docstring=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Insert a blank line before a module docstring.
 | 
				
			||||||
 | 
					blank_line_before_module_docstring=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Insert a blank line before a 'def' or 'class' immediately nested
 | 
				
			||||||
 | 
					# within another 'def' or 'class'. For example:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   class Foo:
 | 
				
			||||||
 | 
					#                      # <------ this blank line
 | 
				
			||||||
 | 
					#     def method():
 | 
				
			||||||
 | 
					#       ...
 | 
				
			||||||
 | 
					blank_line_before_nested_class_or_def=True
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Do not split consecutive brackets. Only relevant when
 | 
				
			||||||
 | 
					# dedent_closing_brackets is set. For example:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#    call_func_that_takes_a_dict(
 | 
				
			||||||
 | 
					#        {
 | 
				
			||||||
 | 
					#            'key1': 'value1',
 | 
				
			||||||
 | 
					#            'key2': 'value2',
 | 
				
			||||||
 | 
					#        }
 | 
				
			||||||
 | 
					#    )
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# would reformat to:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#    call_func_that_takes_a_dict({
 | 
				
			||||||
 | 
					#        'key1': 'value1',
 | 
				
			||||||
 | 
					#        'key2': 'value2',
 | 
				
			||||||
 | 
					#    })
 | 
				
			||||||
 | 
					coalesce_brackets=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# The column limit.
 | 
				
			||||||
 | 
					column_limit=80
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# The style for continuation alignment. Possible values are:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# - SPACE: Use spaces for continuation alignment. This is default behavior.
 | 
				
			||||||
 | 
					# - FIXED: Use fixed number (CONTINUATION_INDENT_WIDTH) of columns
 | 
				
			||||||
 | 
					#   (ie: CONTINUATION_INDENT_WIDTH/INDENT_WIDTH tabs or
 | 
				
			||||||
 | 
					#   CONTINUATION_INDENT_WIDTH spaces) for continuation alignment.
 | 
				
			||||||
 | 
					# - VALIGN-RIGHT: Vertically align continuation lines to multiple of
 | 
				
			||||||
 | 
					#   INDENT_WIDTH columns. Slightly right (one tab or a few spaces) if
 | 
				
			||||||
 | 
					#   cannot vertically align continuation lines with indent characters.
 | 
				
			||||||
 | 
					continuation_align_style=SPACE
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Indent width used for line continuations.
 | 
				
			||||||
 | 
					continuation_indent_width=4
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Put closing brackets on a separate line, dedented, if the bracketed
 | 
				
			||||||
 | 
					# expression can't fit in a single line. Applies to all kinds of brackets,
 | 
				
			||||||
 | 
					# including function definitions and calls. For example:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   config = {
 | 
				
			||||||
 | 
					#       'key1': 'value1',
 | 
				
			||||||
 | 
					#       'key2': 'value2',
 | 
				
			||||||
 | 
					#   }        # <--- this bracket is dedented and on a separate line
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   time_series = self.remote_client.query_entity_counters(
 | 
				
			||||||
 | 
					#       entity='dev3246.region1',
 | 
				
			||||||
 | 
					#       key='dns.query_latency_tcp',
 | 
				
			||||||
 | 
					#       transform=Transformation.AVERAGE(window=timedelta(seconds=60)),
 | 
				
			||||||
 | 
					#       start_ts=now()-timedelta(days=3),
 | 
				
			||||||
 | 
					#       end_ts=now(),
 | 
				
			||||||
 | 
					#   )        # <--- this bracket is dedented and on a separate line
 | 
				
			||||||
 | 
					dedent_closing_brackets=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Disable the heuristic which places each list element on a separate line
 | 
				
			||||||
 | 
					# if the list is comma-terminated.
 | 
				
			||||||
 | 
					disable_ending_comma_heuristic=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Place each dictionary entry onto its own line.
 | 
				
			||||||
 | 
					each_dict_entry_on_separate_line=True
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Require multiline dictionary even if it would normally fit on one line.
 | 
				
			||||||
 | 
					# For example:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   config = {
 | 
				
			||||||
 | 
					#       'key1': 'value1'
 | 
				
			||||||
 | 
					#   }
 | 
				
			||||||
 | 
					force_multiline_dict=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# The regex for an i18n comment. The presence of this comment stops
 | 
				
			||||||
 | 
					# reformatting of that line, because the comments are required to be
 | 
				
			||||||
 | 
					# next to the string they translate.
 | 
				
			||||||
 | 
					i18n_comment=#\..*
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# The i18n function call names. The presence of this function stops
 | 
				
			||||||
 | 
					# reformattting on that line, because the string it has cannot be moved
 | 
				
			||||||
 | 
					# away from the i18n comment.
 | 
				
			||||||
 | 
					i18n_function_call=N_, _
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Indent blank lines.
 | 
				
			||||||
 | 
					indent_blank_lines=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Put closing brackets on a separate line, indented, if the bracketed
 | 
				
			||||||
 | 
					# expression can't fit in a single line. Applies to all kinds of brackets,
 | 
				
			||||||
 | 
					# including function definitions and calls. For example:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   config = {
 | 
				
			||||||
 | 
					#       'key1': 'value1',
 | 
				
			||||||
 | 
					#       'key2': 'value2',
 | 
				
			||||||
 | 
					#       }        # <--- this bracket is indented and on a separate line
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   time_series = self.remote_client.query_entity_counters(
 | 
				
			||||||
 | 
					#       entity='dev3246.region1',
 | 
				
			||||||
 | 
					#       key='dns.query_latency_tcp',
 | 
				
			||||||
 | 
					#       transform=Transformation.AVERAGE(window=timedelta(seconds=60)),
 | 
				
			||||||
 | 
					#       start_ts=now()-timedelta(days=3),
 | 
				
			||||||
 | 
					#       end_ts=now(),
 | 
				
			||||||
 | 
					#       )        # <--- this bracket is indented and on a separate line
 | 
				
			||||||
 | 
					indent_closing_brackets=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Indent the dictionary value if it cannot fit on the same line as the
 | 
				
			||||||
 | 
					# dictionary key. For example:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   config = {
 | 
				
			||||||
 | 
					#       'key1':
 | 
				
			||||||
 | 
					#           'value1',
 | 
				
			||||||
 | 
					#       'key2': value1 +
 | 
				
			||||||
 | 
					#               value2,
 | 
				
			||||||
 | 
					#   }
 | 
				
			||||||
 | 
					indent_dictionary_value=True
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# The number of columns to use for indentation.
 | 
				
			||||||
 | 
					indent_width=4
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Join short lines into one line. E.g., single line 'if' statements.
 | 
				
			||||||
 | 
					join_multiple_lines=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Do not include spaces around selected binary operators. For example:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   1 + 2 * 3 - 4 / 5
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# will be formatted as follows when configured with "*,/":
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   1 + 2*3 - 4/5
 | 
				
			||||||
 | 
					no_spaces_around_selected_binary_operators=
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Use spaces around default or named assigns.
 | 
				
			||||||
 | 
					spaces_around_default_or_named_assign=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Adds a space after the opening '{' and before the ending '}' dict delimiters.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   {1: 2}
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# will be formatted as:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   { 1: 2 }
 | 
				
			||||||
 | 
					spaces_around_dict_delimiters=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Adds a space after the opening '[' and before the ending ']' list delimiters.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   [1, 2]
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# will be formatted as:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   [ 1, 2 ]
 | 
				
			||||||
 | 
					spaces_around_list_delimiters=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Use spaces around the power operator.
 | 
				
			||||||
 | 
					spaces_around_power_operator=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Use spaces around the subscript / slice operator.  For example:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   my_list[1 : 10 : 2]
 | 
				
			||||||
 | 
					spaces_around_subscript_colon=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Adds a space after the opening '(' and before the ending ')' tuple delimiters.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   (1, 2, 3)
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# will be formatted as:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   ( 1, 2, 3 )
 | 
				
			||||||
 | 
					spaces_around_tuple_delimiters=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# The number of spaces required before a trailing comment.
 | 
				
			||||||
 | 
					# This can be a single value (representing the number of spaces
 | 
				
			||||||
 | 
					# before each trailing comment) or list of values (representing
 | 
				
			||||||
 | 
					# alignment column values; trailing comments within a block will
 | 
				
			||||||
 | 
					# be aligned to the first column value that is greater than the maximum
 | 
				
			||||||
 | 
					# line length within the block). For example:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# With spaces_before_comment=5:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   1 + 1 # Adding values
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# will be formatted as:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   1 + 1     # Adding values <-- 5 spaces between the end of the statement and comment
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# With spaces_before_comment=15, 20:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   1 + 1 # Adding values
 | 
				
			||||||
 | 
					#   two + two # More adding
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   longer_statement # This is a longer statement
 | 
				
			||||||
 | 
					#   short # This is a shorter statement
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   a_very_long_statement_that_extends_beyond_the_final_column # Comment
 | 
				
			||||||
 | 
					#   short # This is a shorter statement
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# will be formatted as:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   1 + 1          # Adding values <-- end of line comments in block aligned to col 15
 | 
				
			||||||
 | 
					#   two + two      # More adding
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   longer_statement    # This is a longer statement <-- end of line comments in block aligned to col 20
 | 
				
			||||||
 | 
					#   short               # This is a shorter statement
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   a_very_long_statement_that_extends_beyond_the_final_column  # Comment <-- the end of line comments are aligned based on the line length
 | 
				
			||||||
 | 
					#   short                                                       # This is a shorter statement
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					spaces_before_comment=2
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Insert a space between the ending comma and closing bracket of a list,
 | 
				
			||||||
 | 
					# etc.
 | 
				
			||||||
 | 
					space_between_ending_comma_and_closing_bracket=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Use spaces inside brackets, braces, and parentheses.  For example:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   method_call( 1 )
 | 
				
			||||||
 | 
					#   my_dict[ 3 ][ 1 ][ get_index( *args, **kwargs ) ]
 | 
				
			||||||
 | 
					#   my_set = { 1, 2, 3 }
 | 
				
			||||||
 | 
					space_inside_brackets=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Split before arguments
 | 
				
			||||||
 | 
					split_all_comma_separated_values=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Split before arguments, but do not split all subexpressions recursively
 | 
				
			||||||
 | 
					# (unless needed).
 | 
				
			||||||
 | 
					split_all_top_level_comma_separated_values=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Split before arguments if the argument list is terminated by a
 | 
				
			||||||
 | 
					# comma.
 | 
				
			||||||
 | 
					split_arguments_when_comma_terminated=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Set to True to prefer splitting before '+', '-', '*', '/', '//', or '@'
 | 
				
			||||||
 | 
					# rather than after.
 | 
				
			||||||
 | 
					split_before_arithmetic_operator=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Set to True to prefer splitting before '&', '|' or '^' rather than
 | 
				
			||||||
 | 
					# after.
 | 
				
			||||||
 | 
					split_before_bitwise_operator=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Split before the closing bracket if a list or dict literal doesn't fit on
 | 
				
			||||||
 | 
					# a single line.
 | 
				
			||||||
 | 
					split_before_closing_bracket=True
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Split before a dictionary or set generator (comp_for). For example, note
 | 
				
			||||||
 | 
					# the split before the 'for':
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   foo = {
 | 
				
			||||||
 | 
					#       variable: 'Hello world, have a nice day!'
 | 
				
			||||||
 | 
					#       for variable in bar if variable != 42
 | 
				
			||||||
 | 
					#   }
 | 
				
			||||||
 | 
					split_before_dict_set_generator=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Split before the '.' if we need to split a longer expression:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   foo = ('This is a really long string: {}, {}, {}, {}'.format(a, b, c, d))
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# would reformat to something like:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   foo = ('This is a really long string: {}, {}, {}, {}'
 | 
				
			||||||
 | 
					#          .format(a, b, c, d))
 | 
				
			||||||
 | 
					split_before_dot=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Split after the opening paren which surrounds an expression if it doesn't
 | 
				
			||||||
 | 
					# fit on a single line.
 | 
				
			||||||
 | 
					split_before_expression_after_opening_paren=True
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# If an argument / parameter list is going to be split, then split before
 | 
				
			||||||
 | 
					# the first argument.
 | 
				
			||||||
 | 
					split_before_first_argument=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Set to True to prefer splitting before 'and' or 'or' rather than
 | 
				
			||||||
 | 
					# after.
 | 
				
			||||||
 | 
					split_before_logical_operator=False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Split named assignments onto individual lines.
 | 
				
			||||||
 | 
					split_before_named_assigns=True
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Set to True to split list comprehensions and generators that have
 | 
				
			||||||
 | 
					# non-trivial expressions and multiple clauses before each of these
 | 
				
			||||||
 | 
					# clauses. For example:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   result = [
 | 
				
			||||||
 | 
					#       a_long_var + 100 for a_long_var in xrange(1000)
 | 
				
			||||||
 | 
					#       if a_long_var % 10]
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# would reformat to something like:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   result = [
 | 
				
			||||||
 | 
					#       a_long_var + 100
 | 
				
			||||||
 | 
					#       for a_long_var in xrange(1000)
 | 
				
			||||||
 | 
					#       if a_long_var % 10]
 | 
				
			||||||
 | 
					split_complex_comprehension=True
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# The penalty for splitting right after the opening bracket.
 | 
				
			||||||
 | 
					split_penalty_after_opening_bracket=300
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# The penalty for splitting the line after a unary operator.
 | 
				
			||||||
 | 
					split_penalty_after_unary_operator=10000
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# The penalty of splitting the line around the '+', '-', '*', '/', '//',
 | 
				
			||||||
 | 
					# ``%``, and '@' operators.
 | 
				
			||||||
 | 
					split_penalty_arithmetic_operator=300
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# The penalty for splitting right before an if expression.
 | 
				
			||||||
 | 
					split_penalty_before_if_expr=0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# The penalty of splitting the line around the '&', '|', and '^'
 | 
				
			||||||
 | 
					# operators.
 | 
				
			||||||
 | 
					split_penalty_bitwise_operator=300
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# The penalty for splitting a list comprehension or generator
 | 
				
			||||||
 | 
					# expression.
 | 
				
			||||||
 | 
					split_penalty_comprehension=2100
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# The penalty for characters over the column limit.
 | 
				
			||||||
 | 
					split_penalty_excess_character=7000
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# The penalty incurred by adding a line split to the unwrapped line. The
 | 
				
			||||||
 | 
					# more line splits added the higher the penalty.
 | 
				
			||||||
 | 
					split_penalty_for_added_line_split=30
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# The penalty of splitting a list of "import as" names. For example:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   from a_very_long_or_indented_module_name_yada_yad import (long_argument_1,
 | 
				
			||||||
 | 
					#                                                             long_argument_2,
 | 
				
			||||||
 | 
					#                                                             long_argument_3)
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# would reformat to something like:
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#   from a_very_long_or_indented_module_name_yada_yad import (
 | 
				
			||||||
 | 
					#       long_argument_1, long_argument_2, long_argument_3)
 | 
				
			||||||
 | 
					split_penalty_import_names=0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# The penalty of splitting the line around the 'and' and 'or'
 | 
				
			||||||
 | 
					# operators.
 | 
				
			||||||
 | 
					split_penalty_logical_operator=300
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Use the Tab character for indentation.
 | 
				
			||||||
 | 
					use_tabs=False
 | 
				
			||||||
							
								
								
									
										5
									
								
								Makefile
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								Makefile
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,5 @@
 | 
				
			|||||||
 | 
					.PHONY: format
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					format:
 | 
				
			||||||
 | 
						isort generate.py gradio wan
 | 
				
			||||||
 | 
						yapf -i -r *.py generate.py gradio wan
 | 
				
			||||||
							
								
								
									
										79
									
								
								generate.py
									
									
									
									
									
								
							
							
						
						
									
										79
									
								
								generate.py
									
									
									
									
									
								
							@ -1,28 +1,33 @@
 | 
				
			|||||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
					# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
				
			||||||
import argparse
 | 
					import argparse
 | 
				
			||||||
from datetime import datetime
 | 
					 | 
				
			||||||
import logging
 | 
					import logging
 | 
				
			||||||
import os
 | 
					import os
 | 
				
			||||||
import sys
 | 
					import sys
 | 
				
			||||||
import warnings
 | 
					import warnings
 | 
				
			||||||
 | 
					from datetime import datetime
 | 
				
			||||||
 | 
					
 | 
				
			||||||
warnings.filterwarnings('ignore')
 | 
					warnings.filterwarnings('ignore')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import torch, random
 | 
					import random
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
import torch.distributed as dist
 | 
					import torch.distributed as dist
 | 
				
			||||||
from PIL import Image
 | 
					from PIL import Image
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import wan
 | 
					import wan
 | 
				
			||||||
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
 | 
					from wan.configs import MAX_AREA_CONFIGS, SIZE_CONFIGS, SUPPORTED_SIZES, WAN_CONFIGS
 | 
				
			||||||
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
 | 
					from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
 | 
				
			||||||
from wan.utils.utils import cache_video, cache_image, str2bool
 | 
					from wan.utils.utils import cache_image, cache_video, str2bool
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
EXAMPLE_PROMPT = {
 | 
					EXAMPLE_PROMPT = {
 | 
				
			||||||
    "t2v-1.3B": {
 | 
					    "t2v-1.3B": {
 | 
				
			||||||
        "prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
 | 
					        "prompt":
 | 
				
			||||||
 | 
					            "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
 | 
				
			||||||
    },
 | 
					    },
 | 
				
			||||||
    "t2v-14B": {
 | 
					    "t2v-14B": {
 | 
				
			||||||
        "prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
 | 
					        "prompt":
 | 
				
			||||||
 | 
					            "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
 | 
				
			||||||
    },
 | 
					    },
 | 
				
			||||||
    "t2i-14B": {
 | 
					    "t2i-14B": {
 | 
				
			||||||
        "prompt": "一个朴素端庄的美人",
 | 
					        "prompt": "一个朴素端庄的美人",
 | 
				
			||||||
@ -34,20 +39,24 @@ EXAMPLE_PROMPT = {
 | 
				
			|||||||
            "examples/i2v_input.JPG",
 | 
					            "examples/i2v_input.JPG",
 | 
				
			||||||
    },
 | 
					    },
 | 
				
			||||||
    "flf2v-14B": {
 | 
					    "flf2v-14B": {
 | 
				
			||||||
            "prompt":
 | 
					        "prompt":
 | 
				
			||||||
                "CG动画风格,一只蓝色的小鸟从地面起飞,煽动翅膀。小鸟羽毛细腻,胸前有独特的花纹,背景是蓝天白云,阳光明媚。镜跟随小鸟向上移动,展现出小鸟飞翔的姿态和天空的广阔。近景,仰视视角。",
 | 
					            "CG动画风格,一只蓝色的小鸟从地面起飞,煽动翅膀。小鸟羽毛细腻,胸前有独特的花纹,背景是蓝天白云,阳光明媚。镜跟随小鸟向上移动,展现出小鸟飞翔的姿态和天空的广阔。近景,仰视视角。",
 | 
				
			||||||
            "first_frame":
 | 
					        "first_frame":
 | 
				
			||||||
                "examples/flf2v_input_first_frame.png",
 | 
					            "examples/flf2v_input_first_frame.png",
 | 
				
			||||||
            "last_frame":
 | 
					        "last_frame":
 | 
				
			||||||
                "examples/flf2v_input_last_frame.png",
 | 
					            "examples/flf2v_input_last_frame.png",
 | 
				
			||||||
    },
 | 
					    },
 | 
				
			||||||
    "vace-1.3B": {
 | 
					    "vace-1.3B": {
 | 
				
			||||||
        "src_ref_images": 'examples/girl.png,examples/snake.png',
 | 
					        "src_ref_images":
 | 
				
			||||||
        "prompt": "在一个欢乐而充满节日气氛的场景中,穿着鲜艳红色春服的小女孩正与她的可爱卡通蛇嬉戏。她的春服上绣着金色吉祥图案,散发着喜庆的气息,脸上洋溢着灿烂的笑容。蛇身呈现出亮眼的绿色,形状圆润,宽大的眼睛让它显得既友善又幽默。小女孩欢快地用手轻轻抚摸着蛇的头部,共同享受着这温馨的时刻。周围五彩斑斓的灯笼和彩带装饰着环境,阳光透过洒在她们身上,营造出一个充满友爱与幸福的新年氛围。"
 | 
					            'examples/girl.png,examples/snake.png',
 | 
				
			||||||
 | 
					        "prompt":
 | 
				
			||||||
 | 
					            "在一个欢乐而充满节日气氛的场景中,穿着鲜艳红色春服的小女孩正与她的可爱卡通蛇嬉戏。她的春服上绣着金色吉祥图案,散发着喜庆的气息,脸上洋溢着灿烂的笑容。蛇身呈现出亮眼的绿色,形状圆润,宽大的眼睛让它显得既友善又幽默。小女孩欢快地用手轻轻抚摸着蛇的头部,共同享受着这温馨的时刻。周围五彩斑斓的灯笼和彩带装饰着环境,阳光透过洒在她们身上,营造出一个充满友爱与幸福的新年氛围。"
 | 
				
			||||||
    },
 | 
					    },
 | 
				
			||||||
    "vace-14B": {
 | 
					    "vace-14B": {
 | 
				
			||||||
        "src_ref_images": 'examples/girl.png,examples/snake.png',
 | 
					        "src_ref_images":
 | 
				
			||||||
        "prompt": "在一个欢乐而充满节日气氛的场景中,穿着鲜艳红色春服的小女孩正与她的可爱卡通蛇嬉戏。她的春服上绣着金色吉祥图案,散发着喜庆的气息,脸上洋溢着灿烂的笑容。蛇身呈现出亮眼的绿色,形状圆润,宽大的眼睛让它显得既友善又幽默。小女孩欢快地用手轻轻抚摸着蛇的头部,共同享受着这温馨的时刻。周围五彩斑斓的灯笼和彩带装饰着环境,阳光透过洒在她们身上,营造出一个充满友爱与幸福的新年氛围。"
 | 
					            'examples/girl.png,examples/snake.png',
 | 
				
			||||||
 | 
					        "prompt":
 | 
				
			||||||
 | 
					            "在一个欢乐而充满节日气氛的场景中,穿着鲜艳红色春服的小女孩正与她的可爱卡通蛇嬉戏。她的春服上绣着金色吉祥图案,散发着喜庆的气息,脸上洋溢着灿烂的笑容。蛇身呈现出亮眼的绿色,形状圆润,宽大的眼睛让它显得既友善又幽默。小女孩欢快地用手轻轻抚摸着蛇的头部,共同享受着这温馨的时刻。周围五彩斑斓的灯笼和彩带装饰着环境,阳光透过洒在她们身上,营造出一个充满友爱与幸福的新年氛围。"
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -64,7 +73,6 @@ def _validate_args(args):
 | 
				
			|||||||
        if "i2v" in args.task:
 | 
					        if "i2v" in args.task:
 | 
				
			||||||
            args.sample_steps = 40
 | 
					            args.sample_steps = 40
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
    if args.sample_shift is None:
 | 
					    if args.sample_shift is None:
 | 
				
			||||||
        args.sample_shift = 5.0
 | 
					        args.sample_shift = 5.0
 | 
				
			||||||
        if "i2v" in args.task and args.size in ["832*480", "480*832"]:
 | 
					        if "i2v" in args.task and args.size in ["832*480", "480*832"]:
 | 
				
			||||||
@ -72,7 +80,6 @@ def _validate_args(args):
 | 
				
			|||||||
        elif "flf2v" in args.task or "vace" in args.task:
 | 
					        elif "flf2v" in args.task or "vace" in args.task:
 | 
				
			||||||
            args.sample_shift = 16
 | 
					            args.sample_shift = 16
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
    # The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
 | 
					    # The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
 | 
				
			||||||
    if args.frame_num is None:
 | 
					    if args.frame_num is None:
 | 
				
			||||||
        args.frame_num = 1 if "t2i" in args.task else 81
 | 
					        args.frame_num = 1 if "t2i" in args.task else 81
 | 
				
			||||||
@ -167,7 +174,8 @@ def _parse_args():
 | 
				
			|||||||
        "--src_ref_images",
 | 
					        "--src_ref_images",
 | 
				
			||||||
        type=str,
 | 
					        type=str,
 | 
				
			||||||
        default=None,
 | 
					        default=None,
 | 
				
			||||||
        help="The file list of the source reference images. Separated by ','. Default None.")
 | 
					        help="The file list of the source reference images. Separated by ','. Default None."
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
    parser.add_argument(
 | 
					    parser.add_argument(
 | 
				
			||||||
        "--prompt",
 | 
					        "--prompt",
 | 
				
			||||||
        type=str,
 | 
					        type=str,
 | 
				
			||||||
@ -209,12 +217,14 @@ def _parse_args():
 | 
				
			|||||||
        "--first_frame",
 | 
					        "--first_frame",
 | 
				
			||||||
        type=str,
 | 
					        type=str,
 | 
				
			||||||
        default=None,
 | 
					        default=None,
 | 
				
			||||||
        help="[first-last frame to video] The image (first frame) to generate the video from.")
 | 
					        help="[first-last frame to video] The image (first frame) to generate the video from."
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
    parser.add_argument(
 | 
					    parser.add_argument(
 | 
				
			||||||
        "--last_frame",
 | 
					        "--last_frame",
 | 
				
			||||||
        type=str,
 | 
					        type=str,
 | 
				
			||||||
        default=None,
 | 
					        default=None,
 | 
				
			||||||
        help="[first-last frame to video] The image (last frame) to generate the video from.")
 | 
					        help="[first-last frame to video] The image (last frame) to generate the video from."
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
    parser.add_argument(
 | 
					    parser.add_argument(
 | 
				
			||||||
        "--sample_solver",
 | 
					        "--sample_solver",
 | 
				
			||||||
        type=str,
 | 
					        type=str,
 | 
				
			||||||
@ -281,8 +291,10 @@ def generate(args):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    if args.ulysses_size > 1 or args.ring_size > 1:
 | 
					    if args.ulysses_size > 1 or args.ring_size > 1:
 | 
				
			||||||
        assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
 | 
					        assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
 | 
				
			||||||
        from xfuser.core.distributed import (initialize_model_parallel,
 | 
					        from xfuser.core.distributed import (
 | 
				
			||||||
                                             init_distributed_environment)
 | 
					            init_distributed_environment,
 | 
				
			||||||
 | 
					            initialize_model_parallel,
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
        init_distributed_environment(
 | 
					        init_distributed_environment(
 | 
				
			||||||
            rank=dist.get_rank(), world_size=dist.get_world_size())
 | 
					            rank=dist.get_rank(), world_size=dist.get_world_size())
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -295,7 +307,8 @@ def generate(args):
 | 
				
			|||||||
    if args.use_prompt_extend:
 | 
					    if args.use_prompt_extend:
 | 
				
			||||||
        if args.prompt_extend_method == "dashscope":
 | 
					        if args.prompt_extend_method == "dashscope":
 | 
				
			||||||
            prompt_expander = DashScopePromptExpander(
 | 
					            prompt_expander = DashScopePromptExpander(
 | 
				
			||||||
                model_name=args.prompt_extend_model, is_vl="i2v" in args.task or "flf2v" in args.task)
 | 
					                model_name=args.prompt_extend_model,
 | 
				
			||||||
 | 
					                is_vl="i2v" in args.task or "flf2v" in args.task)
 | 
				
			||||||
        elif args.prompt_extend_method == "local_qwen":
 | 
					        elif args.prompt_extend_method == "local_qwen":
 | 
				
			||||||
            prompt_expander = QwenPromptExpander(
 | 
					            prompt_expander = QwenPromptExpander(
 | 
				
			||||||
                model_name=args.prompt_extend_model,
 | 
					                model_name=args.prompt_extend_model,
 | 
				
			||||||
@ -482,21 +495,22 @@ def generate(args):
 | 
				
			|||||||
            sampling_steps=args.sample_steps,
 | 
					            sampling_steps=args.sample_steps,
 | 
				
			||||||
            guide_scale=args.sample_guide_scale,
 | 
					            guide_scale=args.sample_guide_scale,
 | 
				
			||||||
            seed=args.base_seed,
 | 
					            seed=args.base_seed,
 | 
				
			||||||
            offload_model=args.offload_model
 | 
					            offload_model=args.offload_model)
 | 
				
			||||||
        )
 | 
					 | 
				
			||||||
    elif "vace" in args.task:
 | 
					    elif "vace" in args.task:
 | 
				
			||||||
        if args.prompt is None:
 | 
					        if args.prompt is None:
 | 
				
			||||||
            args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
 | 
					            args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
 | 
				
			||||||
            args.src_video = EXAMPLE_PROMPT[args.task].get("src_video", None)
 | 
					            args.src_video = EXAMPLE_PROMPT[args.task].get("src_video", None)
 | 
				
			||||||
            args.src_mask = EXAMPLE_PROMPT[args.task].get("src_mask", None)
 | 
					            args.src_mask = EXAMPLE_PROMPT[args.task].get("src_mask", None)
 | 
				
			||||||
            args.src_ref_images = EXAMPLE_PROMPT[args.task].get("src_ref_images", None)
 | 
					            args.src_ref_images = EXAMPLE_PROMPT[args.task].get(
 | 
				
			||||||
 | 
					                "src_ref_images", None)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        logging.info(f"Input prompt: {args.prompt}")
 | 
					        logging.info(f"Input prompt: {args.prompt}")
 | 
				
			||||||
        if args.use_prompt_extend and args.use_prompt_extend != 'plain':
 | 
					        if args.use_prompt_extend and args.use_prompt_extend != 'plain':
 | 
				
			||||||
            logging.info("Extending prompt ...")
 | 
					            logging.info("Extending prompt ...")
 | 
				
			||||||
            if rank == 0:
 | 
					            if rank == 0:
 | 
				
			||||||
                prompt = prompt_expander.forward(args.prompt)
 | 
					                prompt = prompt_expander.forward(args.prompt)
 | 
				
			||||||
                logging.info(f"Prompt extended from '{args.prompt}' to '{prompt}'")
 | 
					                logging.info(
 | 
				
			||||||
 | 
					                    f"Prompt extended from '{args.prompt}' to '{prompt}'")
 | 
				
			||||||
                input_prompt = [prompt]
 | 
					                input_prompt = [prompt]
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
                input_prompt = [None]
 | 
					                input_prompt = [None]
 | 
				
			||||||
@ -517,10 +531,11 @@ def generate(args):
 | 
				
			|||||||
            t5_cpu=args.t5_cpu,
 | 
					            t5_cpu=args.t5_cpu,
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        src_video, src_mask, src_ref_images = wan_vace.prepare_source([args.src_video],
 | 
					        src_video, src_mask, src_ref_images = wan_vace.prepare_source(
 | 
				
			||||||
                                                                    [args.src_mask],
 | 
					            [args.src_video], [args.src_mask], [
 | 
				
			||||||
                                                                    [None if args.src_ref_images is None else args.src_ref_images.split(',')],
 | 
					                None if args.src_ref_images is None else
 | 
				
			||||||
                                                                    args.frame_num, SIZE_CONFIGS[args.size], device)
 | 
					                args.src_ref_images.split(',')
 | 
				
			||||||
 | 
					            ], args.frame_num, SIZE_CONFIGS[args.size], device)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        logging.info(f"Generating video...")
 | 
					        logging.info(f"Generating video...")
 | 
				
			||||||
        video = wan_vace.generate(
 | 
					        video = wan_vace.generate(
 | 
				
			||||||
 | 
				
			|||||||
@ -1,8 +1,8 @@
 | 
				
			|||||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
					# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
				
			||||||
import argparse
 | 
					import argparse
 | 
				
			||||||
import gc
 | 
					import gc
 | 
				
			||||||
import os.path as osp
 | 
					 | 
				
			||||||
import os
 | 
					import os
 | 
				
			||||||
 | 
					import os.path as osp
 | 
				
			||||||
import sys
 | 
					import sys
 | 
				
			||||||
import warnings
 | 
					import warnings
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -11,7 +11,8 @@ import gradio as gr
 | 
				
			|||||||
warnings.filterwarnings('ignore')
 | 
					warnings.filterwarnings('ignore')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Model
 | 
					# Model
 | 
				
			||||||
sys.path.insert(0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
 | 
					sys.path.insert(
 | 
				
			||||||
 | 
					    0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
 | 
				
			||||||
import wan
 | 
					import wan
 | 
				
			||||||
from wan.configs import MAX_AREA_CONFIGS, WAN_CONFIGS
 | 
					from wan.configs import MAX_AREA_CONFIGS, WAN_CONFIGS
 | 
				
			||||||
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
 | 
					from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
 | 
				
			||||||
@ -69,13 +70,13 @@ def prompt_enc(prompt, img_first, img_last, tar_lang):
 | 
				
			|||||||
        return prompt_output.prompt
 | 
					        return prompt_output.prompt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def flf2v_generation(flf2vid_prompt, flf2vid_image_first, flf2vid_image_last, resolution, sd_steps,
 | 
					def flf2v_generation(flf2vid_prompt, flf2vid_image_first, flf2vid_image_last,
 | 
				
			||||||
                   guide_scale, shift_scale, seed, n_prompt):
 | 
					                     resolution, sd_steps, guide_scale, shift_scale, seed,
 | 
				
			||||||
 | 
					                     n_prompt):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if resolution == '------':
 | 
					    if resolution == '------':
 | 
				
			||||||
        print(
 | 
					        print(
 | 
				
			||||||
            'Please specify the resolution ckpt dir or specify the resolution'
 | 
					            'Please specify the resolution ckpt dir or specify the resolution')
 | 
				
			||||||
        )
 | 
					 | 
				
			||||||
        return None
 | 
					        return None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
@ -94,9 +95,7 @@ def flf2v_generation(flf2vid_prompt, flf2vid_image_first, flf2vid_image_last, re
 | 
				
			|||||||
                offload_model=True)
 | 
					                offload_model=True)
 | 
				
			||||||
            pass
 | 
					            pass
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            print(
 | 
					            print('Sorry, currently only 720P is supported.')
 | 
				
			||||||
                'Sorry, currently only 720P is supported.'
 | 
					 | 
				
			||||||
            )
 | 
					 | 
				
			||||||
            return None
 | 
					            return None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        cache_video(
 | 
					        cache_video(
 | 
				
			||||||
@ -191,14 +190,17 @@ def gradio_interface():
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        run_p_button.click(
 | 
					        run_p_button.click(
 | 
				
			||||||
            fn=prompt_enc,
 | 
					            fn=prompt_enc,
 | 
				
			||||||
            inputs=[flf2vid_prompt, flf2vid_image_first, flf2vid_image_last, tar_lang],
 | 
					            inputs=[
 | 
				
			||||||
 | 
					                flf2vid_prompt, flf2vid_image_first, flf2vid_image_last,
 | 
				
			||||||
 | 
					                tar_lang
 | 
				
			||||||
 | 
					            ],
 | 
				
			||||||
            outputs=[flf2vid_prompt])
 | 
					            outputs=[flf2vid_prompt])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        run_flf2v_button.click(
 | 
					        run_flf2v_button.click(
 | 
				
			||||||
            fn=flf2v_generation,
 | 
					            fn=flf2v_generation,
 | 
				
			||||||
            inputs=[
 | 
					            inputs=[
 | 
				
			||||||
                flf2vid_prompt, flf2vid_image_first, flf2vid_image_last, resolution, sd_steps,
 | 
					                flf2vid_prompt, flf2vid_image_first, flf2vid_image_last,
 | 
				
			||||||
                guide_scale, shift_scale, seed, n_prompt
 | 
					                resolution, sd_steps, guide_scale, shift_scale, seed, n_prompt
 | 
				
			||||||
            ],
 | 
					            ],
 | 
				
			||||||
            outputs=[result_gallery],
 | 
					            outputs=[result_gallery],
 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
 | 
				
			|||||||
@ -1,8 +1,8 @@
 | 
				
			|||||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
					# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
				
			||||||
import argparse
 | 
					import argparse
 | 
				
			||||||
import gc
 | 
					import gc
 | 
				
			||||||
import os.path as osp
 | 
					 | 
				
			||||||
import os
 | 
					import os
 | 
				
			||||||
 | 
					import os.path as osp
 | 
				
			||||||
import sys
 | 
					import sys
 | 
				
			||||||
import warnings
 | 
					import warnings
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -11,7 +11,8 @@ import gradio as gr
 | 
				
			|||||||
warnings.filterwarnings('ignore')
 | 
					warnings.filterwarnings('ignore')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Model
 | 
					# Model
 | 
				
			||||||
sys.path.insert(0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
 | 
					sys.path.insert(
 | 
				
			||||||
 | 
					    0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
 | 
				
			||||||
import wan
 | 
					import wan
 | 
				
			||||||
from wan.configs import MAX_AREA_CONFIGS, WAN_CONFIGS
 | 
					from wan.configs import MAX_AREA_CONFIGS, WAN_CONFIGS
 | 
				
			||||||
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
 | 
					from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
 | 
				
			||||||
 | 
				
			|||||||
@ -1,7 +1,7 @@
 | 
				
			|||||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
					# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
				
			||||||
import argparse
 | 
					import argparse
 | 
				
			||||||
import os.path as osp
 | 
					 | 
				
			||||||
import os
 | 
					import os
 | 
				
			||||||
 | 
					import os.path as osp
 | 
				
			||||||
import sys
 | 
					import sys
 | 
				
			||||||
import warnings
 | 
					import warnings
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -10,7 +10,8 @@ import gradio as gr
 | 
				
			|||||||
warnings.filterwarnings('ignore')
 | 
					warnings.filterwarnings('ignore')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Model
 | 
					# Model
 | 
				
			||||||
sys.path.insert(0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
 | 
					sys.path.insert(
 | 
				
			||||||
 | 
					    0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
 | 
				
			||||||
import wan
 | 
					import wan
 | 
				
			||||||
from wan.configs import WAN_CONFIGS
 | 
					from wan.configs import WAN_CONFIGS
 | 
				
			||||||
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
 | 
					from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
 | 
				
			||||||
 | 
				
			|||||||
@ -1,7 +1,7 @@
 | 
				
			|||||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
					# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
				
			||||||
import argparse
 | 
					import argparse
 | 
				
			||||||
import os.path as osp
 | 
					 | 
				
			||||||
import os
 | 
					import os
 | 
				
			||||||
 | 
					import os.path as osp
 | 
				
			||||||
import sys
 | 
					import sys
 | 
				
			||||||
import warnings
 | 
					import warnings
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -10,7 +10,8 @@ import gradio as gr
 | 
				
			|||||||
warnings.filterwarnings('ignore')
 | 
					warnings.filterwarnings('ignore')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Model
 | 
					# Model
 | 
				
			||||||
sys.path.insert(0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
 | 
					sys.path.insert(
 | 
				
			||||||
 | 
					    0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
 | 
				
			||||||
import wan
 | 
					import wan
 | 
				
			||||||
from wan.configs import WAN_CONFIGS
 | 
					from wan.configs import WAN_CONFIGS
 | 
				
			||||||
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
 | 
					from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
 | 
				
			||||||
 | 
				
			|||||||
@ -1,7 +1,7 @@
 | 
				
			|||||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
					# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
				
			||||||
import argparse
 | 
					import argparse
 | 
				
			||||||
import os.path as osp
 | 
					 | 
				
			||||||
import os
 | 
					import os
 | 
				
			||||||
 | 
					import os.path as osp
 | 
				
			||||||
import sys
 | 
					import sys
 | 
				
			||||||
import warnings
 | 
					import warnings
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -10,7 +10,8 @@ import gradio as gr
 | 
				
			|||||||
warnings.filterwarnings('ignore')
 | 
					warnings.filterwarnings('ignore')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Model
 | 
					# Model
 | 
				
			||||||
sys.path.insert(0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
 | 
					sys.path.insert(
 | 
				
			||||||
 | 
					    0, os.path.sep.join(osp.realpath(__file__).split(os.path.sep)[:-2]))
 | 
				
			||||||
import wan
 | 
					import wan
 | 
				
			||||||
from wan.configs import WAN_CONFIGS
 | 
					from wan.configs import WAN_CONFIGS
 | 
				
			||||||
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
 | 
					from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										200
									
								
								gradio/vace.py
									
									
									
									
									
								
							
							
						
						
									
										200
									
								
								gradio/vace.py
									
									
									
									
									
								
							@ -2,36 +2,48 @@
 | 
				
			|||||||
# Copyright (c) Alibaba, Inc. and its affiliates.
 | 
					# Copyright (c) Alibaba, Inc. and its affiliates.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import argparse
 | 
					import argparse
 | 
				
			||||||
 | 
					import datetime
 | 
				
			||||||
import os
 | 
					import os
 | 
				
			||||||
import sys
 | 
					import sys
 | 
				
			||||||
import datetime
 | 
					
 | 
				
			||||||
import imageio
 | 
					import imageio
 | 
				
			||||||
import numpy as np
 | 
					import numpy as np
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import gradio as gr
 | 
					import gradio as gr
 | 
				
			||||||
 | 
					
 | 
				
			||||||
sys.path.insert(0, os.path.sep.join(os.path.realpath(__file__).split(os.path.sep)[:-2]))
 | 
					sys.path.insert(
 | 
				
			||||||
 | 
					    0, os.path.sep.join(os.path.realpath(__file__).split(os.path.sep)[:-2]))
 | 
				
			||||||
import wan
 | 
					import wan
 | 
				
			||||||
from wan import WanVace, WanVaceMP
 | 
					from wan import WanVace, WanVaceMP
 | 
				
			||||||
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS
 | 
					from wan.configs import SIZE_CONFIGS, WAN_CONFIGS
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class FixedSizeQueue:
 | 
					class FixedSizeQueue:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def __init__(self, max_size):
 | 
					    def __init__(self, max_size):
 | 
				
			||||||
        self.max_size = max_size
 | 
					        self.max_size = max_size
 | 
				
			||||||
        self.queue = []
 | 
					        self.queue = []
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def add(self, item):
 | 
					    def add(self, item):
 | 
				
			||||||
        self.queue.insert(0, item)
 | 
					        self.queue.insert(0, item)
 | 
				
			||||||
        if len(self.queue) > self.max_size:
 | 
					        if len(self.queue) > self.max_size:
 | 
				
			||||||
            self.queue.pop()
 | 
					            self.queue.pop()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def get(self):
 | 
					    def get(self):
 | 
				
			||||||
        return self.queue
 | 
					        return self.queue
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def __repr__(self):
 | 
					    def __repr__(self):
 | 
				
			||||||
        return str(self.queue)
 | 
					        return str(self.queue)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class VACEInference:
 | 
					class VACEInference:
 | 
				
			||||||
    def __init__(self, cfg, skip_load=False, gallery_share=True, gallery_share_limit=5):
 | 
					
 | 
				
			||||||
 | 
					    def __init__(self,
 | 
				
			||||||
 | 
					                 cfg,
 | 
				
			||||||
 | 
					                 skip_load=False,
 | 
				
			||||||
 | 
					                 gallery_share=True,
 | 
				
			||||||
 | 
					                 gallery_share_limit=5):
 | 
				
			||||||
        self.cfg = cfg
 | 
					        self.cfg = cfg
 | 
				
			||||||
        self.save_dir = cfg.save_dir
 | 
					        self.save_dir = cfg.save_dir
 | 
				
			||||||
        self.gallery_share = gallery_share
 | 
					        self.gallery_share = gallery_share
 | 
				
			||||||
@ -53,9 +65,7 @@ class VACEInference:
 | 
				
			|||||||
                    checkpoint_dir=cfg.ckpt_dir,
 | 
					                    checkpoint_dir=cfg.ckpt_dir,
 | 
				
			||||||
                    use_usp=True,
 | 
					                    use_usp=True,
 | 
				
			||||||
                    ulysses_size=cfg.ulysses_size,
 | 
					                    ulysses_size=cfg.ulysses_size,
 | 
				
			||||||
                    ring_size=cfg.ring_size
 | 
					                    ring_size=cfg.ring_size)
 | 
				
			||||||
                )
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def create_ui(self, *args, **kwargs):
 | 
					    def create_ui(self, *args, **kwargs):
 | 
				
			||||||
        gr.Markdown("""
 | 
					        gr.Markdown("""
 | 
				
			||||||
@ -80,30 +90,33 @@ class VACEInference:
 | 
				
			|||||||
        with gr.Row(variant='panel', equal_height=True):
 | 
					        with gr.Row(variant='panel', equal_height=True):
 | 
				
			||||||
            with gr.Column(scale=1, min_width=0):
 | 
					            with gr.Column(scale=1, min_width=0):
 | 
				
			||||||
                with gr.Row(equal_height=True):
 | 
					                with gr.Row(equal_height=True):
 | 
				
			||||||
                    self.src_ref_image_1 = gr.Image(label='src_ref_image_1',
 | 
					                    self.src_ref_image_1 = gr.Image(
 | 
				
			||||||
                                                    height=200,
 | 
					                        label='src_ref_image_1',
 | 
				
			||||||
                                                    interactive=True,
 | 
					                        height=200,
 | 
				
			||||||
                                                    type='filepath',
 | 
					                        interactive=True,
 | 
				
			||||||
                                                    image_mode='RGB',
 | 
					                        type='filepath',
 | 
				
			||||||
                                                    sources=['upload'],
 | 
					                        image_mode='RGB',
 | 
				
			||||||
                                                    elem_id="src_ref_image_1",
 | 
					                        sources=['upload'],
 | 
				
			||||||
                                                    format='png')
 | 
					                        elem_id="src_ref_image_1",
 | 
				
			||||||
                    self.src_ref_image_2 = gr.Image(label='src_ref_image_2',
 | 
					                        format='png')
 | 
				
			||||||
                                                    height=200,
 | 
					                    self.src_ref_image_2 = gr.Image(
 | 
				
			||||||
                                                    interactive=True,
 | 
					                        label='src_ref_image_2',
 | 
				
			||||||
                                                    type='filepath',
 | 
					                        height=200,
 | 
				
			||||||
                                                    image_mode='RGB',
 | 
					                        interactive=True,
 | 
				
			||||||
                                                    sources=['upload'],
 | 
					                        type='filepath',
 | 
				
			||||||
                                                    elem_id="src_ref_image_2",
 | 
					                        image_mode='RGB',
 | 
				
			||||||
                                                    format='png')
 | 
					                        sources=['upload'],
 | 
				
			||||||
                    self.src_ref_image_3 = gr.Image(label='src_ref_image_3',
 | 
					                        elem_id="src_ref_image_2",
 | 
				
			||||||
                                                    height=200,
 | 
					                        format='png')
 | 
				
			||||||
                                                    interactive=True,
 | 
					                    self.src_ref_image_3 = gr.Image(
 | 
				
			||||||
                                                    type='filepath',
 | 
					                        label='src_ref_image_3',
 | 
				
			||||||
                                                    image_mode='RGB',
 | 
					                        height=200,
 | 
				
			||||||
                                                    sources=['upload'],
 | 
					                        interactive=True,
 | 
				
			||||||
                                                    elem_id="src_ref_image_3",
 | 
					                        type='filepath',
 | 
				
			||||||
                                                    format='png')
 | 
					                        image_mode='RGB',
 | 
				
			||||||
 | 
					                        sources=['upload'],
 | 
				
			||||||
 | 
					                        elem_id="src_ref_image_3",
 | 
				
			||||||
 | 
					                        format='png')
 | 
				
			||||||
        with gr.Row(variant='panel', equal_height=True):
 | 
					        with gr.Row(variant='panel', equal_height=True):
 | 
				
			||||||
            with gr.Column(scale=1):
 | 
					            with gr.Column(scale=1):
 | 
				
			||||||
                self.prompt = gr.Textbox(
 | 
					                self.prompt = gr.Textbox(
 | 
				
			||||||
@ -158,10 +171,8 @@ class VACEInference:
 | 
				
			|||||||
                        step=0.5,
 | 
					                        step=0.5,
 | 
				
			||||||
                        value=5.0,
 | 
					                        value=5.0,
 | 
				
			||||||
                        interactive=True)
 | 
					                        interactive=True)
 | 
				
			||||||
                    self.infer_seed = gr.Slider(minimum=-1,
 | 
					                    self.infer_seed = gr.Slider(
 | 
				
			||||||
                                                maximum=10000000,
 | 
					                        minimum=-1, maximum=10000000, value=2025, label="Seed")
 | 
				
			||||||
                                                value=2025,
 | 
					 | 
				
			||||||
                                                label="Seed")
 | 
					 | 
				
			||||||
        #
 | 
					        #
 | 
				
			||||||
        with gr.Accordion(label="Usable without source video", open=False):
 | 
					        with gr.Accordion(label="Usable without source video", open=False):
 | 
				
			||||||
            with gr.Row(equal_height=True):
 | 
					            with gr.Row(equal_height=True):
 | 
				
			||||||
@ -176,13 +187,9 @@ class VACEInference:
 | 
				
			|||||||
                    value=1280,
 | 
					                    value=1280,
 | 
				
			||||||
                    interactive=True)
 | 
					                    interactive=True)
 | 
				
			||||||
                self.frame_rate = gr.Textbox(
 | 
					                self.frame_rate = gr.Textbox(
 | 
				
			||||||
                    label='frame_rate',
 | 
					                    label='frame_rate', value=16, interactive=True)
 | 
				
			||||||
                    value=16,
 | 
					 | 
				
			||||||
                    interactive=True)
 | 
					 | 
				
			||||||
                self.num_frames = gr.Textbox(
 | 
					                self.num_frames = gr.Textbox(
 | 
				
			||||||
                    label='num_frames',
 | 
					                    label='num_frames', value=81, interactive=True)
 | 
				
			||||||
                    value=81,
 | 
					 | 
				
			||||||
                    interactive=True)
 | 
					 | 
				
			||||||
        #
 | 
					        #
 | 
				
			||||||
        with gr.Row(equal_height=True):
 | 
					        with gr.Row(equal_height=True):
 | 
				
			||||||
            with gr.Column(scale=5):
 | 
					            with gr.Column(scale=5):
 | 
				
			||||||
@ -201,17 +208,22 @@ class VACEInference:
 | 
				
			|||||||
            allow_preview=True,
 | 
					            allow_preview=True,
 | 
				
			||||||
            preview=True)
 | 
					            preview=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def generate(self, output_gallery, src_video, src_mask, src_ref_image_1,
 | 
				
			||||||
    def generate(self, output_gallery, src_video, src_mask, src_ref_image_1, src_ref_image_2, src_ref_image_3, prompt, negative_prompt, shift_scale, sample_steps, context_scale, guide_scale, infer_seed, output_height, output_width, frame_rate, num_frames):
 | 
					                 src_ref_image_2, src_ref_image_3, prompt, negative_prompt,
 | 
				
			||||||
        output_height, output_width, frame_rate, num_frames = int(output_height), int(output_width), int(frame_rate), int(num_frames)
 | 
					                 shift_scale, sample_steps, context_scale, guide_scale,
 | 
				
			||||||
        src_ref_images = [x for x in [src_ref_image_1, src_ref_image_2, src_ref_image_3] if
 | 
					                 infer_seed, output_height, output_width, frame_rate,
 | 
				
			||||||
                          x is not None]
 | 
					                 num_frames):
 | 
				
			||||||
        src_video, src_mask, src_ref_images = self.pipe.prepare_source([src_video],
 | 
					        output_height, output_width, frame_rate, num_frames = int(
 | 
				
			||||||
                                                                         [src_mask],
 | 
					            output_height), int(output_width), int(frame_rate), int(num_frames)
 | 
				
			||||||
                                                                         [src_ref_images],
 | 
					        src_ref_images = [
 | 
				
			||||||
                                                                         num_frames=num_frames,
 | 
					            x for x in [src_ref_image_1, src_ref_image_2, src_ref_image_3]
 | 
				
			||||||
                                                                         image_size=SIZE_CONFIGS[f"{output_width}*{output_height}"],
 | 
					            if x is not None
 | 
				
			||||||
                                                                         device=self.pipe.device)
 | 
					        ]
 | 
				
			||||||
 | 
					        src_video, src_mask, src_ref_images = self.pipe.prepare_source(
 | 
				
			||||||
 | 
					            [src_video], [src_mask], [src_ref_images],
 | 
				
			||||||
 | 
					            num_frames=num_frames,
 | 
				
			||||||
 | 
					            image_size=SIZE_CONFIGS[f"{output_width}*{output_height}"],
 | 
				
			||||||
 | 
					            device=self.pipe.device)
 | 
				
			||||||
        video = self.pipe.generate(
 | 
					        video = self.pipe.generate(
 | 
				
			||||||
            prompt,
 | 
					            prompt,
 | 
				
			||||||
            src_video,
 | 
					            src_video,
 | 
				
			||||||
@ -228,10 +240,17 @@ class VACEInference:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        name = '{0:%Y%m%d%-H%M%S}'.format(datetime.datetime.now())
 | 
					        name = '{0:%Y%m%d%-H%M%S}'.format(datetime.datetime.now())
 | 
				
			||||||
        video_path = os.path.join(self.save_dir, f'cur_gallery_{name}.mp4')
 | 
					        video_path = os.path.join(self.save_dir, f'cur_gallery_{name}.mp4')
 | 
				
			||||||
        video_frames = (torch.clamp(video / 2 + 0.5, min=0.0, max=1.0).permute(1, 2, 3, 0) * 255).cpu().numpy().astype(np.uint8)
 | 
					        video_frames = (
 | 
				
			||||||
 | 
					            torch.clamp(video / 2 + 0.5, min=0.0, max=1.0).permute(1, 2, 3, 0) *
 | 
				
			||||||
 | 
					            255).cpu().numpy().astype(np.uint8)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        try:
 | 
					        try:
 | 
				
			||||||
            writer = imageio.get_writer(video_path, fps=frame_rate, codec='libx264', quality=8, macro_block_size=1)
 | 
					            writer = imageio.get_writer(
 | 
				
			||||||
 | 
					                video_path,
 | 
				
			||||||
 | 
					                fps=frame_rate,
 | 
				
			||||||
 | 
					                codec='libx264',
 | 
				
			||||||
 | 
					                quality=8,
 | 
				
			||||||
 | 
					                macro_block_size=1)
 | 
				
			||||||
            for frame in video_frames:
 | 
					            for frame in video_frames:
 | 
				
			||||||
                writer.append_data(frame)
 | 
					                writer.append_data(frame)
 | 
				
			||||||
            writer.close()
 | 
					            writer.close()
 | 
				
			||||||
@ -246,25 +265,57 @@ class VACEInference:
 | 
				
			|||||||
            return [video_path]
 | 
					            return [video_path]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def set_callbacks(self, **kwargs):
 | 
					    def set_callbacks(self, **kwargs):
 | 
				
			||||||
        self.gen_inputs = [self.output_gallery, self.src_video, self.src_mask, self.src_ref_image_1, self.src_ref_image_2, self.src_ref_image_3, self.prompt, self.negative_prompt, self.shift_scale, self.sample_steps, self.context_scale, self.guide_scale, self.infer_seed, self.output_height, self.output_width, self.frame_rate, self.num_frames]
 | 
					        self.gen_inputs = [
 | 
				
			||||||
 | 
					            self.output_gallery, self.src_video, self.src_mask,
 | 
				
			||||||
 | 
					            self.src_ref_image_1, self.src_ref_image_2, self.src_ref_image_3,
 | 
				
			||||||
 | 
					            self.prompt, self.negative_prompt, self.shift_scale,
 | 
				
			||||||
 | 
					            self.sample_steps, self.context_scale, self.guide_scale,
 | 
				
			||||||
 | 
					            self.infer_seed, self.output_height, self.output_width,
 | 
				
			||||||
 | 
					            self.frame_rate, self.num_frames
 | 
				
			||||||
 | 
					        ]
 | 
				
			||||||
        self.gen_outputs = [self.output_gallery]
 | 
					        self.gen_outputs = [self.output_gallery]
 | 
				
			||||||
        self.generate_button.click(self.generate,
 | 
					        self.generate_button.click(
 | 
				
			||||||
                                   inputs=self.gen_inputs,
 | 
					            self.generate,
 | 
				
			||||||
                                   outputs=self.gen_outputs,
 | 
					            inputs=self.gen_inputs,
 | 
				
			||||||
                                   queue=True)
 | 
					            outputs=self.gen_outputs,
 | 
				
			||||||
        self.refresh_button.click(lambda x: self.gallery_share_data.get() if self.gallery_share else x, inputs=[self.output_gallery], outputs=[self.output_gallery])
 | 
					            queue=True)
 | 
				
			||||||
 | 
					        self.refresh_button.click(
 | 
				
			||||||
 | 
					            lambda x: self.gallery_share_data.get()
 | 
				
			||||||
 | 
					            if self.gallery_share else x,
 | 
				
			||||||
 | 
					            inputs=[self.output_gallery],
 | 
				
			||||||
 | 
					            outputs=[self.output_gallery])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__ == '__main__':
 | 
					if __name__ == '__main__':
 | 
				
			||||||
    parser = argparse.ArgumentParser(description='Argparser for VACE-WAN Demo:\n')
 | 
					    parser = argparse.ArgumentParser(
 | 
				
			||||||
    parser.add_argument('--server_port', dest='server_port', help='', type=int, default=7860)
 | 
					        description='Argparser for VACE-WAN Demo:\n')
 | 
				
			||||||
    parser.add_argument('--server_name', dest='server_name', help='', default='0.0.0.0')
 | 
					    parser.add_argument(
 | 
				
			||||||
 | 
					        '--server_port', dest='server_port', help='', type=int, default=7860)
 | 
				
			||||||
 | 
					    parser.add_argument(
 | 
				
			||||||
 | 
					        '--server_name', dest='server_name', help='', default='0.0.0.0')
 | 
				
			||||||
    parser.add_argument('--root_path', dest='root_path', help='', default=None)
 | 
					    parser.add_argument('--root_path', dest='root_path', help='', default=None)
 | 
				
			||||||
    parser.add_argument('--save_dir', dest='save_dir', help='', default='cache')
 | 
					    parser.add_argument('--save_dir', dest='save_dir', help='', default='cache')
 | 
				
			||||||
    parser.add_argument("--mp", action="store_true", help="Use Multi-GPUs",)
 | 
					    parser.add_argument(
 | 
				
			||||||
    parser.add_argument("--model_name", type=str, default="vace-14B", choices=list(WAN_CONFIGS.keys()), help="The model name to run.")
 | 
					        "--mp",
 | 
				
			||||||
    parser.add_argument("--ulysses_size", type=int, default=1, help="The size of the ulysses parallelism in DiT.")
 | 
					        action="store_true",
 | 
				
			||||||
    parser.add_argument("--ring_size", type=int, default=1, help="The size of the ring attention parallelism in DiT.")
 | 
					        help="Use Multi-GPUs",
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    parser.add_argument(
 | 
				
			||||||
 | 
					        "--model_name",
 | 
				
			||||||
 | 
					        type=str,
 | 
				
			||||||
 | 
					        default="vace-14B",
 | 
				
			||||||
 | 
					        choices=list(WAN_CONFIGS.keys()),
 | 
				
			||||||
 | 
					        help="The model name to run.")
 | 
				
			||||||
 | 
					    parser.add_argument(
 | 
				
			||||||
 | 
					        "--ulysses_size",
 | 
				
			||||||
 | 
					        type=int,
 | 
				
			||||||
 | 
					        default=1,
 | 
				
			||||||
 | 
					        help="The size of the ulysses parallelism in DiT.")
 | 
				
			||||||
 | 
					    parser.add_argument(
 | 
				
			||||||
 | 
					        "--ring_size",
 | 
				
			||||||
 | 
					        type=int,
 | 
				
			||||||
 | 
					        default=1,
 | 
				
			||||||
 | 
					        help="The size of the ring attention parallelism in DiT.")
 | 
				
			||||||
    parser.add_argument(
 | 
					    parser.add_argument(
 | 
				
			||||||
        "--ckpt_dir",
 | 
					        "--ckpt_dir",
 | 
				
			||||||
        type=str,
 | 
					        type=str,
 | 
				
			||||||
@ -284,12 +335,15 @@ if __name__ == '__main__':
 | 
				
			|||||||
        os.makedirs(args.save_dir, exist_ok=True)
 | 
					        os.makedirs(args.save_dir, exist_ok=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    with gr.Blocks() as demo:
 | 
					    with gr.Blocks() as demo:
 | 
				
			||||||
        infer_gr = VACEInference(args, skip_load=False, gallery_share=True, gallery_share_limit=5)
 | 
					        infer_gr = VACEInference(
 | 
				
			||||||
 | 
					            args, skip_load=False, gallery_share=True, gallery_share_limit=5)
 | 
				
			||||||
        infer_gr.create_ui()
 | 
					        infer_gr.create_ui()
 | 
				
			||||||
        infer_gr.set_callbacks()
 | 
					        infer_gr.set_callbacks()
 | 
				
			||||||
        allowed_paths = [args.save_dir]
 | 
					        allowed_paths = [args.save_dir]
 | 
				
			||||||
        demo.queue(status_update_rate=1).launch(server_name=args.server_name,
 | 
					        demo.queue(status_update_rate=1).launch(
 | 
				
			||||||
                                                server_port=args.server_port,
 | 
					            server_name=args.server_name,
 | 
				
			||||||
                                                root_path=args.root_path,
 | 
					            server_port=args.server_port,
 | 
				
			||||||
                                                allowed_paths=allowed_paths,
 | 
					            root_path=args.root_path,
 | 
				
			||||||
                                                show_error=True, debug=True)
 | 
					            allowed_paths=allowed_paths,
 | 
				
			||||||
 | 
					            show_error=True,
 | 
				
			||||||
 | 
					            debug=True)
 | 
				
			||||||
 | 
				
			|||||||
@ -1,5 +1,5 @@
 | 
				
			|||||||
from . import configs, distributed, modules
 | 
					from . import configs, distributed, modules
 | 
				
			||||||
 | 
					from .first_last_frame2video import WanFLF2V
 | 
				
			||||||
from .image2video import WanI2V
 | 
					from .image2video import WanI2V
 | 
				
			||||||
from .text2video import WanT2V
 | 
					from .text2video import WanT2V
 | 
				
			||||||
from .first_last_frame2video import WanFLF2V
 | 
					 | 
				
			||||||
from .vace import WanVace, WanVaceMP
 | 
					from .vace import WanVace, WanVaceMP
 | 
				
			||||||
 | 
				
			|||||||
@ -8,6 +8,7 @@ from torch.distributed.fsdp import MixedPrecision, ShardingStrategy
 | 
				
			|||||||
from torch.distributed.fsdp.wrap import lambda_auto_wrap_policy
 | 
					from torch.distributed.fsdp.wrap import lambda_auto_wrap_policy
 | 
				
			||||||
from torch.distributed.utils import _free_storage
 | 
					from torch.distributed.utils import _free_storage
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def shard_model(
 | 
					def shard_model(
 | 
				
			||||||
    model,
 | 
					    model,
 | 
				
			||||||
    device_id,
 | 
					    device_id,
 | 
				
			||||||
@ -32,6 +33,7 @@ def shard_model(
 | 
				
			|||||||
        sync_module_states=sync_module_states)
 | 
					        sync_module_states=sync_module_states)
 | 
				
			||||||
    return model
 | 
					    return model
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def free_model(model):
 | 
					def free_model(model):
 | 
				
			||||||
    for m in model.modules():
 | 
					    for m in model.modules():
 | 
				
			||||||
        if isinstance(m, FSDP):
 | 
					        if isinstance(m, FSDP):
 | 
				
			||||||
 | 
				
			|||||||
@ -1,9 +1,11 @@
 | 
				
			|||||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
					# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
import torch.cuda.amp as amp
 | 
					import torch.cuda.amp as amp
 | 
				
			||||||
from xfuser.core.distributed import (get_sequence_parallel_rank,
 | 
					from xfuser.core.distributed import (
 | 
				
			||||||
                                     get_sequence_parallel_world_size,
 | 
					    get_sequence_parallel_rank,
 | 
				
			||||||
                                     get_sp_group)
 | 
					    get_sequence_parallel_world_size,
 | 
				
			||||||
 | 
					    get_sp_group,
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
from xfuser.core.long_ctx_attention import xFuserLongContextAttention
 | 
					from xfuser.core.long_ctx_attention import xFuserLongContextAttention
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from ..modules.model import sinusoidal_embedding_1d
 | 
					from ..modules.model import sinusoidal_embedding_1d
 | 
				
			||||||
@ -63,19 +65,13 @@ def rope_apply(x, grid_sizes, freqs):
 | 
				
			|||||||
    return torch.stack(output).float()
 | 
					    return torch.stack(output).float()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def usp_dit_forward_vace(
 | 
					def usp_dit_forward_vace(self, x, vace_context, seq_len, kwargs):
 | 
				
			||||||
    self,
 | 
					 | 
				
			||||||
    x,
 | 
					 | 
				
			||||||
    vace_context,
 | 
					 | 
				
			||||||
    seq_len,
 | 
					 | 
				
			||||||
    kwargs
 | 
					 | 
				
			||||||
):
 | 
					 | 
				
			||||||
    # embeddings
 | 
					    # embeddings
 | 
				
			||||||
    c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context]
 | 
					    c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context]
 | 
				
			||||||
    c = [u.flatten(2).transpose(1, 2) for u in c]
 | 
					    c = [u.flatten(2).transpose(1, 2) for u in c]
 | 
				
			||||||
    c = torch.cat([
 | 
					    c = torch.cat([
 | 
				
			||||||
        torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
 | 
					        torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
 | 
				
			||||||
                  dim=1) for u in c
 | 
					        for u in c
 | 
				
			||||||
    ])
 | 
					    ])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # arguments
 | 
					    # arguments
 | 
				
			||||||
 | 
				
			|||||||
@ -21,8 +21,11 @@ from .modules.clip import CLIPModel
 | 
				
			|||||||
from .modules.model import WanModel
 | 
					from .modules.model import WanModel
 | 
				
			||||||
from .modules.t5 import T5EncoderModel
 | 
					from .modules.t5 import T5EncoderModel
 | 
				
			||||||
from .modules.vae import WanVAE
 | 
					from .modules.vae import WanVAE
 | 
				
			||||||
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
 | 
					from .utils.fm_solvers import (
 | 
				
			||||||
                               get_sampling_sigmas, retrieve_timesteps)
 | 
					    FlowDPMSolverMultistepScheduler,
 | 
				
			||||||
 | 
					    get_sampling_sigmas,
 | 
				
			||||||
 | 
					    retrieve_timesteps,
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
 | 
					from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -103,11 +106,12 @@ class WanFLF2V:
 | 
				
			|||||||
            init_on_cpu = False
 | 
					            init_on_cpu = False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if use_usp:
 | 
					        if use_usp:
 | 
				
			||||||
            from xfuser.core.distributed import \
 | 
					            from xfuser.core.distributed import get_sequence_parallel_world_size
 | 
				
			||||||
                get_sequence_parallel_world_size
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
            from .distributed.xdit_context_parallel import (usp_attn_forward,
 | 
					            from .distributed.xdit_context_parallel import (
 | 
				
			||||||
                                                            usp_dit_forward)
 | 
					                usp_attn_forward,
 | 
				
			||||||
 | 
					                usp_dit_forward,
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
            for block in self.model.blocks:
 | 
					            for block in self.model.blocks:
 | 
				
			||||||
                block.self_attn.forward = types.MethodType(
 | 
					                block.self_attn.forward = types.MethodType(
 | 
				
			||||||
                    usp_attn_forward, block.self_attn)
 | 
					                    usp_attn_forward, block.self_attn)
 | 
				
			||||||
@ -181,8 +185,10 @@ class WanFLF2V:
 | 
				
			|||||||
        """
 | 
					        """
 | 
				
			||||||
        first_frame_size = first_frame.size
 | 
					        first_frame_size = first_frame.size
 | 
				
			||||||
        last_frame_size = last_frame.size
 | 
					        last_frame_size = last_frame.size
 | 
				
			||||||
        first_frame = TF.to_tensor(first_frame).sub_(0.5).div_(0.5).to(self.device)
 | 
					        first_frame = TF.to_tensor(first_frame).sub_(0.5).div_(0.5).to(
 | 
				
			||||||
        last_frame = TF.to_tensor(last_frame).sub_(0.5).div_(0.5).to(self.device)
 | 
					            self.device)
 | 
				
			||||||
 | 
					        last_frame = TF.to_tensor(last_frame).sub_(0.5).div_(0.5).to(
 | 
				
			||||||
 | 
					            self.device)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        F = frame_num
 | 
					        F = frame_num
 | 
				
			||||||
        first_frame_h, first_frame_w = first_frame.shape[1:]
 | 
					        first_frame_h, first_frame_w = first_frame.shape[1:]
 | 
				
			||||||
@ -199,8 +205,7 @@ class WanFLF2V:
 | 
				
			|||||||
            # 1. resize
 | 
					            # 1. resize
 | 
				
			||||||
            last_frame_resize_ratio = max(
 | 
					            last_frame_resize_ratio = max(
 | 
				
			||||||
                first_frame_size[0] / last_frame_size[0],
 | 
					                first_frame_size[0] / last_frame_size[0],
 | 
				
			||||||
                first_frame_size[1] / last_frame_size[1]
 | 
					                first_frame_size[1] / last_frame_size[1])
 | 
				
			||||||
            )
 | 
					 | 
				
			||||||
            last_frame_size = [
 | 
					            last_frame_size = [
 | 
				
			||||||
                round(last_frame_size[0] * last_frame_resize_ratio),
 | 
					                round(last_frame_size[0] * last_frame_resize_ratio),
 | 
				
			||||||
                round(last_frame_size[1] * last_frame_resize_ratio),
 | 
					                round(last_frame_size[1] * last_frame_resize_ratio),
 | 
				
			||||||
@ -216,8 +221,7 @@ class WanFLF2V:
 | 
				
			|||||||
        seed_g = torch.Generator(device=self.device)
 | 
					        seed_g = torch.Generator(device=self.device)
 | 
				
			||||||
        seed_g.manual_seed(seed)
 | 
					        seed_g.manual_seed(seed)
 | 
				
			||||||
        noise = torch.randn(
 | 
					        noise = torch.randn(
 | 
				
			||||||
            16,
 | 
					            16, (F - 1) // 4 + 1,
 | 
				
			||||||
            (F - 1) // 4 + 1,
 | 
					 | 
				
			||||||
            lat_h,
 | 
					            lat_h,
 | 
				
			||||||
            lat_w,
 | 
					            lat_w,
 | 
				
			||||||
            dtype=torch.float32,
 | 
					            dtype=torch.float32,
 | 
				
			||||||
@ -225,8 +229,11 @@ class WanFLF2V:
 | 
				
			|||||||
            device=self.device)
 | 
					            device=self.device)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        msk = torch.ones(1, 81, lat_h, lat_w, device=self.device)
 | 
					        msk = torch.ones(1, 81, lat_h, lat_w, device=self.device)
 | 
				
			||||||
        msk[:, 1: -1] = 0
 | 
					        msk[:, 1:-1] = 0
 | 
				
			||||||
        msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
 | 
					        msk = torch.concat([
 | 
				
			||||||
 | 
					            torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]
 | 
				
			||||||
 | 
					        ],
 | 
				
			||||||
 | 
					                           dim=1)
 | 
				
			||||||
        msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
 | 
					        msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
 | 
				
			||||||
        msk = msk.transpose(1, 2)[0]
 | 
					        msk = msk.transpose(1, 2)[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -247,7 +254,8 @@ class WanFLF2V:
 | 
				
			|||||||
            context_null = [t.to(self.device) for t in context_null]
 | 
					            context_null = [t.to(self.device) for t in context_null]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        self.clip.model.to(self.device)
 | 
					        self.clip.model.to(self.device)
 | 
				
			||||||
        clip_context = self.clip.visual([first_frame[:, None, :, :], last_frame[:, None, :, :]])
 | 
					        clip_context = self.clip.visual(
 | 
				
			||||||
 | 
					            [first_frame[:, None, :, :], last_frame[:, None, :, :]])
 | 
				
			||||||
        if offload_model:
 | 
					        if offload_model:
 | 
				
			||||||
            self.clip.model.cpu()
 | 
					            self.clip.model.cpu()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -256,15 +264,14 @@ class WanFLF2V:
 | 
				
			|||||||
                torch.nn.functional.interpolate(
 | 
					                torch.nn.functional.interpolate(
 | 
				
			||||||
                    first_frame[None].cpu(),
 | 
					                    first_frame[None].cpu(),
 | 
				
			||||||
                    size=(first_frame_h, first_frame_w),
 | 
					                    size=(first_frame_h, first_frame_w),
 | 
				
			||||||
                    mode='bicubic'
 | 
					                    mode='bicubic').transpose(0, 1),
 | 
				
			||||||
                ).transpose(0, 1),
 | 
					 | 
				
			||||||
                torch.zeros(3, F - 2, first_frame_h, first_frame_w),
 | 
					                torch.zeros(3, F - 2, first_frame_h, first_frame_w),
 | 
				
			||||||
                torch.nn.functional.interpolate(
 | 
					                torch.nn.functional.interpolate(
 | 
				
			||||||
                    last_frame[None].cpu(),
 | 
					                    last_frame[None].cpu(),
 | 
				
			||||||
                    size=(first_frame_h, first_frame_w),
 | 
					                    size=(first_frame_h, first_frame_w),
 | 
				
			||||||
                    mode='bicubic'
 | 
					                    mode='bicubic').transpose(0, 1),
 | 
				
			||||||
                ).transpose(0, 1),
 | 
					            ],
 | 
				
			||||||
            ], dim=1).to(self.device)
 | 
					                         dim=1).to(self.device)
 | 
				
			||||||
        ])[0]
 | 
					        ])[0]
 | 
				
			||||||
        y = torch.concat([msk, y])
 | 
					        y = torch.concat([msk, y])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
@ -21,8 +21,11 @@ from .modules.clip import CLIPModel
 | 
				
			|||||||
from .modules.model import WanModel
 | 
					from .modules.model import WanModel
 | 
				
			||||||
from .modules.t5 import T5EncoderModel
 | 
					from .modules.t5 import T5EncoderModel
 | 
				
			||||||
from .modules.vae import WanVAE
 | 
					from .modules.vae import WanVAE
 | 
				
			||||||
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
 | 
					from .utils.fm_solvers import (
 | 
				
			||||||
                               get_sampling_sigmas, retrieve_timesteps)
 | 
					    FlowDPMSolverMultistepScheduler,
 | 
				
			||||||
 | 
					    get_sampling_sigmas,
 | 
				
			||||||
 | 
					    retrieve_timesteps,
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
 | 
					from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -103,11 +106,12 @@ class WanI2V:
 | 
				
			|||||||
            init_on_cpu = False
 | 
					            init_on_cpu = False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if use_usp:
 | 
					        if use_usp:
 | 
				
			||||||
            from xfuser.core.distributed import \
 | 
					            from xfuser.core.distributed import get_sequence_parallel_world_size
 | 
				
			||||||
                get_sequence_parallel_world_size
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
            from .distributed.xdit_context_parallel import (usp_attn_forward,
 | 
					            from .distributed.xdit_context_parallel import (
 | 
				
			||||||
                                                            usp_dit_forward)
 | 
					                usp_attn_forward,
 | 
				
			||||||
 | 
					                usp_dit_forward,
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
            for block in self.model.blocks:
 | 
					            for block in self.model.blocks:
 | 
				
			||||||
                block.self_attn.forward = types.MethodType(
 | 
					                block.self_attn.forward = types.MethodType(
 | 
				
			||||||
                    usp_attn_forward, block.self_attn)
 | 
					                    usp_attn_forward, block.self_attn)
 | 
				
			||||||
@ -196,8 +200,7 @@ class WanI2V:
 | 
				
			|||||||
        seed_g = torch.Generator(device=self.device)
 | 
					        seed_g = torch.Generator(device=self.device)
 | 
				
			||||||
        seed_g.manual_seed(seed)
 | 
					        seed_g.manual_seed(seed)
 | 
				
			||||||
        noise = torch.randn(
 | 
					        noise = torch.randn(
 | 
				
			||||||
            16,
 | 
					            16, (F - 1) // 4 + 1,
 | 
				
			||||||
            (F - 1) // 4 + 1,
 | 
					 | 
				
			||||||
            lat_h,
 | 
					            lat_h,
 | 
				
			||||||
            lat_w,
 | 
					            lat_w,
 | 
				
			||||||
            dtype=torch.float32,
 | 
					            dtype=torch.float32,
 | 
				
			||||||
 | 
				
			|||||||
@ -273,7 +273,7 @@ class WanAttentionBlock(nn.Module):
 | 
				
			|||||||
            nn.Linear(ffn_dim, dim))
 | 
					            nn.Linear(ffn_dim, dim))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # modulation
 | 
					        # modulation
 | 
				
			||||||
        self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim ** 0.5)
 | 
					        self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def forward(
 | 
					    def forward(
 | 
				
			||||||
        self,
 | 
					        self,
 | 
				
			||||||
@ -332,7 +332,7 @@ class Head(nn.Module):
 | 
				
			|||||||
        self.head = nn.Linear(dim, out_dim)
 | 
					        self.head = nn.Linear(dim, out_dim)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # modulation
 | 
					        # modulation
 | 
				
			||||||
        self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim ** 0.5)
 | 
					        self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def forward(self, x, e):
 | 
					    def forward(self, x, e):
 | 
				
			||||||
        r"""
 | 
					        r"""
 | 
				
			||||||
@ -357,7 +357,8 @@ class MLPProj(torch.nn.Module):
 | 
				
			|||||||
            torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim),
 | 
					            torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim),
 | 
				
			||||||
            torch.nn.LayerNorm(out_dim))
 | 
					            torch.nn.LayerNorm(out_dim))
 | 
				
			||||||
        if flf_pos_emb:  # NOTE: we only use this for `flf2v`
 | 
					        if flf_pos_emb:  # NOTE: we only use this for `flf2v`
 | 
				
			||||||
            self.emb_pos = nn.Parameter(torch.zeros(1, FIRST_LAST_FRAME_CONTEXT_TOKEN_NUMBER, 1280))
 | 
					            self.emb_pos = nn.Parameter(
 | 
				
			||||||
 | 
					                torch.zeros(1, FIRST_LAST_FRAME_CONTEXT_TOKEN_NUMBER, 1280))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def forward(self, image_embeds):
 | 
					    def forward(self, image_embeds):
 | 
				
			||||||
        if hasattr(self, 'emb_pos'):
 | 
					        if hasattr(self, 'emb_pos'):
 | 
				
			||||||
 | 
				
			|||||||
@ -3,23 +3,24 @@ import torch
 | 
				
			|||||||
import torch.cuda.amp as amp
 | 
					import torch.cuda.amp as amp
 | 
				
			||||||
import torch.nn as nn
 | 
					import torch.nn as nn
 | 
				
			||||||
from diffusers.configuration_utils import register_to_config
 | 
					from diffusers.configuration_utils import register_to_config
 | 
				
			||||||
from .model import WanModel, WanAttentionBlock, sinusoidal_embedding_1d
 | 
					
 | 
				
			||||||
 | 
					from .model import WanAttentionBlock, WanModel, sinusoidal_embedding_1d
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class VaceWanAttentionBlock(WanAttentionBlock):
 | 
					class VaceWanAttentionBlock(WanAttentionBlock):
 | 
				
			||||||
    def __init__(
 | 
					
 | 
				
			||||||
            self,
 | 
					    def __init__(self,
 | 
				
			||||||
            cross_attn_type,
 | 
					                 cross_attn_type,
 | 
				
			||||||
            dim,
 | 
					                 dim,
 | 
				
			||||||
            ffn_dim,
 | 
					                 ffn_dim,
 | 
				
			||||||
            num_heads,
 | 
					                 num_heads,
 | 
				
			||||||
            window_size=(-1, -1),
 | 
					                 window_size=(-1, -1),
 | 
				
			||||||
            qk_norm=True,
 | 
					                 qk_norm=True,
 | 
				
			||||||
            cross_attn_norm=False,
 | 
					                 cross_attn_norm=False,
 | 
				
			||||||
            eps=1e-6,
 | 
					                 eps=1e-6,
 | 
				
			||||||
            block_id=0
 | 
					                 block_id=0):
 | 
				
			||||||
    ):
 | 
					        super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size,
 | 
				
			||||||
        super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps)
 | 
					                         qk_norm, cross_attn_norm, eps)
 | 
				
			||||||
        self.block_id = block_id
 | 
					        self.block_id = block_id
 | 
				
			||||||
        if block_id == 0:
 | 
					        if block_id == 0:
 | 
				
			||||||
            self.before_proj = nn.Linear(self.dim, self.dim)
 | 
					            self.before_proj = nn.Linear(self.dim, self.dim)
 | 
				
			||||||
@ -39,19 +40,19 @@ class VaceWanAttentionBlock(WanAttentionBlock):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class BaseWanAttentionBlock(WanAttentionBlock):
 | 
					class BaseWanAttentionBlock(WanAttentionBlock):
 | 
				
			||||||
    def __init__(
 | 
					
 | 
				
			||||||
        self,
 | 
					    def __init__(self,
 | 
				
			||||||
        cross_attn_type,
 | 
					                 cross_attn_type,
 | 
				
			||||||
        dim,
 | 
					                 dim,
 | 
				
			||||||
        ffn_dim,
 | 
					                 ffn_dim,
 | 
				
			||||||
        num_heads,
 | 
					                 num_heads,
 | 
				
			||||||
        window_size=(-1, -1),
 | 
					                 window_size=(-1, -1),
 | 
				
			||||||
        qk_norm=True,
 | 
					                 qk_norm=True,
 | 
				
			||||||
        cross_attn_norm=False,
 | 
					                 cross_attn_norm=False,
 | 
				
			||||||
        eps=1e-6,
 | 
					                 eps=1e-6,
 | 
				
			||||||
        block_id=None
 | 
					                 block_id=None):
 | 
				
			||||||
    ):
 | 
					        super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size,
 | 
				
			||||||
        super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps)
 | 
					                         qk_norm, cross_attn_norm, eps)
 | 
				
			||||||
        self.block_id = block_id
 | 
					        self.block_id = block_id
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def forward(self, x, hints, context_scale=1.0, **kwargs):
 | 
					    def forward(self, x, hints, context_scale=1.0, **kwargs):
 | 
				
			||||||
@ -62,6 +63,7 @@ class BaseWanAttentionBlock(WanAttentionBlock):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class VaceWanModel(WanModel):
 | 
					class VaceWanModel(WanModel):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    @register_to_config
 | 
					    @register_to_config
 | 
				
			||||||
    def __init__(self,
 | 
					    def __init__(self,
 | 
				
			||||||
                 vace_layers=None,
 | 
					                 vace_layers=None,
 | 
				
			||||||
@ -81,42 +83,57 @@ class VaceWanModel(WanModel):
 | 
				
			|||||||
                 qk_norm=True,
 | 
					                 qk_norm=True,
 | 
				
			||||||
                 cross_attn_norm=True,
 | 
					                 cross_attn_norm=True,
 | 
				
			||||||
                 eps=1e-6):
 | 
					                 eps=1e-6):
 | 
				
			||||||
        super().__init__(model_type, patch_size, text_len, in_dim, dim, ffn_dim, freq_dim, text_dim, out_dim,
 | 
					        super().__init__(model_type, patch_size, text_len, in_dim, dim, ffn_dim,
 | 
				
			||||||
                         num_heads, num_layers, window_size, qk_norm, cross_attn_norm, eps)
 | 
					                         freq_dim, text_dim, out_dim, num_heads, num_layers,
 | 
				
			||||||
 | 
					                         window_size, qk_norm, cross_attn_norm, eps)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        self.vace_layers = [i for i in range(0, self.num_layers, 2)] if vace_layers is None else vace_layers
 | 
					        self.vace_layers = [i for i in range(0, self.num_layers, 2)
 | 
				
			||||||
 | 
					                           ] if vace_layers is None else vace_layers
 | 
				
			||||||
        self.vace_in_dim = self.in_dim if vace_in_dim is None else vace_in_dim
 | 
					        self.vace_in_dim = self.in_dim if vace_in_dim is None else vace_in_dim
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        assert 0 in self.vace_layers
 | 
					        assert 0 in self.vace_layers
 | 
				
			||||||
        self.vace_layers_mapping = {i: n for n, i in enumerate(self.vace_layers)}
 | 
					        self.vace_layers_mapping = {
 | 
				
			||||||
 | 
					            i: n for n, i in enumerate(self.vace_layers)
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # blocks
 | 
					        # blocks
 | 
				
			||||||
        self.blocks = nn.ModuleList([
 | 
					        self.blocks = nn.ModuleList([
 | 
				
			||||||
            BaseWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm,
 | 
					            BaseWanAttentionBlock(
 | 
				
			||||||
                                  self.cross_attn_norm, self.eps,
 | 
					                't2v_cross_attn',
 | 
				
			||||||
                                  block_id=self.vace_layers_mapping[i] if i in self.vace_layers else None)
 | 
					                self.dim,
 | 
				
			||||||
 | 
					                self.ffn_dim,
 | 
				
			||||||
 | 
					                self.num_heads,
 | 
				
			||||||
 | 
					                self.window_size,
 | 
				
			||||||
 | 
					                self.qk_norm,
 | 
				
			||||||
 | 
					                self.cross_attn_norm,
 | 
				
			||||||
 | 
					                self.eps,
 | 
				
			||||||
 | 
					                block_id=self.vace_layers_mapping[i]
 | 
				
			||||||
 | 
					                if i in self.vace_layers else None)
 | 
				
			||||||
            for i in range(self.num_layers)
 | 
					            for i in range(self.num_layers)
 | 
				
			||||||
        ])
 | 
					        ])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # vace blocks
 | 
					        # vace blocks
 | 
				
			||||||
        self.vace_blocks = nn.ModuleList([
 | 
					        self.vace_blocks = nn.ModuleList([
 | 
				
			||||||
            VaceWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm,
 | 
					            VaceWanAttentionBlock(
 | 
				
			||||||
                                     self.cross_attn_norm, self.eps, block_id=i)
 | 
					                't2v_cross_attn',
 | 
				
			||||||
            for i in self.vace_layers
 | 
					                self.dim,
 | 
				
			||||||
 | 
					                self.ffn_dim,
 | 
				
			||||||
 | 
					                self.num_heads,
 | 
				
			||||||
 | 
					                self.window_size,
 | 
				
			||||||
 | 
					                self.qk_norm,
 | 
				
			||||||
 | 
					                self.cross_attn_norm,
 | 
				
			||||||
 | 
					                self.eps,
 | 
				
			||||||
 | 
					                block_id=i) for i in self.vace_layers
 | 
				
			||||||
        ])
 | 
					        ])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # vace patch embeddings
 | 
					        # vace patch embeddings
 | 
				
			||||||
        self.vace_patch_embedding = nn.Conv3d(
 | 
					        self.vace_patch_embedding = nn.Conv3d(
 | 
				
			||||||
            self.vace_in_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size
 | 
					            self.vace_in_dim,
 | 
				
			||||||
        )
 | 
					            self.dim,
 | 
				
			||||||
 | 
					            kernel_size=self.patch_size,
 | 
				
			||||||
 | 
					            stride=self.patch_size)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def forward_vace(
 | 
					    def forward_vace(self, x, vace_context, seq_len, kwargs):
 | 
				
			||||||
        self,
 | 
					 | 
				
			||||||
        x,
 | 
					 | 
				
			||||||
        vace_context,
 | 
					 | 
				
			||||||
        seq_len,
 | 
					 | 
				
			||||||
        kwargs
 | 
					 | 
				
			||||||
    ):
 | 
					 | 
				
			||||||
        # embeddings
 | 
					        # embeddings
 | 
				
			||||||
        c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context]
 | 
					        c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context]
 | 
				
			||||||
        c = [u.flatten(2).transpose(1, 2) for u in c]
 | 
					        c = [u.flatten(2).transpose(1, 2) for u in c]
 | 
				
			||||||
 | 
				
			|||||||
@ -18,8 +18,11 @@ from .distributed.fsdp import shard_model
 | 
				
			|||||||
from .modules.model import WanModel
 | 
					from .modules.model import WanModel
 | 
				
			||||||
from .modules.t5 import T5EncoderModel
 | 
					from .modules.t5 import T5EncoderModel
 | 
				
			||||||
from .modules.vae import WanVAE
 | 
					from .modules.vae import WanVAE
 | 
				
			||||||
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
 | 
					from .utils.fm_solvers import (
 | 
				
			||||||
                               get_sampling_sigmas, retrieve_timesteps)
 | 
					    FlowDPMSolverMultistepScheduler,
 | 
				
			||||||
 | 
					    get_sampling_sigmas,
 | 
				
			||||||
 | 
					    retrieve_timesteps,
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
 | 
					from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -85,11 +88,12 @@ class WanT2V:
 | 
				
			|||||||
        self.model.eval().requires_grad_(False)
 | 
					        self.model.eval().requires_grad_(False)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if use_usp:
 | 
					        if use_usp:
 | 
				
			||||||
            from xfuser.core.distributed import \
 | 
					            from xfuser.core.distributed import get_sequence_parallel_world_size
 | 
				
			||||||
                get_sequence_parallel_world_size
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
            from .distributed.xdit_context_parallel import (usp_attn_forward,
 | 
					            from .distributed.xdit_context_parallel import (
 | 
				
			||||||
                                                            usp_dit_forward)
 | 
					                usp_attn_forward,
 | 
				
			||||||
 | 
					                usp_dit_forward,
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
            for block in self.model.blocks:
 | 
					            for block in self.model.blocks:
 | 
				
			||||||
                block.self_attn.forward = types.MethodType(
 | 
					                block.self_attn.forward = types.MethodType(
 | 
				
			||||||
                    usp_attn_forward, block.self_attn)
 | 
					                    usp_attn_forward, block.self_attn)
 | 
				
			||||||
 | 
				
			|||||||
@ -1,5 +1,8 @@
 | 
				
			|||||||
from .fm_solvers import (FlowDPMSolverMultistepScheduler, get_sampling_sigmas,
 | 
					from .fm_solvers import (
 | 
				
			||||||
                         retrieve_timesteps)
 | 
					    FlowDPMSolverMultistepScheduler,
 | 
				
			||||||
 | 
					    get_sampling_sigmas,
 | 
				
			||||||
 | 
					    retrieve_timesteps,
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
from .fm_solvers_unipc import FlowUniPCMultistepScheduler
 | 
					from .fm_solvers_unipc import FlowUniPCMultistepScheduler
 | 
				
			||||||
from .vace_processor import VaceVideoProcessor
 | 
					from .vace_processor import VaceVideoProcessor
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
@ -9,9 +9,11 @@ from typing import List, Optional, Tuple, Union
 | 
				
			|||||||
import numpy as np
 | 
					import numpy as np
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
 | 
					from diffusers.configuration_utils import ConfigMixin, register_to_config
 | 
				
			||||||
from diffusers.schedulers.scheduling_utils import (KarrasDiffusionSchedulers,
 | 
					from diffusers.schedulers.scheduling_utils import (
 | 
				
			||||||
                                                   SchedulerMixin,
 | 
					    KarrasDiffusionSchedulers,
 | 
				
			||||||
                                                   SchedulerOutput)
 | 
					    SchedulerMixin,
 | 
				
			||||||
 | 
					    SchedulerOutput,
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
from diffusers.utils import deprecate, is_scipy_available
 | 
					from diffusers.utils import deprecate, is_scipy_available
 | 
				
			||||||
from diffusers.utils.torch_utils import randn_tensor
 | 
					from diffusers.utils.torch_utils import randn_tensor
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
@ -8,9 +8,11 @@ from typing import List, Optional, Tuple, Union
 | 
				
			|||||||
import numpy as np
 | 
					import numpy as np
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
 | 
					from diffusers.configuration_utils import ConfigMixin, register_to_config
 | 
				
			||||||
from diffusers.schedulers.scheduling_utils import (KarrasDiffusionSchedulers,
 | 
					from diffusers.schedulers.scheduling_utils import (
 | 
				
			||||||
                                                   SchedulerMixin,
 | 
					    KarrasDiffusionSchedulers,
 | 
				
			||||||
                                                   SchedulerOutput)
 | 
					    SchedulerMixin,
 | 
				
			||||||
 | 
					    SchedulerOutput,
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
from diffusers.utils import deprecate, is_scipy_available
 | 
					from diffusers.utils import deprecate, is_scipy_available
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if is_scipy_available():
 | 
					if is_scipy_available():
 | 
				
			||||||
 | 
				
			|||||||
@ -7,7 +7,7 @@ import sys
 | 
				
			|||||||
import tempfile
 | 
					import tempfile
 | 
				
			||||||
from dataclasses import dataclass
 | 
					from dataclasses import dataclass
 | 
				
			||||||
from http import HTTPStatus
 | 
					from http import HTTPStatus
 | 
				
			||||||
from typing import Optional, Union, List
 | 
					from typing import List, Optional, Union
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import dashscope
 | 
					import dashscope
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
@ -96,7 +96,6 @@ VL_EN_SYS_PROMPT =  \
 | 
				
			|||||||
    '''4. In the style of an American drama promotional poster, Walter White sits in a metal folding chair wearing a yellow protective suit, with the words "Breaking Bad" written in sans-serif English above him, surrounded by piles of dollar bills and blue plastic storage boxes. He wears glasses, staring forward, dressed in a yellow jumpsuit, with his hands resting on his knees, exuding a calm and confident demeanor. The background shows an abandoned, dim factory with light filtering through the windows. There’s a noticeable grainy texture. A medium shot with a straight-on close-up of the character.\n''' \
 | 
					    '''4. In the style of an American drama promotional poster, Walter White sits in a metal folding chair wearing a yellow protective suit, with the words "Breaking Bad" written in sans-serif English above him, surrounded by piles of dollar bills and blue plastic storage boxes. He wears glasses, staring forward, dressed in a yellow jumpsuit, with his hands resting on his knees, exuding a calm and confident demeanor. The background shows an abandoned, dim factory with light filtering through the windows. There’s a noticeable grainy texture. A medium shot with a straight-on close-up of the character.\n''' \
 | 
				
			||||||
    '''Directly output the rewritten English text.'''
 | 
					    '''Directly output the rewritten English text.'''
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
VL_ZH_SYS_PROMPT_FOR_MULTI_IMAGES = """你是一位Prompt优化师,旨在参考用户输入的图像的细节内容,把用户输入的Prompt改写为优质Prompt,使其更完整、更具表现力,同时不改变原意。你需要综合用户输入的照片内容和输入的Prompt进行改写,严格参考示例的格式进行改写
 | 
					VL_ZH_SYS_PROMPT_FOR_MULTI_IMAGES = """你是一位Prompt优化师,旨在参考用户输入的图像的细节内容,把用户输入的Prompt改写为优质Prompt,使其更完整、更具表现力,同时不改变原意。你需要综合用户输入的照片内容和输入的Prompt进行改写,严格参考示例的格式进行改写
 | 
				
			||||||
任务要求:
 | 
					任务要求:
 | 
				
			||||||
1. 用户会输入两张图片,第一张是视频的第一帧,第二张时视频的最后一帧,你需要综合两个照片的内容进行优化改写
 | 
					1. 用户会输入两张图片,第一张是视频的第一帧,第二张时视频的最后一帧,你需要综合两个照片的内容进行优化改写
 | 
				
			||||||
@ -198,8 +197,8 @@ class PromptExpander:
 | 
				
			|||||||
        if system_prompt is None:
 | 
					        if system_prompt is None:
 | 
				
			||||||
            system_prompt = self.decide_system_prompt(
 | 
					            system_prompt = self.decide_system_prompt(
 | 
				
			||||||
                tar_lang=tar_lang,
 | 
					                tar_lang=tar_lang,
 | 
				
			||||||
                multi_images_input=isinstance(image, (list, tuple)) and len(image) > 1
 | 
					                multi_images_input=isinstance(image, (list, tuple)) and
 | 
				
			||||||
            )
 | 
					                len(image) > 1)
 | 
				
			||||||
        if seed < 0:
 | 
					        if seed < 0:
 | 
				
			||||||
            seed = random.randint(0, sys.maxsize)
 | 
					            seed = random.randint(0, sys.maxsize)
 | 
				
			||||||
        if image is not None and self.is_vl:
 | 
					        if image is not None and self.is_vl:
 | 
				
			||||||
@ -289,7 +288,8 @@ class DashScopePromptExpander(PromptExpander):
 | 
				
			|||||||
    def extend_with_img(self,
 | 
					    def extend_with_img(self,
 | 
				
			||||||
                        prompt,
 | 
					                        prompt,
 | 
				
			||||||
                        system_prompt,
 | 
					                        system_prompt,
 | 
				
			||||||
                        image: Union[List[Image.Image], List[str], Image.Image, str] = None,
 | 
					                        image: Union[List[Image.Image], List[str], Image.Image,
 | 
				
			||||||
 | 
					                                     str] = None,
 | 
				
			||||||
                        seed=-1,
 | 
					                        seed=-1,
 | 
				
			||||||
                        *args,
 | 
					                        *args,
 | 
				
			||||||
                        **kwargs):
 | 
					                        **kwargs):
 | 
				
			||||||
@ -308,13 +308,15 @@ class DashScopePromptExpander(PromptExpander):
 | 
				
			|||||||
                _image.save(f.name)
 | 
					                _image.save(f.name)
 | 
				
			||||||
                image_path = f"file://{f.name}"
 | 
					                image_path = f"file://{f.name}"
 | 
				
			||||||
            return image_path
 | 
					            return image_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if not isinstance(image, (list, tuple)):
 | 
					        if not isinstance(image, (list, tuple)):
 | 
				
			||||||
            image = [image]
 | 
					            image = [image]
 | 
				
			||||||
        image_path_list = [ensure_image(_image) for _image in image]
 | 
					        image_path_list = [ensure_image(_image) for _image in image]
 | 
				
			||||||
        role_content = [
 | 
					        role_content = [{
 | 
				
			||||||
            {"text": prompt},
 | 
					            "text": prompt
 | 
				
			||||||
            *[{"image": image_path} for image_path in image_path_list]
 | 
					        }, *[{
 | 
				
			||||||
        ]
 | 
					            "image": image_path
 | 
				
			||||||
 | 
					        } for image_path in image_path_list]]
 | 
				
			||||||
        system_content = [{"text": system_prompt}]
 | 
					        system_content = [{"text": system_prompt}]
 | 
				
			||||||
        prompt = f"{prompt}"
 | 
					        prompt = f"{prompt}"
 | 
				
			||||||
        messages = [
 | 
					        messages = [
 | 
				
			||||||
@ -393,8 +395,11 @@ class QwenPromptExpander(PromptExpander):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        if self.is_vl:
 | 
					        if self.is_vl:
 | 
				
			||||||
            # default: Load the model on the available device(s)
 | 
					            # default: Load the model on the available device(s)
 | 
				
			||||||
            from transformers import (AutoProcessor, AutoTokenizer,
 | 
					            from transformers import (
 | 
				
			||||||
                                      Qwen2_5_VLForConditionalGeneration)
 | 
					                AutoProcessor,
 | 
				
			||||||
 | 
					                AutoTokenizer,
 | 
				
			||||||
 | 
					                Qwen2_5_VLForConditionalGeneration,
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
            try:
 | 
					            try:
 | 
				
			||||||
                from .qwen_vl_utils import process_vision_info
 | 
					                from .qwen_vl_utils import process_vision_info
 | 
				
			||||||
            except:
 | 
					            except:
 | 
				
			||||||
@ -459,7 +464,8 @@ class QwenPromptExpander(PromptExpander):
 | 
				
			|||||||
    def extend_with_img(self,
 | 
					    def extend_with_img(self,
 | 
				
			||||||
                        prompt,
 | 
					                        prompt,
 | 
				
			||||||
                        system_prompt,
 | 
					                        system_prompt,
 | 
				
			||||||
                        image: Union[List[Image.Image], List[str], Image.Image, str] = None,
 | 
					                        image: Union[List[Image.Image], List[str], Image.Image,
 | 
				
			||||||
 | 
					                                     str] = None,
 | 
				
			||||||
                        seed=-1,
 | 
					                        seed=-1,
 | 
				
			||||||
                        *args,
 | 
					                        *args,
 | 
				
			||||||
                        **kwargs):
 | 
					                        **kwargs):
 | 
				
			||||||
@ -468,26 +474,19 @@ class QwenPromptExpander(PromptExpander):
 | 
				
			|||||||
        if not isinstance(image, (list, tuple)):
 | 
					        if not isinstance(image, (list, tuple)):
 | 
				
			||||||
            image = [image]
 | 
					            image = [image]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        system_content = [{
 | 
					        system_content = [{"type": "text", "text": system_prompt}]
 | 
				
			||||||
 | 
					        role_content = [{
 | 
				
			||||||
            "type": "text",
 | 
					            "type": "text",
 | 
				
			||||||
            "text": system_prompt
 | 
					            "text": prompt
 | 
				
			||||||
        }]
 | 
					        }, *[{
 | 
				
			||||||
        role_content = [
 | 
					            "image": image_path
 | 
				
			||||||
            {
 | 
					        } for image_path in image]]
 | 
				
			||||||
                "type": "text",
 | 
					 | 
				
			||||||
                "text": prompt
 | 
					 | 
				
			||||||
            },
 | 
					 | 
				
			||||||
            *[
 | 
					 | 
				
			||||||
                {"image": image_path} for image_path in image
 | 
					 | 
				
			||||||
            ]
 | 
					 | 
				
			||||||
        ]
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
        messages = [{
 | 
					        messages = [{
 | 
				
			||||||
            'role': 'system',
 | 
					            'role': 'system',
 | 
				
			||||||
            'content': system_content,
 | 
					            'content': system_content,
 | 
				
			||||||
        }, {
 | 
					        }, {
 | 
				
			||||||
            "role":
 | 
					            "role": "user",
 | 
				
			||||||
                "user",
 | 
					 | 
				
			||||||
            "content": role_content,
 | 
					            "content": role_content,
 | 
				
			||||||
        }]
 | 
					        }]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -611,25 +610,38 @@ if __name__ == "__main__":
 | 
				
			|||||||
    print("VL qwen vl en result -> en",
 | 
					    print("VL qwen vl en result -> en",
 | 
				
			||||||
          qwen_result.prompt)  # , qwen_result.system_prompt)
 | 
					          qwen_result.prompt)  # , qwen_result.system_prompt)
 | 
				
			||||||
    # test multi images
 | 
					    # test multi images
 | 
				
			||||||
    image = ["./examples/flf2v_input_first_frame.png", "./examples/flf2v_input_last_frame.png"]
 | 
					    image = [
 | 
				
			||||||
 | 
					        "./examples/flf2v_input_first_frame.png",
 | 
				
			||||||
 | 
					        "./examples/flf2v_input_last_frame.png"
 | 
				
			||||||
 | 
					    ]
 | 
				
			||||||
    prompt = "无人机拍摄,镜头快速推进,然后拉远至全景俯瞰,展示一个宁静美丽的海港。海港内停满了游艇,水面清澈透蓝。周围是起伏的山丘和错落有致的建筑,整体景色宁静而美丽。"
 | 
					    prompt = "无人机拍摄,镜头快速推进,然后拉远至全景俯瞰,展示一个宁静美丽的海港。海港内停满了游艇,水面清澈透蓝。周围是起伏的山丘和错落有致的建筑,整体景色宁静而美丽。"
 | 
				
			||||||
    en_prompt = ("Shot from a drone perspective, the camera rapidly zooms in before pulling back to reveal a panoramic "
 | 
					    en_prompt = (
 | 
				
			||||||
                 "aerial view of a serene and picturesque harbor. The tranquil bay is dotted with numerous yachts "
 | 
					        "Shot from a drone perspective, the camera rapidly zooms in before pulling back to reveal a panoramic "
 | 
				
			||||||
                 "resting on crystal-clear blue waters. Surrounding the harbor are rolling hills and well-spaced "
 | 
					        "aerial view of a serene and picturesque harbor. The tranquil bay is dotted with numerous yachts "
 | 
				
			||||||
                 "architectural structures, combining to create a tranquil and breathtaking coastal landscape.")
 | 
					        "resting on crystal-clear blue waters. Surrounding the harbor are rolling hills and well-spaced "
 | 
				
			||||||
 | 
					        "architectural structures, combining to create a tranquil and breathtaking coastal landscape."
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    dashscope_prompt_expander = DashScopePromptExpander(model_name=ds_model_name, is_vl=True)
 | 
					    dashscope_prompt_expander = DashScopePromptExpander(
 | 
				
			||||||
    dashscope_result = dashscope_prompt_expander(prompt, tar_lang="zh", image=image, seed=seed)
 | 
					        model_name=ds_model_name, is_vl=True)
 | 
				
			||||||
 | 
					    dashscope_result = dashscope_prompt_expander(
 | 
				
			||||||
 | 
					        prompt, tar_lang="zh", image=image, seed=seed)
 | 
				
			||||||
    print("VL dashscope result -> zh", dashscope_result.prompt)
 | 
					    print("VL dashscope result -> zh", dashscope_result.prompt)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    dashscope_prompt_expander = DashScopePromptExpander(model_name=ds_model_name, is_vl=True)
 | 
					    dashscope_prompt_expander = DashScopePromptExpander(
 | 
				
			||||||
    dashscope_result = dashscope_prompt_expander(en_prompt, tar_lang="zh", image=image, seed=seed)
 | 
					        model_name=ds_model_name, is_vl=True)
 | 
				
			||||||
 | 
					    dashscope_result = dashscope_prompt_expander(
 | 
				
			||||||
 | 
					        en_prompt, tar_lang="zh", image=image, seed=seed)
 | 
				
			||||||
    print("VL dashscope en result -> zh", dashscope_result.prompt)
 | 
					    print("VL dashscope en result -> zh", dashscope_result.prompt)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    qwen_prompt_expander = QwenPromptExpander(model_name=qwen_model_name, is_vl=True, device=0)
 | 
					    qwen_prompt_expander = QwenPromptExpander(
 | 
				
			||||||
    qwen_result = qwen_prompt_expander(prompt, tar_lang="zh", image=image, seed=seed)
 | 
					        model_name=qwen_model_name, is_vl=True, device=0)
 | 
				
			||||||
 | 
					    qwen_result = qwen_prompt_expander(
 | 
				
			||||||
 | 
					        prompt, tar_lang="zh", image=image, seed=seed)
 | 
				
			||||||
    print("VL qwen result -> zh", qwen_result.prompt)
 | 
					    print("VL qwen result -> zh", qwen_result.prompt)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    qwen_prompt_expander = QwenPromptExpander(model_name=qwen_model_name, is_vl=True, device=0)
 | 
					    qwen_prompt_expander = QwenPromptExpander(
 | 
				
			||||||
    qwen_result = qwen_prompt_expander(prompt, tar_lang="zh", image=image, seed=seed)
 | 
					        model_name=qwen_model_name, is_vl=True, device=0)
 | 
				
			||||||
 | 
					    qwen_result = qwen_prompt_expander(
 | 
				
			||||||
 | 
					        prompt, tar_lang="zh", image=image, seed=seed)
 | 
				
			||||||
    print("VL qwen en result -> zh", qwen_result.prompt)
 | 
					    print("VL qwen en result -> zh", qwen_result.prompt)
 | 
				
			||||||
 | 
				
			|||||||
@ -1,12 +1,13 @@
 | 
				
			|||||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
					# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
				
			||||||
import numpy as np
 | 
					import numpy as np
 | 
				
			||||||
from PIL import Image
 | 
					 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
import torch.nn.functional as F
 | 
					import torch.nn.functional as F
 | 
				
			||||||
import torchvision.transforms.functional as TF
 | 
					import torchvision.transforms.functional as TF
 | 
				
			||||||
 | 
					from PIL import Image
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class VaceImageProcessor(object):
 | 
					class VaceImageProcessor(object):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def __init__(self, downsample=None, seq_len=None):
 | 
					    def __init__(self, downsample=None, seq_len=None):
 | 
				
			||||||
        self.downsample = downsample
 | 
					        self.downsample = downsample
 | 
				
			||||||
        self.seq_len = seq_len
 | 
					        self.seq_len = seq_len
 | 
				
			||||||
@ -16,9 +17,10 @@ class VaceImageProcessor(object):
 | 
				
			|||||||
            if image.mode == 'P':
 | 
					            if image.mode == 'P':
 | 
				
			||||||
                image = image.convert(f'{cvt_type}A')
 | 
					                image = image.convert(f'{cvt_type}A')
 | 
				
			||||||
            if image.mode == f'{cvt_type}A':
 | 
					            if image.mode == f'{cvt_type}A':
 | 
				
			||||||
                bg = Image.new(cvt_type,
 | 
					                bg = Image.new(
 | 
				
			||||||
                               size=(image.width, image.height),
 | 
					                    cvt_type,
 | 
				
			||||||
                               color=(255, 255, 255))
 | 
					                    size=(image.width, image.height),
 | 
				
			||||||
 | 
					                    color=(255, 255, 255))
 | 
				
			||||||
                bg.paste(image, (0, 0), mask=image)
 | 
					                bg.paste(image, (0, 0), mask=image)
 | 
				
			||||||
                image = bg
 | 
					                image = bg
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
@ -41,10 +43,8 @@ class VaceImageProcessor(object):
 | 
				
			|||||||
        if iw != ow or ih != oh:
 | 
					        if iw != ow or ih != oh:
 | 
				
			||||||
            # resize
 | 
					            # resize
 | 
				
			||||||
            scale = max(ow / iw, oh / ih)
 | 
					            scale = max(ow / iw, oh / ih)
 | 
				
			||||||
            img = img.resize(
 | 
					            img = img.resize((round(scale * iw), round(scale * ih)),
 | 
				
			||||||
                (round(scale * iw), round(scale * ih)),
 | 
					                             resample=Image.Resampling.LANCZOS)
 | 
				
			||||||
                resample=Image.Resampling.LANCZOS
 | 
					 | 
				
			||||||
            )
 | 
					 | 
				
			||||||
            assert img.width >= ow and img.height >= oh
 | 
					            assert img.width >= ow and img.height >= oh
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            # center crop
 | 
					            # center crop
 | 
				
			||||||
@ -66,7 +66,11 @@ class VaceImageProcessor(object):
 | 
				
			|||||||
    def load_image_pair(self, data_key, data_key2, **kwargs):
 | 
					    def load_image_pair(self, data_key, data_key2, **kwargs):
 | 
				
			||||||
        return self.load_image_batch(data_key, data_key2, **kwargs)
 | 
					        return self.load_image_batch(data_key, data_key2, **kwargs)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def load_image_batch(self, *data_key_batch, normalize=True, seq_len=None, **kwargs):
 | 
					    def load_image_batch(self,
 | 
				
			||||||
 | 
					                         *data_key_batch,
 | 
				
			||||||
 | 
					                         normalize=True,
 | 
				
			||||||
 | 
					                         seq_len=None,
 | 
				
			||||||
 | 
					                         **kwargs):
 | 
				
			||||||
        seq_len = self.seq_len if seq_len is None else seq_len
 | 
					        seq_len = self.seq_len if seq_len is None else seq_len
 | 
				
			||||||
        imgs = []
 | 
					        imgs = []
 | 
				
			||||||
        for data_key in data_key_batch:
 | 
					        for data_key in data_key_batch:
 | 
				
			||||||
@ -85,7 +89,9 @@ class VaceImageProcessor(object):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class VaceVideoProcessor(object):
 | 
					class VaceVideoProcessor(object):
 | 
				
			||||||
    def __init__(self, downsample, min_area, max_area, min_fps, max_fps, zero_start, seq_len, keep_last, **kwargs):
 | 
					
 | 
				
			||||||
 | 
					    def __init__(self, downsample, min_area, max_area, min_fps, max_fps,
 | 
				
			||||||
 | 
					                 zero_start, seq_len, keep_last, **kwargs):
 | 
				
			||||||
        self.downsample = downsample
 | 
					        self.downsample = downsample
 | 
				
			||||||
        self.min_area = min_area
 | 
					        self.min_area = min_area
 | 
				
			||||||
        self.max_area = max_area
 | 
					        self.max_area = max_area
 | 
				
			||||||
@ -130,8 +136,7 @@ class VaceVideoProcessor(object):
 | 
				
			|||||||
                video,
 | 
					                video,
 | 
				
			||||||
                size=(round(scale * ih), round(scale * iw)),
 | 
					                size=(round(scale * ih), round(scale * iw)),
 | 
				
			||||||
                mode='bicubic',
 | 
					                mode='bicubic',
 | 
				
			||||||
                antialias=True
 | 
					                antialias=True)
 | 
				
			||||||
            )
 | 
					 | 
				
			||||||
            assert video.size(3) >= ow and video.size(2) >= oh
 | 
					            assert video.size(3) >= ow and video.size(2) >= oh
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            # center crop
 | 
					            # center crop
 | 
				
			||||||
@ -146,7 +151,8 @@ class VaceVideoProcessor(object):
 | 
				
			|||||||
    def _video_preprocess(self, video, oh, ow):
 | 
					    def _video_preprocess(self, video, oh, ow):
 | 
				
			||||||
        return self.resize_crop(video, oh, ow)
 | 
					        return self.resize_crop(video, oh, ow)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def _get_frameid_bbox_default(self, fps, frame_timestamps, h, w, crop_box, rng):
 | 
					    def _get_frameid_bbox_default(self, fps, frame_timestamps, h, w, crop_box,
 | 
				
			||||||
 | 
					                                  rng):
 | 
				
			||||||
        target_fps = min(fps, self.max_fps)
 | 
					        target_fps = min(fps, self.max_fps)
 | 
				
			||||||
        duration = frame_timestamps[-1].mean()
 | 
					        duration = frame_timestamps[-1].mean()
 | 
				
			||||||
        x1, x2, y1, y2 = [0, w, 0, h] if crop_box is None else crop_box
 | 
					        x1, x2, y1, y2 = [0, w, 0, h] if crop_box is None else crop_box
 | 
				
			||||||
@ -154,11 +160,10 @@ class VaceVideoProcessor(object):
 | 
				
			|||||||
        ratio = h / w
 | 
					        ratio = h / w
 | 
				
			||||||
        df, dh, dw = self.downsample
 | 
					        df, dh, dw = self.downsample
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        area_z = min(self.seq_len, self.max_area / (dh * dw), (h // dh) * (w // dw))
 | 
					        area_z = min(self.seq_len, self.max_area / (dh * dw),
 | 
				
			||||||
        of = min(
 | 
					                     (h // dh) * (w // dw))
 | 
				
			||||||
            (int(duration * target_fps) - 1) // df + 1,
 | 
					        of = min((int(duration * target_fps) - 1) // df + 1,
 | 
				
			||||||
            int(self.seq_len / area_z)
 | 
					                 int(self.seq_len / area_z))
 | 
				
			||||||
        )
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # deduce target shape of the [latent video]
 | 
					        # deduce target shape of the [latent video]
 | 
				
			||||||
        target_area_z = min(area_z, int(self.seq_len / of))
 | 
					        target_area_z = min(area_z, int(self.seq_len / of))
 | 
				
			||||||
@ -170,26 +175,27 @@ class VaceVideoProcessor(object):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        # sample frame ids
 | 
					        # sample frame ids
 | 
				
			||||||
        target_duration = of / target_fps
 | 
					        target_duration = of / target_fps
 | 
				
			||||||
        begin = 0. if self.zero_start else rng.uniform(0, duration - target_duration)
 | 
					        begin = 0. if self.zero_start else rng.uniform(
 | 
				
			||||||
 | 
					            0, duration - target_duration)
 | 
				
			||||||
        timestamps = np.linspace(begin, begin + target_duration, of)
 | 
					        timestamps = np.linspace(begin, begin + target_duration, of)
 | 
				
			||||||
        frame_ids = np.argmax(np.logical_and(
 | 
					        frame_ids = np.argmax(
 | 
				
			||||||
            timestamps[:, None] >= frame_timestamps[None, :, 0],
 | 
					            np.logical_and(timestamps[:, None] >= frame_timestamps[None, :, 0],
 | 
				
			||||||
            timestamps[:, None] < frame_timestamps[None, :, 1]
 | 
					                           timestamps[:, None] < frame_timestamps[None, :, 1]),
 | 
				
			||||||
        ), axis=1).tolist()
 | 
					            axis=1).tolist()
 | 
				
			||||||
        return frame_ids, (x1, x2, y1, y2), (oh, ow), target_fps
 | 
					        return frame_ids, (x1, x2, y1, y2), (oh, ow), target_fps
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def _get_frameid_bbox_adjust_last(self, fps, frame_timestamps, h, w, crop_box, rng):
 | 
					    def _get_frameid_bbox_adjust_last(self, fps, frame_timestamps, h, w,
 | 
				
			||||||
 | 
					                                      crop_box, rng):
 | 
				
			||||||
        duration = frame_timestamps[-1].mean()
 | 
					        duration = frame_timestamps[-1].mean()
 | 
				
			||||||
        x1, x2, y1, y2 = [0, w, 0, h] if crop_box is None else crop_box
 | 
					        x1, x2, y1, y2 = [0, w, 0, h] if crop_box is None else crop_box
 | 
				
			||||||
        h, w = y2 - y1, x2 - x1
 | 
					        h, w = y2 - y1, x2 - x1
 | 
				
			||||||
        ratio = h / w
 | 
					        ratio = h / w
 | 
				
			||||||
        df, dh, dw = self.downsample
 | 
					        df, dh, dw = self.downsample
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        area_z = min(self.seq_len, self.max_area / (dh * dw), (h // dh) * (w // dw))
 | 
					        area_z = min(self.seq_len, self.max_area / (dh * dw),
 | 
				
			||||||
        of = min(
 | 
					                     (h // dh) * (w // dw))
 | 
				
			||||||
            (len(frame_timestamps) - 1) // df + 1,
 | 
					        of = min((len(frame_timestamps) - 1) // df + 1,
 | 
				
			||||||
            int(self.seq_len / area_z)
 | 
					                 int(self.seq_len / area_z))
 | 
				
			||||||
        )
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # deduce target shape of the [latent video]
 | 
					        # deduce target shape of the [latent video]
 | 
				
			||||||
        target_area_z = min(area_z, int(self.seq_len / of))
 | 
					        target_area_z = min(area_z, int(self.seq_len / of))
 | 
				
			||||||
@ -203,27 +209,39 @@ class VaceVideoProcessor(object):
 | 
				
			|||||||
        target_duration = duration
 | 
					        target_duration = duration
 | 
				
			||||||
        target_fps = of / target_duration
 | 
					        target_fps = of / target_duration
 | 
				
			||||||
        timestamps = np.linspace(0., target_duration, of)
 | 
					        timestamps = np.linspace(0., target_duration, of)
 | 
				
			||||||
        frame_ids = np.argmax(np.logical_and(
 | 
					        frame_ids = np.argmax(
 | 
				
			||||||
            timestamps[:, None] >= frame_timestamps[None, :, 0],
 | 
					            np.logical_and(timestamps[:, None] >= frame_timestamps[None, :, 0],
 | 
				
			||||||
            timestamps[:, None] <= frame_timestamps[None, :, 1]
 | 
					                           timestamps[:, None] <= frame_timestamps[None, :, 1]),
 | 
				
			||||||
        ), axis=1).tolist()
 | 
					            axis=1).tolist()
 | 
				
			||||||
        # print(oh, ow, of, target_duration, target_fps, len(frame_timestamps), len(frame_ids))
 | 
					        # print(oh, ow, of, target_duration, target_fps, len(frame_timestamps), len(frame_ids))
 | 
				
			||||||
        return frame_ids, (x1, x2, y1, y2), (oh, ow), target_fps
 | 
					        return frame_ids, (x1, x2, y1, y2), (oh, ow), target_fps
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
    def _get_frameid_bbox(self, fps, frame_timestamps, h, w, crop_box, rng):
 | 
					    def _get_frameid_bbox(self, fps, frame_timestamps, h, w, crop_box, rng):
 | 
				
			||||||
        if self.keep_last:
 | 
					        if self.keep_last:
 | 
				
			||||||
            return self._get_frameid_bbox_adjust_last(fps, frame_timestamps, h, w, crop_box, rng)
 | 
					            return self._get_frameid_bbox_adjust_last(fps, frame_timestamps, h,
 | 
				
			||||||
 | 
					                                                      w, crop_box, rng)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            return self._get_frameid_bbox_default(fps, frame_timestamps, h, w, crop_box, rng)
 | 
					            return self._get_frameid_bbox_default(fps, frame_timestamps, h, w,
 | 
				
			||||||
 | 
					                                                  crop_box, rng)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def load_video(self, data_key, crop_box=None, seed=2024, **kwargs):
 | 
					    def load_video(self, data_key, crop_box=None, seed=2024, **kwargs):
 | 
				
			||||||
        return self.load_video_batch(data_key, crop_box=crop_box, seed=seed, **kwargs)
 | 
					        return self.load_video_batch(
 | 
				
			||||||
 | 
					            data_key, crop_box=crop_box, seed=seed, **kwargs)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def load_video_pair(self, data_key, data_key2, crop_box=None, seed=2024, **kwargs):
 | 
					    def load_video_pair(self,
 | 
				
			||||||
        return self.load_video_batch(data_key, data_key2, crop_box=crop_box, seed=seed, **kwargs)
 | 
					                        data_key,
 | 
				
			||||||
 | 
					                        data_key2,
 | 
				
			||||||
 | 
					                        crop_box=None,
 | 
				
			||||||
 | 
					                        seed=2024,
 | 
				
			||||||
 | 
					                        **kwargs):
 | 
				
			||||||
 | 
					        return self.load_video_batch(
 | 
				
			||||||
 | 
					            data_key, data_key2, crop_box=crop_box, seed=seed, **kwargs)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def load_video_batch(self, *data_key_batch, crop_box=None, seed=2024, **kwargs):
 | 
					    def load_video_batch(self,
 | 
				
			||||||
 | 
					                         *data_key_batch,
 | 
				
			||||||
 | 
					                         crop_box=None,
 | 
				
			||||||
 | 
					                         seed=2024,
 | 
				
			||||||
 | 
					                         **kwargs):
 | 
				
			||||||
        rng = np.random.default_rng(seed + hash(data_key_batch[0]) % 10000)
 | 
					        rng = np.random.default_rng(seed + hash(data_key_batch[0]) % 10000)
 | 
				
			||||||
        # read video
 | 
					        # read video
 | 
				
			||||||
        import decord
 | 
					        import decord
 | 
				
			||||||
@ -235,36 +253,53 @@ class VaceVideoProcessor(object):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        fps = readers[0].get_avg_fps()
 | 
					        fps = readers[0].get_avg_fps()
 | 
				
			||||||
        length = min([len(r) for r in readers])
 | 
					        length = min([len(r) for r in readers])
 | 
				
			||||||
        frame_timestamps = [readers[0].get_frame_timestamp(i) for i in range(length)]
 | 
					        frame_timestamps = [
 | 
				
			||||||
 | 
					            readers[0].get_frame_timestamp(i) for i in range(length)
 | 
				
			||||||
 | 
					        ]
 | 
				
			||||||
        frame_timestamps = np.array(frame_timestamps, dtype=np.float32)
 | 
					        frame_timestamps = np.array(frame_timestamps, dtype=np.float32)
 | 
				
			||||||
        h, w = readers[0].next().shape[:2]
 | 
					        h, w = readers[0].next().shape[:2]
 | 
				
			||||||
        frame_ids, (x1, x2, y1, y2), (oh, ow), fps = self._get_frameid_bbox(fps, frame_timestamps, h, w, crop_box, rng)
 | 
					        frame_ids, (x1, x2, y1, y2), (oh, ow), fps = self._get_frameid_bbox(
 | 
				
			||||||
 | 
					            fps, frame_timestamps, h, w, crop_box, rng)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # preprocess video
 | 
					        # preprocess video
 | 
				
			||||||
        videos = [reader.get_batch(frame_ids)[:, y1:y2, x1:x2, :] for reader in readers]
 | 
					        videos = [
 | 
				
			||||||
 | 
					            reader.get_batch(frame_ids)[:, y1:y2, x1:x2, :]
 | 
				
			||||||
 | 
					            for reader in readers
 | 
				
			||||||
 | 
					        ]
 | 
				
			||||||
        videos = [self._video_preprocess(video, oh, ow) for video in videos]
 | 
					        videos = [self._video_preprocess(video, oh, ow) for video in videos]
 | 
				
			||||||
        return *videos, frame_ids, (oh, ow), fps
 | 
					        return *videos, frame_ids, (oh, ow), fps
 | 
				
			||||||
        # return videos if len(videos) > 1 else videos[0]
 | 
					        # return videos if len(videos) > 1 else videos[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def prepare_source(src_video, src_mask, src_ref_images, num_frames, image_size, device):
 | 
					def prepare_source(src_video, src_mask, src_ref_images, num_frames, image_size,
 | 
				
			||||||
 | 
					                   device):
 | 
				
			||||||
    for i, (sub_src_video, sub_src_mask) in enumerate(zip(src_video, src_mask)):
 | 
					    for i, (sub_src_video, sub_src_mask) in enumerate(zip(src_video, src_mask)):
 | 
				
			||||||
        if sub_src_video is None and sub_src_mask is None:
 | 
					        if sub_src_video is None and sub_src_mask is None:
 | 
				
			||||||
            src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
 | 
					            src_video[i] = torch.zeros(
 | 
				
			||||||
            src_mask[i] = torch.ones((1, num_frames, image_size[0], image_size[1]), device=device)
 | 
					                (3, num_frames, image_size[0], image_size[1]), device=device)
 | 
				
			||||||
 | 
					            src_mask[i] = torch.ones(
 | 
				
			||||||
 | 
					                (1, num_frames, image_size[0], image_size[1]), device=device)
 | 
				
			||||||
    for i, ref_images in enumerate(src_ref_images):
 | 
					    for i, ref_images in enumerate(src_ref_images):
 | 
				
			||||||
        if ref_images is not None:
 | 
					        if ref_images is not None:
 | 
				
			||||||
            for j, ref_img in enumerate(ref_images):
 | 
					            for j, ref_img in enumerate(ref_images):
 | 
				
			||||||
                if ref_img is not None and ref_img.shape[-2:] != image_size:
 | 
					                if ref_img is not None and ref_img.shape[-2:] != image_size:
 | 
				
			||||||
                    canvas_height, canvas_width = image_size
 | 
					                    canvas_height, canvas_width = image_size
 | 
				
			||||||
                    ref_height, ref_width = ref_img.shape[-2:]
 | 
					                    ref_height, ref_width = ref_img.shape[-2:]
 | 
				
			||||||
                    white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) # [-1, 1]
 | 
					                    white_canvas = torch.ones(
 | 
				
			||||||
                    scale = min(canvas_height / ref_height, canvas_width / ref_width)
 | 
					                        (3, 1, canvas_height, canvas_width),
 | 
				
			||||||
 | 
					                        device=device)  # [-1, 1]
 | 
				
			||||||
 | 
					                    scale = min(canvas_height / ref_height,
 | 
				
			||||||
 | 
					                                canvas_width / ref_width)
 | 
				
			||||||
                    new_height = int(ref_height * scale)
 | 
					                    new_height = int(ref_height * scale)
 | 
				
			||||||
                    new_width = int(ref_width * scale)
 | 
					                    new_width = int(ref_width * scale)
 | 
				
			||||||
                    resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1)
 | 
					                    resized_image = F.interpolate(
 | 
				
			||||||
 | 
					                        ref_img.squeeze(1).unsqueeze(0),
 | 
				
			||||||
 | 
					                        size=(new_height, new_width),
 | 
				
			||||||
 | 
					                        mode='bilinear',
 | 
				
			||||||
 | 
					                        align_corners=False).squeeze(0).unsqueeze(1)
 | 
				
			||||||
                    top = (canvas_height - new_height) // 2
 | 
					                    top = (canvas_height - new_height) // 2
 | 
				
			||||||
                    left = (canvas_width - new_width) // 2
 | 
					                    left = (canvas_width - new_width) // 2
 | 
				
			||||||
                    white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image
 | 
					                    white_canvas[:, :, top:top + new_height,
 | 
				
			||||||
 | 
					                                 left:left + new_width] = resized_image
 | 
				
			||||||
                    src_ref_images[i][j] = white_canvas
 | 
					                    src_ref_images[i][j] = white_canvas
 | 
				
			||||||
    return src_video, src_mask, src_ref_images
 | 
					    return src_video, src_mask, src_ref_images
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										273
									
								
								wan/vace.py
									
									
									
									
									
								
							
							
						
						
									
										273
									
								
								wan/vace.py
									
									
									
									
									
								
							@ -1,32 +1,41 @@
 | 
				
			|||||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
					# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
				
			||||||
import os
 | 
					 | 
				
			||||||
import sys
 | 
					 | 
				
			||||||
import gc
 | 
					import gc
 | 
				
			||||||
import math
 | 
					 | 
				
			||||||
import time
 | 
					 | 
				
			||||||
import random
 | 
					 | 
				
			||||||
import types
 | 
					 | 
				
			||||||
import logging
 | 
					import logging
 | 
				
			||||||
 | 
					import math
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					import random
 | 
				
			||||||
 | 
					import sys
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
import traceback
 | 
					import traceback
 | 
				
			||||||
 | 
					import types
 | 
				
			||||||
from contextlib import contextmanager
 | 
					from contextlib import contextmanager
 | 
				
			||||||
from functools import partial
 | 
					from functools import partial
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from PIL import Image
 | 
					 | 
				
			||||||
import torchvision.transforms.functional as TF
 | 
					 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
import torch.nn.functional as F
 | 
					 | 
				
			||||||
import torch.cuda.amp as amp
 | 
					import torch.cuda.amp as amp
 | 
				
			||||||
import torch.distributed as dist
 | 
					import torch.distributed as dist
 | 
				
			||||||
import torch.multiprocessing as mp
 | 
					import torch.multiprocessing as mp
 | 
				
			||||||
 | 
					import torch.nn.functional as F
 | 
				
			||||||
 | 
					import torchvision.transforms.functional as TF
 | 
				
			||||||
 | 
					from PIL import Image
 | 
				
			||||||
from tqdm import tqdm
 | 
					from tqdm import tqdm
 | 
				
			||||||
 | 
					
 | 
				
			||||||
from .text2video import (WanT2V, T5EncoderModel, WanVAE, shard_model, FlowDPMSolverMultistepScheduler,
 | 
					 | 
				
			||||||
                               get_sampling_sigmas, retrieve_timesteps, FlowUniPCMultistepScheduler)
 | 
					 | 
				
			||||||
from .modules.vace_model import VaceWanModel
 | 
					from .modules.vace_model import VaceWanModel
 | 
				
			||||||
 | 
					from .text2video import (
 | 
				
			||||||
 | 
					    FlowDPMSolverMultistepScheduler,
 | 
				
			||||||
 | 
					    FlowUniPCMultistepScheduler,
 | 
				
			||||||
 | 
					    T5EncoderModel,
 | 
				
			||||||
 | 
					    WanT2V,
 | 
				
			||||||
 | 
					    WanVAE,
 | 
				
			||||||
 | 
					    get_sampling_sigmas,
 | 
				
			||||||
 | 
					    retrieve_timesteps,
 | 
				
			||||||
 | 
					    shard_model,
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
from .utils.vace_processor import VaceVideoProcessor
 | 
					from .utils.vace_processor import VaceVideoProcessor
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class WanVace(WanT2V):
 | 
					class WanVace(WanT2V):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def __init__(
 | 
					    def __init__(
 | 
				
			||||||
        self,
 | 
					        self,
 | 
				
			||||||
        config,
 | 
					        config,
 | 
				
			||||||
@ -87,12 +96,13 @@ class WanVace(WanT2V):
 | 
				
			|||||||
        self.model.eval().requires_grad_(False)
 | 
					        self.model.eval().requires_grad_(False)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if use_usp:
 | 
					        if use_usp:
 | 
				
			||||||
            from xfuser.core.distributed import \
 | 
					            from xfuser.core.distributed import get_sequence_parallel_world_size
 | 
				
			||||||
                get_sequence_parallel_world_size
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
            from .distributed.xdit_context_parallel import (usp_attn_forward,
 | 
					            from .distributed.xdit_context_parallel import (
 | 
				
			||||||
                                                            usp_dit_forward,
 | 
					                usp_attn_forward,
 | 
				
			||||||
                                                            usp_dit_forward_vace)
 | 
					                usp_dit_forward,
 | 
				
			||||||
 | 
					                usp_dit_forward_vace,
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
            for block in self.model.blocks:
 | 
					            for block in self.model.blocks:
 | 
				
			||||||
                block.self_attn.forward = types.MethodType(
 | 
					                block.self_attn.forward = types.MethodType(
 | 
				
			||||||
                    usp_attn_forward, block.self_attn)
 | 
					                    usp_attn_forward, block.self_attn)
 | 
				
			||||||
@ -100,7 +110,8 @@ class WanVace(WanT2V):
 | 
				
			|||||||
                block.self_attn.forward = types.MethodType(
 | 
					                block.self_attn.forward = types.MethodType(
 | 
				
			||||||
                    usp_attn_forward, block.self_attn)
 | 
					                    usp_attn_forward, block.self_attn)
 | 
				
			||||||
            self.model.forward = types.MethodType(usp_dit_forward, self.model)
 | 
					            self.model.forward = types.MethodType(usp_dit_forward, self.model)
 | 
				
			||||||
            self.model.forward_vace = types.MethodType(usp_dit_forward_vace, self.model)
 | 
					            self.model.forward_vace = types.MethodType(usp_dit_forward_vace,
 | 
				
			||||||
 | 
					                                                       self.model)
 | 
				
			||||||
            self.sp_size = get_sequence_parallel_world_size()
 | 
					            self.sp_size = get_sequence_parallel_world_size()
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            self.sp_size = 1
 | 
					            self.sp_size = 1
 | 
				
			||||||
@ -114,14 +125,16 @@ class WanVace(WanT2V):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        self.sample_neg_prompt = config.sample_neg_prompt
 | 
					        self.sample_neg_prompt = config.sample_neg_prompt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        self.vid_proc = VaceVideoProcessor(downsample=tuple([x * y for x, y in zip(config.vae_stride, self.patch_size)]),
 | 
					        self.vid_proc = VaceVideoProcessor(
 | 
				
			||||||
                                           min_area=720*1280,
 | 
					            downsample=tuple(
 | 
				
			||||||
                                           max_area=720*1280,
 | 
					                [x * y for x, y in zip(config.vae_stride, self.patch_size)]),
 | 
				
			||||||
                                           min_fps=config.sample_fps,
 | 
					            min_area=720 * 1280,
 | 
				
			||||||
                                           max_fps=config.sample_fps,
 | 
					            max_area=720 * 1280,
 | 
				
			||||||
                                           zero_start=True,
 | 
					            min_fps=config.sample_fps,
 | 
				
			||||||
                                           seq_len=75600,
 | 
					            max_fps=config.sample_fps,
 | 
				
			||||||
                                           keep_last=True)
 | 
					            zero_start=True,
 | 
				
			||||||
 | 
					            seq_len=75600,
 | 
				
			||||||
 | 
					            keep_last=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def vace_encode_frames(self, frames, ref_images, masks=None, vae=None):
 | 
					    def vace_encode_frames(self, frames, ref_images, masks=None, vae=None):
 | 
				
			||||||
        vae = self.vae if vae is None else vae
 | 
					        vae = self.vae if vae is None else vae
 | 
				
			||||||
@ -138,7 +151,9 @@ class WanVace(WanT2V):
 | 
				
			|||||||
            reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)]
 | 
					            reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)]
 | 
				
			||||||
            inactive = vae.encode(inactive)
 | 
					            inactive = vae.encode(inactive)
 | 
				
			||||||
            reactive = vae.encode(reactive)
 | 
					            reactive = vae.encode(reactive)
 | 
				
			||||||
            latents = [torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)]
 | 
					            latents = [
 | 
				
			||||||
 | 
					                torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)
 | 
				
			||||||
 | 
					            ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        cat_latents = []
 | 
					        cat_latents = []
 | 
				
			||||||
        for latent, refs in zip(latents, ref_images):
 | 
					        for latent, refs in zip(latents, ref_images):
 | 
				
			||||||
@ -147,7 +162,10 @@ class WanVace(WanT2V):
 | 
				
			|||||||
                    ref_latent = vae.encode(refs)
 | 
					                    ref_latent = vae.encode(refs)
 | 
				
			||||||
                else:
 | 
					                else:
 | 
				
			||||||
                    ref_latent = vae.encode(refs)
 | 
					                    ref_latent = vae.encode(refs)
 | 
				
			||||||
                    ref_latent = [torch.cat((u, torch.zeros_like(u)), dim=0) for u in ref_latent]
 | 
					                    ref_latent = [
 | 
				
			||||||
 | 
					                        torch.cat((u, torch.zeros_like(u)), dim=0)
 | 
				
			||||||
 | 
					                        for u in ref_latent
 | 
				
			||||||
 | 
					                    ]
 | 
				
			||||||
                assert all([x.shape[1] == 1 for x in ref_latent])
 | 
					                assert all([x.shape[1] == 1 for x in ref_latent])
 | 
				
			||||||
                latent = torch.cat([*ref_latent, latent], dim=1)
 | 
					                latent = torch.cat([*ref_latent, latent], dim=1)
 | 
				
			||||||
            cat_latents.append(latent)
 | 
					            cat_latents.append(latent)
 | 
				
			||||||
@ -169,16 +187,17 @@ class WanVace(WanT2V):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
            # reshape
 | 
					            # reshape
 | 
				
			||||||
            mask = mask[0, :, :, :]
 | 
					            mask = mask[0, :, :, :]
 | 
				
			||||||
            mask = mask.view(
 | 
					            mask = mask.view(depth, height, vae_stride[1], width,
 | 
				
			||||||
                depth, height, vae_stride[1], width, vae_stride[1]
 | 
					                             vae_stride[1])  # depth, height, 8, width, 8
 | 
				
			||||||
            )  # depth, height, 8, width, 8
 | 
					 | 
				
			||||||
            mask = mask.permute(2, 4, 0, 1, 3)  # 8, 8, depth, height, width
 | 
					            mask = mask.permute(2, 4, 0, 1, 3)  # 8, 8, depth, height, width
 | 
				
			||||||
            mask = mask.reshape(
 | 
					            mask = mask.reshape(vae_stride[1] * vae_stride[2], depth, height,
 | 
				
			||||||
                vae_stride[1] * vae_stride[2], depth, height, width
 | 
					                                width)  # 8*8, depth, height, width
 | 
				
			||||||
            )  # 8*8, depth, height, width
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
            # interpolation
 | 
					            # interpolation
 | 
				
			||||||
            mask = F.interpolate(mask.unsqueeze(0), size=(new_depth, height, width), mode='nearest-exact').squeeze(0)
 | 
					            mask = F.interpolate(
 | 
				
			||||||
 | 
					                mask.unsqueeze(0),
 | 
				
			||||||
 | 
					                size=(new_depth, height, width),
 | 
				
			||||||
 | 
					                mode='nearest-exact').squeeze(0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            if refs is not None:
 | 
					            if refs is not None:
 | 
				
			||||||
                length = len(refs)
 | 
					                length = len(refs)
 | 
				
			||||||
@ -190,27 +209,35 @@ class WanVace(WanT2V):
 | 
				
			|||||||
    def vace_latent(self, z, m):
 | 
					    def vace_latent(self, z, m):
 | 
				
			||||||
        return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)]
 | 
					        return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def prepare_source(self, src_video, src_mask, src_ref_images, num_frames, image_size, device):
 | 
					    def prepare_source(self, src_video, src_mask, src_ref_images, num_frames,
 | 
				
			||||||
 | 
					                       image_size, device):
 | 
				
			||||||
        area = image_size[0] * image_size[1]
 | 
					        area = image_size[0] * image_size[1]
 | 
				
			||||||
        self.vid_proc.set_area(area)
 | 
					        self.vid_proc.set_area(area)
 | 
				
			||||||
        if area == 720*1280:
 | 
					        if area == 720 * 1280:
 | 
				
			||||||
            self.vid_proc.set_seq_len(75600)
 | 
					            self.vid_proc.set_seq_len(75600)
 | 
				
			||||||
        elif area == 480*832:
 | 
					        elif area == 480 * 832:
 | 
				
			||||||
            self.vid_proc.set_seq_len(32760)
 | 
					            self.vid_proc.set_seq_len(32760)
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            raise NotImplementedError(f'image_size {image_size} is not supported')
 | 
					            raise NotImplementedError(
 | 
				
			||||||
 | 
					                f'image_size {image_size} is not supported')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        image_size = (image_size[1], image_size[0])
 | 
					        image_size = (image_size[1], image_size[0])
 | 
				
			||||||
        image_sizes = []
 | 
					        image_sizes = []
 | 
				
			||||||
        for i, (sub_src_video, sub_src_mask) in enumerate(zip(src_video, src_mask)):
 | 
					        for i, (sub_src_video,
 | 
				
			||||||
 | 
					                sub_src_mask) in enumerate(zip(src_video, src_mask)):
 | 
				
			||||||
            if sub_src_mask is not None and sub_src_video is not None:
 | 
					            if sub_src_mask is not None and sub_src_video is not None:
 | 
				
			||||||
                src_video[i], src_mask[i], _, _, _ = self.vid_proc.load_video_pair(sub_src_video, sub_src_mask)
 | 
					                src_video[i], src_mask[
 | 
				
			||||||
 | 
					                    i], _, _, _ = self.vid_proc.load_video_pair(
 | 
				
			||||||
 | 
					                        sub_src_video, sub_src_mask)
 | 
				
			||||||
                src_video[i] = src_video[i].to(device)
 | 
					                src_video[i] = src_video[i].to(device)
 | 
				
			||||||
                src_mask[i] = src_mask[i].to(device)
 | 
					                src_mask[i] = src_mask[i].to(device)
 | 
				
			||||||
                src_mask[i] = torch.clamp((src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1)
 | 
					                src_mask[i] = torch.clamp(
 | 
				
			||||||
 | 
					                    (src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1)
 | 
				
			||||||
                image_sizes.append(src_video[i].shape[2:])
 | 
					                image_sizes.append(src_video[i].shape[2:])
 | 
				
			||||||
            elif sub_src_video is None:
 | 
					            elif sub_src_video is None:
 | 
				
			||||||
                src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
 | 
					                src_video[i] = torch.zeros(
 | 
				
			||||||
 | 
					                    (3, num_frames, image_size[0], image_size[1]),
 | 
				
			||||||
 | 
					                    device=device)
 | 
				
			||||||
                src_mask[i] = torch.ones_like(src_video[i], device=device)
 | 
					                src_mask[i] = torch.ones_like(src_video[i], device=device)
 | 
				
			||||||
                image_sizes.append(image_size)
 | 
					                image_sizes.append(image_size)
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
@ -225,18 +252,27 @@ class WanVace(WanT2V):
 | 
				
			|||||||
                for j, ref_img in enumerate(ref_images):
 | 
					                for j, ref_img in enumerate(ref_images):
 | 
				
			||||||
                    if ref_img is not None:
 | 
					                    if ref_img is not None:
 | 
				
			||||||
                        ref_img = Image.open(ref_img).convert("RGB")
 | 
					                        ref_img = Image.open(ref_img).convert("RGB")
 | 
				
			||||||
                        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
 | 
					                        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(
 | 
				
			||||||
 | 
					                            0.5).unsqueeze(1)
 | 
				
			||||||
                        if ref_img.shape[-2:] != image_size:
 | 
					                        if ref_img.shape[-2:] != image_size:
 | 
				
			||||||
                            canvas_height, canvas_width = image_size
 | 
					                            canvas_height, canvas_width = image_size
 | 
				
			||||||
                            ref_height, ref_width = ref_img.shape[-2:]
 | 
					                            ref_height, ref_width = ref_img.shape[-2:]
 | 
				
			||||||
                            white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) # [-1, 1]
 | 
					                            white_canvas = torch.ones(
 | 
				
			||||||
                            scale = min(canvas_height / ref_height, canvas_width / ref_width)
 | 
					                                (3, 1, canvas_height, canvas_width),
 | 
				
			||||||
 | 
					                                device=device)  # [-1, 1]
 | 
				
			||||||
 | 
					                            scale = min(canvas_height / ref_height,
 | 
				
			||||||
 | 
					                                        canvas_width / ref_width)
 | 
				
			||||||
                            new_height = int(ref_height * scale)
 | 
					                            new_height = int(ref_height * scale)
 | 
				
			||||||
                            new_width = int(ref_width * scale)
 | 
					                            new_width = int(ref_width * scale)
 | 
				
			||||||
                            resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1)
 | 
					                            resized_image = F.interpolate(
 | 
				
			||||||
 | 
					                                ref_img.squeeze(1).unsqueeze(0),
 | 
				
			||||||
 | 
					                                size=(new_height, new_width),
 | 
				
			||||||
 | 
					                                mode='bilinear',
 | 
				
			||||||
 | 
					                                align_corners=False).squeeze(0).unsqueeze(1)
 | 
				
			||||||
                            top = (canvas_height - new_height) // 2
 | 
					                            top = (canvas_height - new_height) // 2
 | 
				
			||||||
                            left = (canvas_width - new_width) // 2
 | 
					                            left = (canvas_width - new_width) // 2
 | 
				
			||||||
                            white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image
 | 
					                            white_canvas[:, :, top:top + new_height,
 | 
				
			||||||
 | 
					                                         left:left + new_width] = resized_image
 | 
				
			||||||
                            ref_img = white_canvas
 | 
					                            ref_img = white_canvas
 | 
				
			||||||
                        src_ref_images[i][j] = ref_img.to(device)
 | 
					                        src_ref_images[i][j] = ref_img.to(device)
 | 
				
			||||||
        return src_video, src_mask, src_ref_images
 | 
					        return src_video, src_mask, src_ref_images
 | 
				
			||||||
@ -256,8 +292,6 @@ class WanVace(WanT2V):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        return vae.decode(trimed_zs)
 | 
					        return vae.decode(trimed_zs)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    def generate(self,
 | 
					    def generate(self,
 | 
				
			||||||
                 input_prompt,
 | 
					                 input_prompt,
 | 
				
			||||||
                 input_frames,
 | 
					                 input_frames,
 | 
				
			||||||
@ -335,7 +369,8 @@ class WanVace(WanT2V):
 | 
				
			|||||||
            context_null = [t.to(self.device) for t in context_null]
 | 
					            context_null = [t.to(self.device) for t in context_null]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # vace context encode
 | 
					        # vace context encode
 | 
				
			||||||
        z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks)
 | 
					        z0 = self.vace_encode_frames(
 | 
				
			||||||
 | 
					            input_frames, input_ref_images, masks=input_masks)
 | 
				
			||||||
        m0 = self.vace_encode_masks(input_masks, input_ref_images)
 | 
					        m0 = self.vace_encode_masks(input_masks, input_ref_images)
 | 
				
			||||||
        z = self.vace_latent(z0, m0)
 | 
					        z = self.vace_latent(z0, m0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -399,9 +434,17 @@ class WanVace(WanT2V):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
                self.model.to(self.device)
 | 
					                self.model.to(self.device)
 | 
				
			||||||
                noise_pred_cond = self.model(
 | 
					                noise_pred_cond = self.model(
 | 
				
			||||||
                    latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale, **arg_c)[0]
 | 
					                    latent_model_input,
 | 
				
			||||||
 | 
					                    t=timestep,
 | 
				
			||||||
 | 
					                    vace_context=z,
 | 
				
			||||||
 | 
					                    vace_context_scale=context_scale,
 | 
				
			||||||
 | 
					                    **arg_c)[0]
 | 
				
			||||||
                noise_pred_uncond = self.model(
 | 
					                noise_pred_uncond = self.model(
 | 
				
			||||||
                    latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale,**arg_null)[0]
 | 
					                    latent_model_input,
 | 
				
			||||||
 | 
					                    t=timestep,
 | 
				
			||||||
 | 
					                    vace_context=z,
 | 
				
			||||||
 | 
					                    vace_context_scale=context_scale,
 | 
				
			||||||
 | 
					                    **arg_null)[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                noise_pred = noise_pred_uncond + guide_scale * (
 | 
					                noise_pred = noise_pred_uncond + guide_scale * (
 | 
				
			||||||
                    noise_pred_cond - noise_pred_uncond)
 | 
					                    noise_pred_cond - noise_pred_uncond)
 | 
				
			||||||
@ -433,14 +476,13 @@ class WanVace(WanT2V):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class WanVaceMP(WanVace):
 | 
					class WanVaceMP(WanVace):
 | 
				
			||||||
    def __init__(
 | 
					
 | 
				
			||||||
            self,
 | 
					    def __init__(self,
 | 
				
			||||||
            config,
 | 
					                 config,
 | 
				
			||||||
            checkpoint_dir,
 | 
					                 checkpoint_dir,
 | 
				
			||||||
            use_usp=False,
 | 
					                 use_usp=False,
 | 
				
			||||||
            ulysses_size=None,
 | 
					                 ulysses_size=None,
 | 
				
			||||||
            ring_size=None
 | 
					                 ring_size=None):
 | 
				
			||||||
    ):
 | 
					 | 
				
			||||||
        self.config = config
 | 
					        self.config = config
 | 
				
			||||||
        self.checkpoint_dir = checkpoint_dir
 | 
					        self.checkpoint_dir = checkpoint_dir
 | 
				
			||||||
        self.use_usp = use_usp
 | 
					        self.use_usp = use_usp
 | 
				
			||||||
@ -457,7 +499,8 @@ class WanVaceMP(WanVace):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        self.device = 'cpu' if torch.cuda.is_available() else 'cpu'
 | 
					        self.device = 'cpu' if torch.cuda.is_available() else 'cpu'
 | 
				
			||||||
        self.vid_proc = VaceVideoProcessor(
 | 
					        self.vid_proc = VaceVideoProcessor(
 | 
				
			||||||
            downsample=tuple([x * y for x, y in zip(config.vae_stride, config.patch_size)]),
 | 
					            downsample=tuple(
 | 
				
			||||||
 | 
					                [x * y for x, y in zip(config.vae_stride, config.patch_size)]),
 | 
				
			||||||
            min_area=480 * 832,
 | 
					            min_area=480 * 832,
 | 
				
			||||||
            max_area=480 * 832,
 | 
					            max_area=480 * 832,
 | 
				
			||||||
            min_fps=self.config.sample_fps,
 | 
					            min_fps=self.config.sample_fps,
 | 
				
			||||||
@ -466,20 +509,30 @@ class WanVaceMP(WanVace):
 | 
				
			|||||||
            seq_len=32760,
 | 
					            seq_len=32760,
 | 
				
			||||||
            keep_last=True)
 | 
					            keep_last=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
    def dynamic_load(self):
 | 
					    def dynamic_load(self):
 | 
				
			||||||
        if hasattr(self, 'inference_pids') and self.inference_pids is not None:
 | 
					        if hasattr(self, 'inference_pids') and self.inference_pids is not None:
 | 
				
			||||||
            return
 | 
					            return
 | 
				
			||||||
        gpu_infer = os.environ.get('LOCAL_WORLD_SIZE') or torch.cuda.device_count()
 | 
					        gpu_infer = os.environ.get(
 | 
				
			||||||
 | 
					            'LOCAL_WORLD_SIZE') or torch.cuda.device_count()
 | 
				
			||||||
        pmi_rank = int(os.environ['RANK'])
 | 
					        pmi_rank = int(os.environ['RANK'])
 | 
				
			||||||
        pmi_world_size = int(os.environ['WORLD_SIZE'])
 | 
					        pmi_world_size = int(os.environ['WORLD_SIZE'])
 | 
				
			||||||
        in_q_list = [torch.multiprocessing.Manager().Queue() for _ in range(gpu_infer)]
 | 
					        in_q_list = [
 | 
				
			||||||
 | 
					            torch.multiprocessing.Manager().Queue() for _ in range(gpu_infer)
 | 
				
			||||||
 | 
					        ]
 | 
				
			||||||
        out_q = torch.multiprocessing.Manager().Queue()
 | 
					        out_q = torch.multiprocessing.Manager().Queue()
 | 
				
			||||||
        initialized_events = [torch.multiprocessing.Manager().Event() for _ in range(gpu_infer)]
 | 
					        initialized_events = [
 | 
				
			||||||
        context = mp.spawn(self.mp_worker, nprocs=gpu_infer, args=(gpu_infer, pmi_rank, pmi_world_size, in_q_list, out_q, initialized_events, self), join=False)
 | 
					            torch.multiprocessing.Manager().Event() for _ in range(gpu_infer)
 | 
				
			||||||
 | 
					        ]
 | 
				
			||||||
 | 
					        context = mp.spawn(
 | 
				
			||||||
 | 
					            self.mp_worker,
 | 
				
			||||||
 | 
					            nprocs=gpu_infer,
 | 
				
			||||||
 | 
					            args=(gpu_infer, pmi_rank, pmi_world_size, in_q_list, out_q,
 | 
				
			||||||
 | 
					                  initialized_events, self),
 | 
				
			||||||
 | 
					            join=False)
 | 
				
			||||||
        all_initialized = False
 | 
					        all_initialized = False
 | 
				
			||||||
        while not all_initialized:
 | 
					        while not all_initialized:
 | 
				
			||||||
            all_initialized = all(event.is_set() for event in initialized_events)
 | 
					            all_initialized = all(
 | 
				
			||||||
 | 
					                event.is_set() for event in initialized_events)
 | 
				
			||||||
            if not all_initialized:
 | 
					            if not all_initialized:
 | 
				
			||||||
                time.sleep(0.1)
 | 
					                time.sleep(0.1)
 | 
				
			||||||
        print('Inference model is initialized', flush=True)
 | 
					        print('Inference model is initialized', flush=True)
 | 
				
			||||||
@ -495,12 +548,19 @@ class WanVaceMP(WanVace):
 | 
				
			|||||||
            if isinstance(data, torch.Tensor):
 | 
					            if isinstance(data, torch.Tensor):
 | 
				
			||||||
                data = data.to(device)
 | 
					                data = data.to(device)
 | 
				
			||||||
            elif isinstance(data, list):
 | 
					            elif isinstance(data, list):
 | 
				
			||||||
                data = [self.transfer_data_to_cuda(subdata, device) for subdata in data]
 | 
					                data = [
 | 
				
			||||||
 | 
					                    self.transfer_data_to_cuda(subdata, device)
 | 
				
			||||||
 | 
					                    for subdata in data
 | 
				
			||||||
 | 
					                ]
 | 
				
			||||||
            elif isinstance(data, dict):
 | 
					            elif isinstance(data, dict):
 | 
				
			||||||
                data = {key: self.transfer_data_to_cuda(val, device) for key, val in data.items()}
 | 
					                data = {
 | 
				
			||||||
 | 
					                    key: self.transfer_data_to_cuda(val, device)
 | 
				
			||||||
 | 
					                    for key, val in data.items()
 | 
				
			||||||
 | 
					                }
 | 
				
			||||||
        return data
 | 
					        return data
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def mp_worker(self, gpu, gpu_infer, pmi_rank, pmi_world_size, in_q_list, out_q, initialized_events, work_env):
 | 
					    def mp_worker(self, gpu, gpu_infer, pmi_rank, pmi_world_size, in_q_list,
 | 
				
			||||||
 | 
					                  out_q, initialized_events, work_env):
 | 
				
			||||||
        try:
 | 
					        try:
 | 
				
			||||||
            world_size = pmi_world_size * gpu_infer
 | 
					            world_size = pmi_world_size * gpu_infer
 | 
				
			||||||
            rank = pmi_rank * gpu_infer + gpu
 | 
					            rank = pmi_rank * gpu_infer + gpu
 | 
				
			||||||
@ -511,19 +571,19 @@ class WanVaceMP(WanVace):
 | 
				
			|||||||
                backend='nccl',
 | 
					                backend='nccl',
 | 
				
			||||||
                init_method='env://',
 | 
					                init_method='env://',
 | 
				
			||||||
                rank=rank,
 | 
					                rank=rank,
 | 
				
			||||||
                world_size=world_size
 | 
					                world_size=world_size)
 | 
				
			||||||
            )
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
            from xfuser.core.distributed import (initialize_model_parallel,
 | 
					            from xfuser.core.distributed import (
 | 
				
			||||||
                                                 init_distributed_environment)
 | 
					                init_distributed_environment,
 | 
				
			||||||
 | 
					                initialize_model_parallel,
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
            init_distributed_environment(
 | 
					            init_distributed_environment(
 | 
				
			||||||
                rank=dist.get_rank(), world_size=dist.get_world_size())
 | 
					                rank=dist.get_rank(), world_size=dist.get_world_size())
 | 
				
			||||||
 | 
					
 | 
				
			||||||
            initialize_model_parallel(
 | 
					            initialize_model_parallel(
 | 
				
			||||||
                sequence_parallel_degree=dist.get_world_size(),
 | 
					                sequence_parallel_degree=dist.get_world_size(),
 | 
				
			||||||
                ring_degree=self.ring_size or 1,
 | 
					                ring_degree=self.ring_size or 1,
 | 
				
			||||||
                ulysses_degree=self.ulysses_size or 1
 | 
					                ulysses_degree=self.ulysses_size or 1)
 | 
				
			||||||
            )
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
            num_train_timesteps = self.config.num_train_timesteps
 | 
					            num_train_timesteps = self.config.num_train_timesteps
 | 
				
			||||||
            param_dtype = self.config.param_dtype
 | 
					            param_dtype = self.config.param_dtype
 | 
				
			||||||
@ -532,14 +592,17 @@ class WanVaceMP(WanVace):
 | 
				
			|||||||
                text_len=self.config.text_len,
 | 
					                text_len=self.config.text_len,
 | 
				
			||||||
                dtype=self.config.t5_dtype,
 | 
					                dtype=self.config.t5_dtype,
 | 
				
			||||||
                device=torch.device('cpu'),
 | 
					                device=torch.device('cpu'),
 | 
				
			||||||
                checkpoint_path=os.path.join(self.checkpoint_dir, self.config.t5_checkpoint),
 | 
					                checkpoint_path=os.path.join(self.checkpoint_dir,
 | 
				
			||||||
                tokenizer_path=os.path.join(self.checkpoint_dir, self.config.t5_tokenizer),
 | 
					                                             self.config.t5_checkpoint),
 | 
				
			||||||
 | 
					                tokenizer_path=os.path.join(self.checkpoint_dir,
 | 
				
			||||||
 | 
					                                            self.config.t5_tokenizer),
 | 
				
			||||||
                shard_fn=shard_fn if True else None)
 | 
					                shard_fn=shard_fn if True else None)
 | 
				
			||||||
            text_encoder.model.to(gpu)
 | 
					            text_encoder.model.to(gpu)
 | 
				
			||||||
            vae_stride = self.config.vae_stride
 | 
					            vae_stride = self.config.vae_stride
 | 
				
			||||||
            patch_size = self.config.patch_size
 | 
					            patch_size = self.config.patch_size
 | 
				
			||||||
            vae = WanVAE(
 | 
					            vae = WanVAE(
 | 
				
			||||||
                vae_pth=os.path.join(self.checkpoint_dir, self.config.vae_checkpoint),
 | 
					                vae_pth=os.path.join(self.checkpoint_dir,
 | 
				
			||||||
 | 
					                                     self.config.vae_checkpoint),
 | 
				
			||||||
                device=gpu)
 | 
					                device=gpu)
 | 
				
			||||||
            logging.info(f"Creating VaceWanModel from {self.checkpoint_dir}")
 | 
					            logging.info(f"Creating VaceWanModel from {self.checkpoint_dir}")
 | 
				
			||||||
            model = VaceWanModel.from_pretrained(self.checkpoint_dir)
 | 
					            model = VaceWanModel.from_pretrained(self.checkpoint_dir)
 | 
				
			||||||
@ -547,9 +610,12 @@ class WanVaceMP(WanVace):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
            if self.use_usp:
 | 
					            if self.use_usp:
 | 
				
			||||||
                from xfuser.core.distributed import get_sequence_parallel_world_size
 | 
					                from xfuser.core.distributed import get_sequence_parallel_world_size
 | 
				
			||||||
                from .distributed.xdit_context_parallel import (usp_attn_forward,
 | 
					
 | 
				
			||||||
                                                                usp_dit_forward,
 | 
					                from .distributed.xdit_context_parallel import (
 | 
				
			||||||
                                                                usp_dit_forward_vace)
 | 
					                    usp_attn_forward,
 | 
				
			||||||
 | 
					                    usp_dit_forward,
 | 
				
			||||||
 | 
					                    usp_dit_forward_vace,
 | 
				
			||||||
 | 
					                )
 | 
				
			||||||
                for block in model.blocks:
 | 
					                for block in model.blocks:
 | 
				
			||||||
                    block.self_attn.forward = types.MethodType(
 | 
					                    block.self_attn.forward = types.MethodType(
 | 
				
			||||||
                        usp_attn_forward, block.self_attn)
 | 
					                        usp_attn_forward, block.self_attn)
 | 
				
			||||||
@ -557,7 +623,8 @@ class WanVaceMP(WanVace):
 | 
				
			|||||||
                    block.self_attn.forward = types.MethodType(
 | 
					                    block.self_attn.forward = types.MethodType(
 | 
				
			||||||
                        usp_attn_forward, block.self_attn)
 | 
					                        usp_attn_forward, block.self_attn)
 | 
				
			||||||
                model.forward = types.MethodType(usp_dit_forward, model)
 | 
					                model.forward = types.MethodType(usp_dit_forward, model)
 | 
				
			||||||
                model.forward_vace = types.MethodType(usp_dit_forward_vace, model)
 | 
					                model.forward_vace = types.MethodType(usp_dit_forward_vace,
 | 
				
			||||||
 | 
					                                                      model)
 | 
				
			||||||
                sp_size = get_sequence_parallel_world_size()
 | 
					                sp_size = get_sequence_parallel_world_size()
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
                sp_size = 1
 | 
					                sp_size = 1
 | 
				
			||||||
@ -577,7 +644,8 @@ class WanVaceMP(WanVace):
 | 
				
			|||||||
                shift, sample_solver, sampling_steps, guide_scale, n_prompt, seed, offload_model = item
 | 
					                shift, sample_solver, sampling_steps, guide_scale, n_prompt, seed, offload_model = item
 | 
				
			||||||
                input_frames = self.transfer_data_to_cuda(input_frames, gpu)
 | 
					                input_frames = self.transfer_data_to_cuda(input_frames, gpu)
 | 
				
			||||||
                input_masks = self.transfer_data_to_cuda(input_masks, gpu)
 | 
					                input_masks = self.transfer_data_to_cuda(input_masks, gpu)
 | 
				
			||||||
                input_ref_images = self.transfer_data_to_cuda(input_ref_images, gpu)
 | 
					                input_ref_images = self.transfer_data_to_cuda(
 | 
				
			||||||
 | 
					                    input_ref_images, gpu)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                if n_prompt == "":
 | 
					                if n_prompt == "":
 | 
				
			||||||
                    n_prompt = sample_neg_prompt
 | 
					                    n_prompt = sample_neg_prompt
 | 
				
			||||||
@ -589,8 +657,10 @@ class WanVaceMP(WanVace):
 | 
				
			|||||||
                context_null = text_encoder([n_prompt], gpu)
 | 
					                context_null = text_encoder([n_prompt], gpu)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                # vace context encode
 | 
					                # vace context encode
 | 
				
			||||||
                z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks, vae=vae)
 | 
					                z0 = self.vace_encode_frames(
 | 
				
			||||||
                m0 = self.vace_encode_masks(input_masks, input_ref_images, vae_stride=vae_stride)
 | 
					                    input_frames, input_ref_images, masks=input_masks, vae=vae)
 | 
				
			||||||
 | 
					                m0 = self.vace_encode_masks(
 | 
				
			||||||
 | 
					                    input_masks, input_ref_images, vae_stride=vae_stride)
 | 
				
			||||||
                z = self.vace_latent(z0, m0)
 | 
					                z = self.vace_latent(z0, m0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                target_shape = list(z0[0].shape)
 | 
					                target_shape = list(z0[0].shape)
 | 
				
			||||||
@ -616,7 +686,8 @@ class WanVaceMP(WanVace):
 | 
				
			|||||||
                no_sync = getattr(model, 'no_sync', noop_no_sync)
 | 
					                no_sync = getattr(model, 'no_sync', noop_no_sync)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                # evaluation mode
 | 
					                # evaluation mode
 | 
				
			||||||
                with amp.autocast(dtype=param_dtype), torch.no_grad(), no_sync():
 | 
					                with amp.autocast(
 | 
				
			||||||
 | 
					                        dtype=param_dtype), torch.no_grad(), no_sync():
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                    if sample_solver == 'unipc':
 | 
					                    if sample_solver == 'unipc':
 | 
				
			||||||
                        sample_scheduler = FlowUniPCMultistepScheduler(
 | 
					                        sample_scheduler = FlowUniPCMultistepScheduler(
 | 
				
			||||||
@ -631,7 +702,8 @@ class WanVaceMP(WanVace):
 | 
				
			|||||||
                            num_train_timesteps=num_train_timesteps,
 | 
					                            num_train_timesteps=num_train_timesteps,
 | 
				
			||||||
                            shift=1,
 | 
					                            shift=1,
 | 
				
			||||||
                            use_dynamic_shifting=False)
 | 
					                            use_dynamic_shifting=False)
 | 
				
			||||||
                        sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
 | 
					                        sampling_sigmas = get_sampling_sigmas(
 | 
				
			||||||
 | 
					                            sampling_steps, shift)
 | 
				
			||||||
                        timesteps, _ = retrieve_timesteps(
 | 
					                        timesteps, _ = retrieve_timesteps(
 | 
				
			||||||
                            sample_scheduler,
 | 
					                            sample_scheduler,
 | 
				
			||||||
                            device=gpu,
 | 
					                            device=gpu,
 | 
				
			||||||
@ -653,14 +725,20 @@ class WanVaceMP(WanVace):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
                        model.to(gpu)
 | 
					                        model.to(gpu)
 | 
				
			||||||
                        noise_pred_cond = model(
 | 
					                        noise_pred_cond = model(
 | 
				
			||||||
                            latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale, **arg_c)[
 | 
					                            latent_model_input,
 | 
				
			||||||
                            0]
 | 
					                            t=timestep,
 | 
				
			||||||
 | 
					                            vace_context=z,
 | 
				
			||||||
 | 
					                            vace_context_scale=context_scale,
 | 
				
			||||||
 | 
					                            **arg_c)[0]
 | 
				
			||||||
                        noise_pred_uncond = model(
 | 
					                        noise_pred_uncond = model(
 | 
				
			||||||
                            latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale,
 | 
					                            latent_model_input,
 | 
				
			||||||
 | 
					                            t=timestep,
 | 
				
			||||||
 | 
					                            vace_context=z,
 | 
				
			||||||
 | 
					                            vace_context_scale=context_scale,
 | 
				
			||||||
                            **arg_null)[0]
 | 
					                            **arg_null)[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                        noise_pred = noise_pred_uncond + guide_scale * (
 | 
					                        noise_pred = noise_pred_uncond + guide_scale * (
 | 
				
			||||||
                                noise_pred_cond - noise_pred_uncond)
 | 
					                            noise_pred_cond - noise_pred_uncond)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                        temp_x0 = sample_scheduler.step(
 | 
					                        temp_x0 = sample_scheduler.step(
 | 
				
			||||||
                            noise_pred.unsqueeze(0),
 | 
					                            noise_pred.unsqueeze(0),
 | 
				
			||||||
@ -673,7 +751,8 @@ class WanVaceMP(WanVace):
 | 
				
			|||||||
                    torch.cuda.empty_cache()
 | 
					                    torch.cuda.empty_cache()
 | 
				
			||||||
                    x0 = latents
 | 
					                    x0 = latents
 | 
				
			||||||
                    if rank == 0:
 | 
					                    if rank == 0:
 | 
				
			||||||
                        videos = self.decode_latent(x0, input_ref_images, vae=vae)
 | 
					                        videos = self.decode_latent(
 | 
				
			||||||
 | 
					                            x0, input_ref_images, vae=vae)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                del noise, latents
 | 
					                del noise, latents
 | 
				
			||||||
                del sample_scheduler
 | 
					                del sample_scheduler
 | 
				
			||||||
@ -691,8 +770,6 @@ class WanVaceMP(WanVace):
 | 
				
			|||||||
            print(trace_info, flush=True)
 | 
					            print(trace_info, flush=True)
 | 
				
			||||||
            print(e, flush=True)
 | 
					            print(e, flush=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    def generate(self,
 | 
					    def generate(self,
 | 
				
			||||||
                 input_prompt,
 | 
					                 input_prompt,
 | 
				
			||||||
                 input_frames,
 | 
					                 input_frames,
 | 
				
			||||||
@ -709,8 +786,10 @@ class WanVaceMP(WanVace):
 | 
				
			|||||||
                 seed=-1,
 | 
					                 seed=-1,
 | 
				
			||||||
                 offload_model=True):
 | 
					                 offload_model=True):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        input_data = (input_prompt, input_frames, input_masks, input_ref_images, size, frame_num, context_scale,
 | 
					        input_data = (input_prompt, input_frames, input_masks, input_ref_images,
 | 
				
			||||||
                      shift, sample_solver, sampling_steps, guide_scale, n_prompt, seed, offload_model)
 | 
					                      size, frame_num, context_scale, shift, sample_solver,
 | 
				
			||||||
 | 
					                      sampling_steps, guide_scale, n_prompt, seed,
 | 
				
			||||||
 | 
					                      offload_model)
 | 
				
			||||||
        for in_q in self.in_q_list:
 | 
					        for in_q in self.in_q_list:
 | 
				
			||||||
            in_q.put(input_data)
 | 
					            in_q.put(input_data)
 | 
				
			||||||
        value_output = self.out_q.get()
 | 
					        value_output = self.out_q.get()
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
		Reference in New Issue
	
	Block a user