mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-03 22:04:21 +00:00 
			
		
		
		
	Merge branch 'main' into queue_editor_html_queue
This commit is contained in:
		
						commit
						a10d8f9004
					
				
							
								
								
									
										14
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										14
									
								
								README.md
									
									
									
									
									
								
							@ -20,15 +20,21 @@ WanGP supports the Wan (and derived models), Hunyuan Video and LTV Video models
 | 
			
		||||
**Follow DeepBeepMeep on Twitter/X to get the Latest News**: https://x.com/deepbeepmeep
 | 
			
		||||
 | 
			
		||||
## 🔥 Latest Updates : 
 | 
			
		||||
### September 23 2025: WanGP v8.7 - Here Are Two New Contenders in the Vace Arena !
 | 
			
		||||
### September 25 2025: WanGP v8.73 - Here Are ~~Two~~Three New Contenders in the Vace Arena !
 | 
			
		||||
 | 
			
		||||
So in today's release you will find two Wannabe Vace that covers each only a subset of Vace features but offers some interesting advantages:
 | 
			
		||||
- **Wan 2.2 Animate**: this model is specialized in *Body Motion* and *Facial Motion tranfers*. It does that very well. You can use this model to either *Replace* a person in an in Video or *Animate* the person of your choice using an existing *Pose Video* (remember *Animate Anyone* ?). By default it will keep the original soundtrack. *Wan 2.2 Animate* seems to be under the hood a derived i2v model and should support the corresponding Loras Accelerators (for instance *FusioniX t2v*). Also as a WanGP exclusivity, you will find support for *Outpainting*.
 | 
			
		||||
- **Wan 2.2 Animate**: this model is specialized in *Body Motion* and *Facial Motion transfers*. It does that very well. You can use this model to either *Replace* a person in an in Video or *Animate* the person of your choice using an existing *Pose Video* (remember *Animate Anyone* ?). By default it will keep the original soundtrack. *Wan 2.2 Animate* seems to be under the hood a derived i2v model and should support the corresponding Loras Accelerators (for instance *FusioniX t2v*). Also as a WanGP exclusivity, you will find support for *Outpainting*.
 | 
			
		||||
 | 
			
		||||
In order to use Wan 2.2 Animate you will need first to stop by the *Mat Anyone* embedded tool, to extract the Video Mask of the person from which you want to extract the motion.
 | 
			
		||||
In order to use Wan 2.2 Animate you will need first to stop by the *Mat Anyone* embedded tool, to extract the *Video Mask* of the person from which you want to extract the motion.
 | 
			
		||||
 | 
			
		||||
- **Lucy Edit**: this one claims to be a *Nano Banana* for Videos. Give it a video and asks it to change it (it is specialized in clothes changing) and voila ! The nice thing about it is that is it based on the *Wan 2.2 5B* model and therefore is very fast especially if you the *FastWan* finetune that is also part of the package. 
 | 
			
		||||
- **Lucy Edit**: this one claims to be a *Nano Banana* for Videos. Give it a video and asks it to change it (it is specialized in clothes changing) and voila ! The nice thing about it is that is it based on the *Wan 2.2 5B* model and therefore is very fast especially if you the *FastWan* finetune that is also part of the package.
 | 
			
		||||
 | 
			
		||||
Also because I wanted to spoil you:
 | 
			
		||||
- **Qwen Edit Plus**: also known as the *Qwen Edit 25th September Update* which is specialized in combining multiple Objects / People. There is also a new support for *Pose transfer* & *Recolorisation*. All of this made easy to use in WanGP. You will find right now only the quantized version since HF crashes when uploading the unquantized version.
 | 
			
		||||
 | 
			
		||||
*Update 8.71*: fixed Fast Lucy Edit that didnt contain the lora
 | 
			
		||||
*Update 8.72*: shadow drop of Qwen Edit Plus
 | 
			
		||||
*Update 8.73*: Qwen Preview & InfiniteTalk Start image 
 | 
			
		||||
 | 
			
		||||
### September 15 2025: WanGP v8.6 - Attack of the Clones
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										17
									
								
								defaults/qwen_image_edit_plus_20B.json
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										17
									
								
								defaults/qwen_image_edit_plus_20B.json
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,17 @@
 | 
			
		||||
{
 | 
			
		||||
    "model": {
 | 
			
		||||
        "name": "Qwen Image Edit Plus 20B",
 | 
			
		||||
        "architecture": "qwen_image_edit_plus_20B",
 | 
			
		||||
        "description": "Qwen Image Edit Plus is a generative model that can generate very high quality images with long texts in it. Best results will be at 720p. This model is optimized to combine multiple Subjects & Objects.",
 | 
			
		||||
        "URLs": [
 | 
			
		||||
            "https://huggingface.co/DeepBeepMeep/Qwen_image/resolve/main/qwen_image_edit_plus_20B_quanto_bf16_int8.safetensors"
 | 
			
		||||
        ],
 | 
			
		||||
        "preload_URLs": "qwen_image_edit_20B",
 | 
			
		||||
        "attention": {
 | 
			
		||||
            "<89": "sdpa"
 | 
			
		||||
        }
 | 
			
		||||
    },
 | 
			
		||||
    "prompt": "add a hat",
 | 
			
		||||
    "resolution": "1024x1024",
 | 
			
		||||
    "batch_size": 1
 | 
			
		||||
}
 | 
			
		||||
@ -27,7 +27,7 @@ conda activate wan2gp
 | 
			
		||||
### Step 2: Install PyTorch
 | 
			
		||||
 | 
			
		||||
```shell
 | 
			
		||||
# Install PyTorch 2.7.0 with CUDA 12.4
 | 
			
		||||
# Install PyTorch 2.7.0 with CUDA 12.8
 | 
			
		||||
pip install torch==2.7.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/test/cu128
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -28,7 +28,7 @@ class family_handler():
 | 
			
		||||
            extra_model_def["any_image_refs_relative_size"] = True
 | 
			
		||||
            extra_model_def["no_background_removal"] = True
 | 
			
		||||
            extra_model_def["image_ref_choices"] = {
 | 
			
		||||
                "choices":[("No Reference Image", ""),("First Image is a Reference Image, and then the next ones (up to two) are Style Images", "KI"),
 | 
			
		||||
                "choices":[("First Image is a Reference Image, and then the next ones (up to two) are Style Images", "KI"),
 | 
			
		||||
                            ("Up to two Images are Style Images", "KIJ")],
 | 
			
		||||
                "default": "KI",
 | 
			
		||||
                "letters_filter": "KIJ",
 | 
			
		||||
 | 
			
		||||
@ -173,8 +173,14 @@ class family_handler():
 | 
			
		||||
                    video_prompt_type = video_prompt_type.replace("M","")
 | 
			
		||||
                    ui_defaults["video_prompt_type"] = video_prompt_type  
 | 
			
		||||
 | 
			
		||||
        if settings_version < 2.36:
 | 
			
		||||
            if base_model_type in ["hunyuan_avatar", "hunyuan_custom_audio"]:
 | 
			
		||||
                audio_prompt_type=  ui_defaults["audio_prompt_type"]
 | 
			
		||||
                if "A" not in audio_prompt_type:
 | 
			
		||||
                    audio_prompt_type += "A"
 | 
			
		||||
                    ui_defaults["audio_prompt_type"] = audio_prompt_type  
 | 
			
		||||
 | 
			
		||||
        
 | 
			
		||||
        pass
 | 
			
		||||
    
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def update_default_settings(base_model_type, model_def, ui_defaults):
 | 
			
		||||
@ -197,6 +203,7 @@ class family_handler():
 | 
			
		||||
                "guidance_scale": 7.5,
 | 
			
		||||
                "flow_shift": 13,
 | 
			
		||||
                "video_prompt_type": "I",
 | 
			
		||||
                "audio_prompt_type": "A",
 | 
			
		||||
            })
 | 
			
		||||
        elif base_model_type in ["hunyuan_custom_edit"]:
 | 
			
		||||
            ui_defaults.update({
 | 
			
		||||
@ -213,4 +220,5 @@ class family_handler():
 | 
			
		||||
                "skip_steps_start_step_perc": 25, 
 | 
			
		||||
                "video_length": 129,
 | 
			
		||||
                "video_prompt_type": "KI",
 | 
			
		||||
                "audio_prompt_type": "A",
 | 
			
		||||
            })
 | 
			
		||||
 | 
			
		||||
@ -200,7 +200,8 @@ class QwenImagePipeline(): #DiffusionPipeline
 | 
			
		||||
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
 | 
			
		||||
        self.tokenizer_max_length = 1024
 | 
			
		||||
        if processor is not None:
 | 
			
		||||
            self.prompt_template_encode = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>{}<|im_end|>\n<|im_start|>assistant\n"
 | 
			
		||||
            # self.prompt_template_encode = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>{}<|im_end|>\n<|im_start|>assistant\n"
 | 
			
		||||
            self.prompt_template_encode = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
 | 
			
		||||
            self.prompt_template_encode_start_idx = 64
 | 
			
		||||
        else:
 | 
			
		||||
            self.prompt_template_encode = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
 | 
			
		||||
@ -232,6 +233,21 @@ class QwenImagePipeline(): #DiffusionPipeline
 | 
			
		||||
        txt = [template.format(e) for e in prompt]
 | 
			
		||||
 | 
			
		||||
        if self.processor is not None and image is not None:
 | 
			
		||||
            img_prompt_template = "Picture {}: <|vision_start|><|image_pad|><|vision_end|>"
 | 
			
		||||
            if isinstance(image, list):
 | 
			
		||||
                base_img_prompt = ""
 | 
			
		||||
                for i, img in enumerate(image):
 | 
			
		||||
                    base_img_prompt += img_prompt_template.format(i + 1)
 | 
			
		||||
            elif image is not None:
 | 
			
		||||
                base_img_prompt = img_prompt_template.format(1)
 | 
			
		||||
            else:
 | 
			
		||||
                base_img_prompt = ""
 | 
			
		||||
 | 
			
		||||
            template = self.prompt_template_encode
 | 
			
		||||
 | 
			
		||||
            drop_idx = self.prompt_template_encode_start_idx
 | 
			
		||||
            txt = [template.format(base_img_prompt + e) for e in prompt]
 | 
			
		||||
 | 
			
		||||
            model_inputs = self.processor(
 | 
			
		||||
                text=txt,
 | 
			
		||||
                images=image,
 | 
			
		||||
@ -464,7 +480,7 @@ class QwenImagePipeline(): #DiffusionPipeline
 | 
			
		||||
 | 
			
		||||
    def prepare_latents(
 | 
			
		||||
        self,
 | 
			
		||||
        image,
 | 
			
		||||
        images,
 | 
			
		||||
        batch_size,
 | 
			
		||||
        num_channels_latents,
 | 
			
		||||
        height,
 | 
			
		||||
@ -482,24 +498,30 @@ class QwenImagePipeline(): #DiffusionPipeline
 | 
			
		||||
        shape = (batch_size, num_channels_latents, 1, height, width)
 | 
			
		||||
 | 
			
		||||
        image_latents = None
 | 
			
		||||
        if image is not None:
 | 
			
		||||
            image = image.to(device=device, dtype=dtype)
 | 
			
		||||
            if image.shape[1] != self.latent_channels:
 | 
			
		||||
                image_latents = self._encode_vae_image(image=image, generator=generator)
 | 
			
		||||
            else:
 | 
			
		||||
                image_latents = image
 | 
			
		||||
            if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
 | 
			
		||||
                # expand init_latents for batch_size
 | 
			
		||||
                additional_image_per_prompt = batch_size // image_latents.shape[0]
 | 
			
		||||
                image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
 | 
			
		||||
            elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
 | 
			
		||||
                raise ValueError(
 | 
			
		||||
                    f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
 | 
			
		||||
                )
 | 
			
		||||
            else:
 | 
			
		||||
                image_latents = torch.cat([image_latents], dim=0)
 | 
			
		||||
        if images is not None and len(images ) > 0:
 | 
			
		||||
            if not isinstance(images, list):
 | 
			
		||||
                images = [images]
 | 
			
		||||
            all_image_latents = []
 | 
			
		||||
            for image in images:
 | 
			
		||||
                image = image.to(device=device, dtype=dtype)
 | 
			
		||||
                if image.shape[1] != self.latent_channels:
 | 
			
		||||
                    image_latents = self._encode_vae_image(image=image, generator=generator)
 | 
			
		||||
                else:
 | 
			
		||||
                    image_latents = image
 | 
			
		||||
                if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
 | 
			
		||||
                    # expand init_latents for batch_size
 | 
			
		||||
                    additional_image_per_prompt = batch_size // image_latents.shape[0]
 | 
			
		||||
                    image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
 | 
			
		||||
                elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
 | 
			
		||||
                    raise ValueError(
 | 
			
		||||
                        f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
 | 
			
		||||
                    )
 | 
			
		||||
                else:
 | 
			
		||||
                    image_latents = torch.cat([image_latents], dim=0)
 | 
			
		||||
 | 
			
		||||
            image_latents = self._pack_latents(image_latents)
 | 
			
		||||
                image_latents = self._pack_latents(image_latents)
 | 
			
		||||
                all_image_latents.append(image_latents)
 | 
			
		||||
            image_latents = torch.cat(all_image_latents, dim=1)
 | 
			
		||||
 | 
			
		||||
        if isinstance(generator, list) and len(generator) != batch_size:
 | 
			
		||||
            raise ValueError(
 | 
			
		||||
@ -568,6 +590,7 @@ class QwenImagePipeline(): #DiffusionPipeline
 | 
			
		||||
        joint_pass= True,
 | 
			
		||||
        lora_inpaint = False,
 | 
			
		||||
        outpainting_dims = None,
 | 
			
		||||
        qwen_edit_plus = False,
 | 
			
		||||
    ):
 | 
			
		||||
        r"""
 | 
			
		||||
        Function invoked when calling the pipeline for generation.
 | 
			
		||||
@ -683,61 +706,54 @@ class QwenImagePipeline(): #DiffusionPipeline
 | 
			
		||||
            batch_size = prompt_embeds.shape[0]
 | 
			
		||||
        device = "cuda"
 | 
			
		||||
 | 
			
		||||
        prompt_image = None
 | 
			
		||||
        condition_images = []
 | 
			
		||||
        vae_image_sizes = []
 | 
			
		||||
        vae_images = []
 | 
			
		||||
        image_mask_latents = None
 | 
			
		||||
        if image is not None and not (isinstance(image, torch.Tensor) and image.size(1) == self.latent_channels):
 | 
			
		||||
            image = image[0] if isinstance(image, list) else image
 | 
			
		||||
            image_height, image_width = self.image_processor.get_default_height_width(image)
 | 
			
		||||
            aspect_ratio = image_width / image_height
 | 
			
		||||
            if False :
 | 
			
		||||
                _, image_width, image_height = min(
 | 
			
		||||
                    (abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_QWENIMAGE_RESOLUTIONS
 | 
			
		||||
                )
 | 
			
		||||
            image_width = image_width // multiple_of * multiple_of
 | 
			
		||||
            image_height = image_height // multiple_of * multiple_of
 | 
			
		||||
            ref_height, ref_width = 1568, 672
 | 
			
		||||
        ref_size = 1024
 | 
			
		||||
        ref_text_encoder_size = 384 if qwen_edit_plus else 1024
 | 
			
		||||
        if image is not None:
 | 
			
		||||
            if not isinstance(image, list): image = [image]
 | 
			
		||||
            if height * width < ref_size * ref_size: ref_size =  round(math.sqrt(height * width))  
 | 
			
		||||
            for ref_no, img in enumerate(image):
 | 
			
		||||
                image_width, image_height = img.size
 | 
			
		||||
                any_mask = ref_no == 0 and image_mask is not None
 | 
			
		||||
                if (image_height * image_width > ref_size * ref_size) and not any_mask:
 | 
			
		||||
                    vae_height, vae_width =calculate_new_dimensions(ref_size, ref_size, image_height, image_width, False, block_size=multiple_of)
 | 
			
		||||
                else:
 | 
			
		||||
                    vae_height, vae_width = image_height, image_width 
 | 
			
		||||
                    vae_width = vae_width // multiple_of * multiple_of
 | 
			
		||||
                    vae_height = vae_height // multiple_of * multiple_of
 | 
			
		||||
                vae_image_sizes.append((vae_width, vae_height))
 | 
			
		||||
                condition_height, condition_width =calculate_new_dimensions(ref_text_encoder_size, ref_text_encoder_size, image_height, image_width, False, block_size=multiple_of)
 | 
			
		||||
                condition_images.append(img.resize((condition_width, condition_height), resample=Image.Resampling.LANCZOS) )
 | 
			
		||||
                if img.size != (vae_width, vae_height):
 | 
			
		||||
                    img = img.resize((vae_width, vae_height), resample=Image.Resampling.LANCZOS) 
 | 
			
		||||
                if any_mask :
 | 
			
		||||
                    if lora_inpaint:
 | 
			
		||||
                        image_mask_rebuilt = torch.where(convert_image_to_tensor(image_mask)>-0.5, 1., 0. )[0:1]
 | 
			
		||||
                        img = convert_image_to_tensor(img)
 | 
			
		||||
                        green = torch.tensor([-1.0, 1.0, -1.0]).to(img) 
 | 
			
		||||
                        green_image = green[:, None, None] .expand_as(img)
 | 
			
		||||
                        img = torch.where(image_mask_rebuilt > 0, green_image, img)
 | 
			
		||||
                        img = convert_tensor_to_image(img)
 | 
			
		||||
                    else:
 | 
			
		||||
                        image_mask_latents = convert_image_to_tensor(image_mask.resize((vae_width // 8, vae_height // 8), resample=Image.Resampling.LANCZOS))
 | 
			
		||||
                        image_mask_latents = torch.where(image_mask_latents>-0.5, 1., 0. )[0:1]
 | 
			
		||||
                        image_mask_rebuilt = image_mask_latents.repeat_interleave(8, dim=-1).repeat_interleave(8, dim=-2).unsqueeze(0)
 | 
			
		||||
                        # convert_tensor_to_image( image_mask_rebuilt.squeeze(0).repeat(3,1,1)).save("mmm.png")
 | 
			
		||||
                        image_mask_latents = image_mask_latents.to(device).unsqueeze(0).unsqueeze(0).repeat(1,16,1,1,1)
 | 
			
		||||
                        image_mask_latents = self._pack_latents(image_mask_latents)
 | 
			
		||||
                # img.save("nnn.png")
 | 
			
		||||
                vae_images.append( convert_image_to_tensor(img).unsqueeze(0).unsqueeze(2) )
 | 
			
		||||
 | 
			
		||||
            if image_mask is None:
 | 
			
		||||
                if height * width < ref_height * ref_width: ref_height , ref_width = height , width  
 | 
			
		||||
                if image_height * image_width > ref_height * ref_width:
 | 
			
		||||
                    image_height, image_width = calculate_new_dimensions(ref_height, ref_width, image_height, image_width, False, block_size=multiple_of)
 | 
			
		||||
                if (image_width,image_height) != image.size:
 | 
			
		||||
                    image = image.resize((image_width,image_height), resample=Image.Resampling.LANCZOS) 
 | 
			
		||||
            elif not lora_inpaint:
 | 
			
		||||
                # _, image_width, image_height = min(
 | 
			
		||||
                #     (abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_QWENIMAGE_RESOLUTIONS
 | 
			
		||||
                # )
 | 
			
		||||
                image_height, image_width = calculate_new_dimensions(height, width, image_height, image_width, False, block_size=multiple_of)
 | 
			
		||||
                # image_height, image_width = calculate_new_dimensions(ref_height, ref_width, image_height, image_width, False, block_size=multiple_of)
 | 
			
		||||
                height, width = image_height, image_width
 | 
			
		||||
                image_mask_latents = convert_image_to_tensor(image_mask.resize((width // 8, height // 8), resample=Image.Resampling.LANCZOS))
 | 
			
		||||
                image_mask_latents = torch.where(image_mask_latents>-0.5, 1., 0. )[0:1]
 | 
			
		||||
                image_mask_rebuilt = image_mask_latents.repeat_interleave(8, dim=-1).repeat_interleave(8, dim=-2).unsqueeze(0)
 | 
			
		||||
                # convert_tensor_to_image( image_mask_rebuilt.squeeze(0).repeat(3,1,1)).save("mmm.png")
 | 
			
		||||
                image_mask_latents = image_mask_latents.to(device).unsqueeze(0).unsqueeze(0).repeat(1,16,1,1,1)
 | 
			
		||||
                image_mask_latents = self._pack_latents(image_mask_latents)
 | 
			
		||||
 | 
			
		||||
            prompt_image = image
 | 
			
		||||
            if image.size != (image_width, image_height):
 | 
			
		||||
                image = image.resize((image_width, image_height), resample=Image.Resampling.LANCZOS)
 | 
			
		||||
 | 
			
		||||
            image = convert_image_to_tensor(image)
 | 
			
		||||
            if lora_inpaint:
 | 
			
		||||
                image_mask_rebuilt = torch.where(convert_image_to_tensor(image_mask)>-0.5, 1., 0. )[0:1]
 | 
			
		||||
                image_mask_latents = None
 | 
			
		||||
                green = torch.tensor([-1.0, 1.0, -1.0]).to(image) 
 | 
			
		||||
                green_image = green[:, None, None] .expand_as(image)
 | 
			
		||||
                image = torch.where(image_mask_rebuilt > 0, green_image, image)
 | 
			
		||||
                prompt_image = convert_tensor_to_image(image)
 | 
			
		||||
            image = image.unsqueeze(0).unsqueeze(2)
 | 
			
		||||
            # image.save("nnn.png")
 | 
			
		||||
 | 
			
		||||
        has_neg_prompt = negative_prompt is not None or (
 | 
			
		||||
            negative_prompt_embeds is not None and negative_prompt_embeds_mask is not None
 | 
			
		||||
        )
 | 
			
		||||
        do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
 | 
			
		||||
        prompt_embeds, prompt_embeds_mask = self.encode_prompt(
 | 
			
		||||
            image=prompt_image,
 | 
			
		||||
            image=condition_images,
 | 
			
		||||
            prompt=prompt,
 | 
			
		||||
            prompt_embeds=prompt_embeds,
 | 
			
		||||
            prompt_embeds_mask=prompt_embeds_mask,
 | 
			
		||||
@ -747,7 +763,7 @@ class QwenImagePipeline(): #DiffusionPipeline
 | 
			
		||||
        )
 | 
			
		||||
        if do_true_cfg:
 | 
			
		||||
            negative_prompt_embeds, negative_prompt_embeds_mask = self.encode_prompt(
 | 
			
		||||
                image=prompt_image,
 | 
			
		||||
                image=condition_images,
 | 
			
		||||
                prompt=negative_prompt,
 | 
			
		||||
                prompt_embeds=negative_prompt_embeds,
 | 
			
		||||
                prompt_embeds_mask=negative_prompt_embeds_mask,
 | 
			
		||||
@ -763,7 +779,7 @@ class QwenImagePipeline(): #DiffusionPipeline
 | 
			
		||||
        # 4. Prepare latent variables
 | 
			
		||||
        num_channels_latents = self.transformer.in_channels // 4
 | 
			
		||||
        latents, image_latents = self.prepare_latents(
 | 
			
		||||
            image,
 | 
			
		||||
            vae_images,
 | 
			
		||||
            batch_size * num_images_per_prompt,
 | 
			
		||||
            num_channels_latents,
 | 
			
		||||
            height,
 | 
			
		||||
@ -779,7 +795,12 @@ class QwenImagePipeline(): #DiffusionPipeline
 | 
			
		||||
            img_shapes = [
 | 
			
		||||
                [
 | 
			
		||||
                    (1, height // self.vae_scale_factor // 2, width // self.vae_scale_factor // 2),
 | 
			
		||||
                    (1, image_height // self.vae_scale_factor // 2, image_width // self.vae_scale_factor // 2),
 | 
			
		||||
                    # (1, image_height // self.vae_scale_factor // 2, image_width // self.vae_scale_factor // 2),
 | 
			
		||||
                    *[
 | 
			
		||||
                        (1, vae_height // self.vae_scale_factor // 2, vae_width // self.vae_scale_factor // 2)
 | 
			
		||||
                        for vae_width, vae_height in vae_image_sizes
 | 
			
		||||
                    ],
 | 
			
		||||
 | 
			
		||||
                ]
 | 
			
		||||
            ] * batch_size
 | 
			
		||||
        else:
 | 
			
		||||
@ -950,8 +971,9 @@ class QwenImagePipeline(): #DiffusionPipeline
 | 
			
		||||
                    latents = latents.to(latents_dtype)
 | 
			
		||||
 | 
			
		||||
            if callback is not None:
 | 
			
		||||
                # preview = unpack_latent(img).transpose(0,1)
 | 
			
		||||
                callback(i, None, False)         
 | 
			
		||||
                preview = self._unpack_latents(latents, height, width, self.vae_scale_factor)
 | 
			
		||||
                preview = preview.squeeze(0)
 | 
			
		||||
                callback(i, preview, False)         
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        self._current_timestep = None
 | 
			
		||||
@ -971,7 +993,7 @@ class QwenImagePipeline(): #DiffusionPipeline
 | 
			
		||||
            latents = latents / latents_std + latents_mean
 | 
			
		||||
            output_image = self.vae.decode(latents, return_dict=False)[0][:, :, 0]
 | 
			
		||||
            if image_mask is not None and not lora_inpaint :  #not (lora_inpaint and outpainting_dims is not None):
 | 
			
		||||
                output_image = image.squeeze(2) * (1 - image_mask_rebuilt) + output_image.to(image) * image_mask_rebuilt 
 | 
			
		||||
                output_image = vae_images[0].squeeze(2) * (1 - image_mask_rebuilt) + output_image.to(vae_images[0]  ) * image_mask_rebuilt 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        return output_image
 | 
			
		||||
 | 
			
		||||
@ -20,7 +20,7 @@ class family_handler():
 | 
			
		||||
            "fit_into_canvas_image_refs": 0,
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if base_model_type in ["qwen_image_edit_20B"]: 
 | 
			
		||||
        if base_model_type in ["qwen_image_edit_20B", "qwen_image_edit_plus_20B"]: 
 | 
			
		||||
            extra_model_def["inpaint_support"] = True
 | 
			
		||||
            extra_model_def["image_ref_choices"] = {
 | 
			
		||||
            "choices": [
 | 
			
		||||
@ -42,11 +42,20 @@ class family_handler():
 | 
			
		||||
                        "image_modes" : [2],
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
        if base_model_type in ["qwen_image_edit_plus_20B"]: 
 | 
			
		||||
            extra_model_def["guide_preprocessing"] = {
 | 
			
		||||
                    "selection": ["", "PV", "SV", "CV"],
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
            extra_model_def["mask_preprocessing"] = {
 | 
			
		||||
                    "selection": ["", "A"],
 | 
			
		||||
                    "visible": False,
 | 
			
		||||
                }
 | 
			
		||||
        return extra_model_def
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def query_supported_types():
 | 
			
		||||
        return ["qwen_image_20B", "qwen_image_edit_20B"]
 | 
			
		||||
        return ["qwen_image_20B", "qwen_image_edit_20B", "qwen_image_edit_plus_20B"]
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def query_family_maps():
 | 
			
		||||
@ -113,9 +122,16 @@ class family_handler():
 | 
			
		||||
                "denoising_strength" : 1.,
 | 
			
		||||
                "model_mode" : 0,
 | 
			
		||||
            })
 | 
			
		||||
        elif base_model_type in ["qwen_image_edit_plus_20B"]: 
 | 
			
		||||
            ui_defaults.update({
 | 
			
		||||
                "video_prompt_type": "I",
 | 
			
		||||
                "denoising_strength" : 1.,
 | 
			
		||||
                "model_mode" : 0,
 | 
			
		||||
            })
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def validate_generative_settings(base_model_type, model_def, inputs):
 | 
			
		||||
        if base_model_type in ["qwen_image_edit_20B"]:
 | 
			
		||||
        if base_model_type in ["qwen_image_edit_20B", "qwen_image_edit_plus_20B"]:
 | 
			
		||||
            model_mode = inputs["model_mode"]
 | 
			
		||||
            denoising_strength= inputs["denoising_strength"]
 | 
			
		||||
            video_guide_outpainting= inputs["video_guide_outpainting"]
 | 
			
		||||
@ -126,3 +142,9 @@ class family_handler():
 | 
			
		||||
                gr.Info("Denoising Strength will be ignored while using Lora Inpainting")
 | 
			
		||||
            if outpainting_dims is not None and model_mode == 0 :
 | 
			
		||||
                return "Outpainting is not supported with Masked Denoising  "
 | 
			
		||||
            
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def get_rgb_factors(base_model_type ):
 | 
			
		||||
        from shared.RGB_factors import get_rgb_factors
 | 
			
		||||
        latent_rgb_factors, latent_rgb_factors_bias = get_rgb_factors("qwen")
 | 
			
		||||
        return latent_rgb_factors, latent_rgb_factors_bias
 | 
			
		||||
 | 
			
		||||
@ -51,10 +51,10 @@ class model_factory():
 | 
			
		||||
        transformer_filename = model_filename[0]
 | 
			
		||||
        processor = None
 | 
			
		||||
        tokenizer = None
 | 
			
		||||
        if base_model_type == "qwen_image_edit_20B":
 | 
			
		||||
        if base_model_type in ["qwen_image_edit_20B", "qwen_image_edit_plus_20B"]:
 | 
			
		||||
            processor = Qwen2VLProcessor.from_pretrained(os.path.join(checkpoint_dir,"Qwen2.5-VL-7B-Instruct"))
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(os.path.join(checkpoint_dir,"Qwen2.5-VL-7B-Instruct"))
 | 
			
		||||
 | 
			
		||||
        self.base_model_type = base_model_type
 | 
			
		||||
 | 
			
		||||
        base_config_file = "configs/qwen_image_20B.json" 
 | 
			
		||||
        with open(base_config_file, 'r', encoding='utf-8') as f:
 | 
			
		||||
@ -173,7 +173,7 @@ class model_factory():
 | 
			
		||||
            self.vae.tile_latent_min_height  = VAE_tile_size[1] 
 | 
			
		||||
            self.vae.tile_latent_min_width  = VAE_tile_size[1]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        qwen_edit_plus = self.base_model_type in ["qwen_image_edit_plus_20B"]
 | 
			
		||||
        self.vae.enable_slicing()
 | 
			
		||||
        # width, height = aspect_ratios["16:9"]
 | 
			
		||||
 | 
			
		||||
@ -182,17 +182,19 @@ class model_factory():
 | 
			
		||||
 | 
			
		||||
        image_mask = None if input_masks is None else convert_tensor_to_image(input_masks, mask_levels= True) 
 | 
			
		||||
        if input_frames is not None:
 | 
			
		||||
            input_ref_images = [convert_tensor_to_image(input_frames) ] 
 | 
			
		||||
        elif input_ref_images is not None:
 | 
			
		||||
            input_ref_images = [convert_tensor_to_image(input_frames) ] +  ([] if input_ref_images  is None else input_ref_images )
 | 
			
		||||
 | 
			
		||||
        if input_ref_images is not None:
 | 
			
		||||
            # image stiching method
 | 
			
		||||
            stiched = input_ref_images[0]
 | 
			
		||||
            if "K" in video_prompt_type :
 | 
			
		||||
                w, h = input_ref_images[0].size
 | 
			
		||||
                height, width = calculate_new_dimensions(height, width, h, w, fit_into_canvas)
 | 
			
		||||
 | 
			
		||||
            for new_img in input_ref_images[1:]:
 | 
			
		||||
                stiched = stitch_images(stiched, new_img)
 | 
			
		||||
            input_ref_images  = [stiched]
 | 
			
		||||
            if not qwen_edit_plus:
 | 
			
		||||
                for new_img in input_ref_images[1:]:
 | 
			
		||||
                    stiched = stitch_images(stiched, new_img)
 | 
			
		||||
                input_ref_images  = [stiched]
 | 
			
		||||
 | 
			
		||||
        image = self.pipeline(
 | 
			
		||||
            prompt=input_prompt,
 | 
			
		||||
@ -212,7 +214,8 @@ class model_factory():
 | 
			
		||||
            generator=torch.Generator(device="cuda").manual_seed(seed),
 | 
			
		||||
            lora_inpaint = image_mask is not None and model_mode == 1,
 | 
			
		||||
            outpainting_dims = outpainting_dims,
 | 
			
		||||
        )        
 | 
			
		||||
            qwen_edit_plus = qwen_edit_plus,
 | 
			
		||||
        )      
 | 
			
		||||
        if image is None: return None
 | 
			
		||||
        return image.transpose(0, 1)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -443,38 +443,32 @@ class WanAny2V:
 | 
			
		||||
        # image2video 
 | 
			
		||||
        if model_type in ["i2v", "i2v_2_2", "fun_inp_1.3B", "fun_inp", "fantasy", "multitalk", "infinitetalk", "i2v_2_2_multitalk", "flf2v_720p"]:
 | 
			
		||||
            any_end_frame = False
 | 
			
		||||
            if image_start is None:
 | 
			
		||||
                if infinitetalk:
 | 
			
		||||
                    new_shot = "Q" in video_prompt_type
 | 
			
		||||
                    if input_frames is not None:
 | 
			
		||||
                        image_ref = input_frames[:, 0]
 | 
			
		||||
                    else:
 | 
			
		||||
                        if input_ref_images is None:                        
 | 
			
		||||
                            if pre_video_frame is None: raise Exception("Missing Reference Image")
 | 
			
		||||
                            input_ref_images, new_shot = [pre_video_frame], False
 | 
			
		||||
                        new_shot = new_shot and window_no <= len(input_ref_images)
 | 
			
		||||
                        image_ref = convert_image_to_tensor(input_ref_images[ min(window_no, len(input_ref_images))-1 ])
 | 
			
		||||
                    if new_shot or input_video is None:  
 | 
			
		||||
                        input_video = image_ref.unsqueeze(1)
 | 
			
		||||
                    else:
 | 
			
		||||
                        color_correction_strength = 0 #disable color correction as transition frames between shots may have a complete different color level than the colors of the new shot
 | 
			
		||||
                _ , preframes_count, height, width = input_video.shape
 | 
			
		||||
                input_video = input_video.to(device=self.device).to(dtype= self.VAE_dtype)
 | 
			
		||||
                if infinitetalk:
 | 
			
		||||
                    image_start = image_ref.to(input_video)
 | 
			
		||||
                    control_pre_frames_count = 1 
 | 
			
		||||
                    control_video = image_start.unsqueeze(1)
 | 
			
		||||
            if infinitetalk:
 | 
			
		||||
                new_shot = "Q" in video_prompt_type
 | 
			
		||||
                if input_frames is not None:
 | 
			
		||||
                    image_ref = input_frames[:, 0]
 | 
			
		||||
                else:
 | 
			
		||||
                    image_start = input_video[:, -1]
 | 
			
		||||
                    control_pre_frames_count = preframes_count
 | 
			
		||||
                    control_video = input_video
 | 
			
		||||
 | 
			
		||||
                color_reference_frame = image_start.unsqueeze(1).clone()
 | 
			
		||||
                    if input_ref_images is None:                        
 | 
			
		||||
                        if pre_video_frame is None: raise Exception("Missing Reference Image")
 | 
			
		||||
                        input_ref_images, new_shot = [pre_video_frame], False
 | 
			
		||||
                    new_shot = new_shot and window_no <= len(input_ref_images)
 | 
			
		||||
                    image_ref = convert_image_to_tensor(input_ref_images[ min(window_no, len(input_ref_images))-1 ])
 | 
			
		||||
                if new_shot or input_video is None:  
 | 
			
		||||
                    input_video = image_ref.unsqueeze(1)
 | 
			
		||||
                else:
 | 
			
		||||
                    color_correction_strength = 0 #disable color correction as transition frames between shots may have a complete different color level than the colors of the new shot
 | 
			
		||||
            _ , preframes_count, height, width = input_video.shape
 | 
			
		||||
            input_video = input_video.to(device=self.device).to(dtype= self.VAE_dtype)
 | 
			
		||||
            if infinitetalk:
 | 
			
		||||
                image_start = image_ref.to(input_video)
 | 
			
		||||
                control_pre_frames_count = 1 
 | 
			
		||||
                control_video = image_start.unsqueeze(1)
 | 
			
		||||
            else:
 | 
			
		||||
                preframes_count = control_pre_frames_count = 1                
 | 
			
		||||
                height, width = image_start.shape[1:]
 | 
			
		||||
                control_video = image_start.unsqueeze(1).to(self.device)
 | 
			
		||||
                color_reference_frame = control_video.clone()
 | 
			
		||||
                image_start = input_video[:, -1]
 | 
			
		||||
                control_pre_frames_count = preframes_count
 | 
			
		||||
                control_video = input_video
 | 
			
		||||
 | 
			
		||||
            color_reference_frame = image_start.unsqueeze(1).clone()
 | 
			
		||||
 | 
			
		||||
            any_end_frame = image_end is not None 
 | 
			
		||||
            add_frames_for_end_image = any_end_frame and model_type == "i2v"
 | 
			
		||||
 | 
			
		||||
@ -1,479 +0,0 @@
 | 
			
		||||
import math
 | 
			
		||||
import os
 | 
			
		||||
from typing import List
 | 
			
		||||
from typing import Optional
 | 
			
		||||
from typing import Tuple
 | 
			
		||||
from typing import Union
 | 
			
		||||
import logging
 | 
			
		||||
import numpy as np
 | 
			
		||||
import torch
 | 
			
		||||
from diffusers.image_processor import PipelineImageInput
 | 
			
		||||
from diffusers.utils.torch_utils import randn_tensor
 | 
			
		||||
from diffusers.video_processor import VideoProcessor
 | 
			
		||||
from tqdm import tqdm
 | 
			
		||||
from .modules.model import WanModel
 | 
			
		||||
from .modules.t5 import T5EncoderModel
 | 
			
		||||
from .modules.vae import WanVAE
 | 
			
		||||
from wan.modules.posemb_layers import get_rotary_pos_embed
 | 
			
		||||
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
 | 
			
		||||
                               get_sampling_sigmas, retrieve_timesteps)
 | 
			
		||||
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
 | 
			
		||||
 | 
			
		||||
class DTT2V:
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        config,
 | 
			
		||||
        checkpoint_dir,
 | 
			
		||||
        rank=0,
 | 
			
		||||
        model_filename = None,
 | 
			
		||||
        text_encoder_filename = None,
 | 
			
		||||
        quantizeTransformer = False,
 | 
			
		||||
        dtype = torch.bfloat16,
 | 
			
		||||
    ):
 | 
			
		||||
        self.device = torch.device(f"cuda")
 | 
			
		||||
        self.config = config
 | 
			
		||||
        self.rank = rank
 | 
			
		||||
        self.dtype = dtype
 | 
			
		||||
        self.num_train_timesteps = config.num_train_timesteps
 | 
			
		||||
        self.param_dtype = config.param_dtype
 | 
			
		||||
 | 
			
		||||
        self.text_encoder = T5EncoderModel(
 | 
			
		||||
            text_len=config.text_len,
 | 
			
		||||
            dtype=config.t5_dtype,
 | 
			
		||||
            device=torch.device('cpu'),
 | 
			
		||||
            checkpoint_path=text_encoder_filename,
 | 
			
		||||
            tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
 | 
			
		||||
            shard_fn= None)
 | 
			
		||||
 | 
			
		||||
        self.vae_stride = config.vae_stride
 | 
			
		||||
        self.patch_size = config.patch_size 
 | 
			
		||||
 | 
			
		||||
        
 | 
			
		||||
        self.vae = WanVAE(
 | 
			
		||||
            vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
 | 
			
		||||
            device=self.device)
 | 
			
		||||
 | 
			
		||||
        logging.info(f"Creating WanModel from {model_filename}")
 | 
			
		||||
        from mmgp import offload
 | 
			
		||||
 | 
			
		||||
        self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer, writable_tensors= False, forcedConfigPath="config.json")
 | 
			
		||||
        # offload.load_model_data(self.model, "recam.ckpt")
 | 
			
		||||
        # self.model.cpu()
 | 
			
		||||
        # offload.save_model(self.model, "recam.safetensors")
 | 
			
		||||
        if self.dtype == torch.float16 and not "fp16" in model_filename:
 | 
			
		||||
            self.model.to(self.dtype) 
 | 
			
		||||
        # offload.save_model(self.model, "t2v_fp16.safetensors",do_quantize=True)
 | 
			
		||||
        if self.dtype == torch.float16:
 | 
			
		||||
            self.vae.model.to(self.dtype)
 | 
			
		||||
        self.model.eval().requires_grad_(False)
 | 
			
		||||
 | 
			
		||||
        self.scheduler = FlowUniPCMultistepScheduler()
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def do_classifier_free_guidance(self) -> bool:
 | 
			
		||||
        return self._guidance_scale > 1
 | 
			
		||||
 | 
			
		||||
    def encode_image(
 | 
			
		||||
        self, image: PipelineImageInput, height: int, width: int, num_frames: int, tile_size = 0, causal_block_size = 0
 | 
			
		||||
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
 | 
			
		||||
 | 
			
		||||
        # prefix_video
 | 
			
		||||
        prefix_video = np.array(image.resize((width, height))).transpose(2, 0, 1)
 | 
			
		||||
        prefix_video = torch.tensor(prefix_video).unsqueeze(1)  # .to(image_embeds.dtype).unsqueeze(1)
 | 
			
		||||
        if prefix_video.dtype == torch.uint8:
 | 
			
		||||
            prefix_video = (prefix_video.float() / (255.0 / 2.0)) - 1.0
 | 
			
		||||
        prefix_video = prefix_video.to(self.device)
 | 
			
		||||
        prefix_video = [self.vae.encode(prefix_video.unsqueeze(0), tile_size = tile_size)[0]]  # [(c, f, h, w)]
 | 
			
		||||
        if prefix_video[0].shape[1] % causal_block_size != 0:
 | 
			
		||||
            truncate_len = prefix_video[0].shape[1] % causal_block_size
 | 
			
		||||
            print("the length of prefix video is truncated for the casual block size alignment.")
 | 
			
		||||
            prefix_video[0] = prefix_video[0][:, : prefix_video[0].shape[1] - truncate_len]
 | 
			
		||||
        predix_video_latent_length = prefix_video[0].shape[1]
 | 
			
		||||
        return prefix_video, predix_video_latent_length
 | 
			
		||||
 | 
			
		||||
    def prepare_latents(
 | 
			
		||||
        self,
 | 
			
		||||
        shape: Tuple[int],
 | 
			
		||||
        dtype: Optional[torch.dtype] = None,
 | 
			
		||||
        device: Optional[torch.device] = None,
 | 
			
		||||
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
 | 
			
		||||
    ) -> torch.Tensor:
 | 
			
		||||
        return randn_tensor(shape, generator, device=device, dtype=dtype)
 | 
			
		||||
 | 
			
		||||
    def generate_timestep_matrix(
 | 
			
		||||
        self,
 | 
			
		||||
        num_frames,
 | 
			
		||||
        step_template,
 | 
			
		||||
        base_num_frames,
 | 
			
		||||
        ar_step=5,
 | 
			
		||||
        num_pre_ready=0,
 | 
			
		||||
        casual_block_size=1,
 | 
			
		||||
        shrink_interval_with_mask=False,
 | 
			
		||||
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, list[tuple]]:
 | 
			
		||||
        step_matrix, step_index = [], []
 | 
			
		||||
        update_mask, valid_interval = [], []
 | 
			
		||||
        num_iterations = len(step_template) + 1
 | 
			
		||||
        num_frames_block = num_frames // casual_block_size
 | 
			
		||||
        base_num_frames_block = base_num_frames // casual_block_size
 | 
			
		||||
        if base_num_frames_block < num_frames_block:
 | 
			
		||||
            infer_step_num = len(step_template)
 | 
			
		||||
            gen_block = base_num_frames_block
 | 
			
		||||
            min_ar_step = infer_step_num / gen_block
 | 
			
		||||
            assert ar_step >= min_ar_step, f"ar_step should be at least {math.ceil(min_ar_step)} in your setting"
 | 
			
		||||
        # print(num_frames, step_template, base_num_frames, ar_step, num_pre_ready, casual_block_size, num_frames_block, base_num_frames_block)
 | 
			
		||||
        step_template = torch.cat(
 | 
			
		||||
            [
 | 
			
		||||
                torch.tensor([999], dtype=torch.int64, device=step_template.device),
 | 
			
		||||
                step_template.long(),
 | 
			
		||||
                torch.tensor([0], dtype=torch.int64, device=step_template.device),
 | 
			
		||||
            ]
 | 
			
		||||
        )  # to handle the counter in row works starting from 1
 | 
			
		||||
        pre_row = torch.zeros(num_frames_block, dtype=torch.long)
 | 
			
		||||
        if num_pre_ready > 0:
 | 
			
		||||
            pre_row[: num_pre_ready // casual_block_size] = num_iterations
 | 
			
		||||
 | 
			
		||||
        while torch.all(pre_row >= (num_iterations - 1)) == False:
 | 
			
		||||
            new_row = torch.zeros(num_frames_block, dtype=torch.long)
 | 
			
		||||
            for i in range(num_frames_block):
 | 
			
		||||
                if i == 0 or pre_row[i - 1] >= (
 | 
			
		||||
                    num_iterations - 1
 | 
			
		||||
                ):  # the first frame or the last frame is completely denoised
 | 
			
		||||
                    new_row[i] = pre_row[i] + 1
 | 
			
		||||
                else:
 | 
			
		||||
                    new_row[i] = new_row[i - 1] - ar_step
 | 
			
		||||
            new_row = new_row.clamp(0, num_iterations)
 | 
			
		||||
 | 
			
		||||
            update_mask.append(
 | 
			
		||||
                (new_row != pre_row) & (new_row != num_iterations)
 | 
			
		||||
            )  # False: no need to update, True: need to update
 | 
			
		||||
            step_index.append(new_row)
 | 
			
		||||
            step_matrix.append(step_template[new_row])
 | 
			
		||||
            pre_row = new_row
 | 
			
		||||
 | 
			
		||||
        # for long video we split into several sequences, base_num_frames is set to the model max length (for training)
 | 
			
		||||
        terminal_flag = base_num_frames_block
 | 
			
		||||
        if shrink_interval_with_mask:
 | 
			
		||||
            idx_sequence = torch.arange(num_frames_block, dtype=torch.int64)
 | 
			
		||||
            update_mask = update_mask[0]
 | 
			
		||||
            update_mask_idx = idx_sequence[update_mask]
 | 
			
		||||
            last_update_idx = update_mask_idx[-1].item()
 | 
			
		||||
            terminal_flag = last_update_idx + 1
 | 
			
		||||
        # for i in range(0, len(update_mask)):
 | 
			
		||||
        for curr_mask in update_mask:
 | 
			
		||||
            if terminal_flag < num_frames_block and curr_mask[terminal_flag]:
 | 
			
		||||
                terminal_flag += 1
 | 
			
		||||
            valid_interval.append((max(terminal_flag - base_num_frames_block, 0), terminal_flag))
 | 
			
		||||
 | 
			
		||||
        step_update_mask = torch.stack(update_mask, dim=0)
 | 
			
		||||
        step_index = torch.stack(step_index, dim=0)
 | 
			
		||||
        step_matrix = torch.stack(step_matrix, dim=0)
 | 
			
		||||
 | 
			
		||||
        if casual_block_size > 1:
 | 
			
		||||
            step_update_mask = step_update_mask.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
 | 
			
		||||
            step_index = step_index.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
 | 
			
		||||
            step_matrix = step_matrix.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
 | 
			
		||||
            valid_interval = [(s * casual_block_size, e * casual_block_size) for s, e in valid_interval]
 | 
			
		||||
 | 
			
		||||
        return step_matrix, step_index, step_update_mask, valid_interval
 | 
			
		||||
 | 
			
		||||
    @torch.no_grad()
 | 
			
		||||
    def generate(
 | 
			
		||||
        self,
 | 
			
		||||
        prompt: Union[str, List[str]],
 | 
			
		||||
        negative_prompt: Union[str, List[str]] = "",
 | 
			
		||||
        image: PipelineImageInput = None,
 | 
			
		||||
        height: int = 480,
 | 
			
		||||
        width: int = 832,
 | 
			
		||||
        num_frames: int = 97,
 | 
			
		||||
        num_inference_steps: int = 50,
 | 
			
		||||
        shift: float = 1.0,
 | 
			
		||||
        guidance_scale: float = 5.0,
 | 
			
		||||
        seed: float = 0.0,
 | 
			
		||||
        overlap_history: int = 17,
 | 
			
		||||
        addnoise_condition: int = 0,
 | 
			
		||||
        base_num_frames: int = 97,
 | 
			
		||||
        ar_step: int = 5,
 | 
			
		||||
        causal_block_size: int = 1,
 | 
			
		||||
        causal_attention: bool = False,
 | 
			
		||||
        fps: int = 24,
 | 
			
		||||
        VAE_tile_size = 0,
 | 
			
		||||
        joint_pass = False,
 | 
			
		||||
        callback = None,
 | 
			
		||||
    ):
 | 
			
		||||
        generator = torch.Generator(device=self.device)
 | 
			
		||||
        generator.manual_seed(seed)
 | 
			
		||||
        # if base_num_frames > base_num_frames:
 | 
			
		||||
        #     causal_block_size = 0
 | 
			
		||||
        self._guidance_scale = guidance_scale
 | 
			
		||||
 | 
			
		||||
        i2v_extra_kwrags = {}
 | 
			
		||||
        prefix_video = None
 | 
			
		||||
        predix_video_latent_length = 0
 | 
			
		||||
        if image:
 | 
			
		||||
            frame_width, frame_height  = image.size
 | 
			
		||||
            scale = min(height / frame_height, width /  frame_width)
 | 
			
		||||
            height = (int(frame_height * scale) // 16) * 16
 | 
			
		||||
            width = (int(frame_width * scale) // 16) * 16
 | 
			
		||||
 | 
			
		||||
            prefix_video, predix_video_latent_length = self.encode_image(image, height, width, num_frames, tile_size=VAE_tile_size, causal_block_size=causal_block_size)
 | 
			
		||||
 | 
			
		||||
        latent_length = (num_frames - 1) // 4 + 1
 | 
			
		||||
        latent_height = height // 8
 | 
			
		||||
        latent_width = width // 8
 | 
			
		||||
 | 
			
		||||
        prompt_embeds = self.text_encoder([prompt], self.device)
 | 
			
		||||
        prompt_embeds  = [u.to(self.dtype).to(self.device) for u in prompt_embeds]
 | 
			
		||||
        if self.do_classifier_free_guidance:
 | 
			
		||||
            negative_prompt_embeds = self.text_encoder([negative_prompt], self.device)
 | 
			
		||||
            negative_prompt_embeds  = [u.to(self.dtype).to(self.device) for u in negative_prompt_embeds]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        self.scheduler.set_timesteps(num_inference_steps, device=self.device, shift=shift)
 | 
			
		||||
        init_timesteps = self.scheduler.timesteps
 | 
			
		||||
        fps_embeds = [fps] * prompt_embeds[0].shape[0]
 | 
			
		||||
        fps_embeds = [0 if i == 16 else 1 for i in fps_embeds]
 | 
			
		||||
        transformer_dtype = self.dtype
 | 
			
		||||
        # with torch.cuda.amp.autocast(dtype=self.dtype), torch.no_grad():
 | 
			
		||||
        if overlap_history is None or base_num_frames is None or num_frames <= base_num_frames:
 | 
			
		||||
            # short video generation
 | 
			
		||||
            latent_shape = [16, latent_length, latent_height, latent_width]
 | 
			
		||||
            latents = self.prepare_latents(
 | 
			
		||||
                latent_shape, dtype=torch.float32, device=self.device, generator=generator
 | 
			
		||||
            )
 | 
			
		||||
            latents = [latents]
 | 
			
		||||
            if prefix_video is not None:
 | 
			
		||||
                latents[0][:, :predix_video_latent_length] = prefix_video[0].to(torch.float32)
 | 
			
		||||
            base_num_frames = (base_num_frames - 1) // 4 + 1 if base_num_frames is not None else latent_length
 | 
			
		||||
            step_matrix, _, step_update_mask, valid_interval = self.generate_timestep_matrix(
 | 
			
		||||
                latent_length, init_timesteps, base_num_frames, ar_step, predix_video_latent_length, causal_block_size
 | 
			
		||||
            )
 | 
			
		||||
            sample_schedulers = []
 | 
			
		||||
            for _ in range(latent_length):
 | 
			
		||||
                sample_scheduler = FlowUniPCMultistepScheduler(
 | 
			
		||||
                    num_train_timesteps=1000, shift=1, use_dynamic_shifting=False
 | 
			
		||||
                )
 | 
			
		||||
                sample_scheduler.set_timesteps(num_inference_steps, device=self.device, shift=shift)
 | 
			
		||||
                sample_schedulers.append(sample_scheduler)
 | 
			
		||||
            sample_schedulers_counter = [0] * latent_length
 | 
			
		||||
 | 
			
		||||
            if callback != None:
 | 
			
		||||
                callback(-1, None, True)
 | 
			
		||||
 | 
			
		||||
            freqs = get_rotary_pos_embed(latents[0].shape[1:], enable_RIFLEx= False) 
 | 
			
		||||
            for i, timestep_i in enumerate(tqdm(step_matrix)):
 | 
			
		||||
                update_mask_i = step_update_mask[i]
 | 
			
		||||
                valid_interval_i = valid_interval[i]
 | 
			
		||||
                valid_interval_start, valid_interval_end = valid_interval_i
 | 
			
		||||
                timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone()
 | 
			
		||||
                latent_model_input = [latents[0][:, valid_interval_start:valid_interval_end, :, :].clone()]
 | 
			
		||||
                if addnoise_condition > 0 and valid_interval_start < predix_video_latent_length:
 | 
			
		||||
                    noise_factor = 0.001 * addnoise_condition
 | 
			
		||||
                    timestep_for_noised_condition = addnoise_condition
 | 
			
		||||
                    latent_model_input[0][:, valid_interval_start:predix_video_latent_length] = (
 | 
			
		||||
                        latent_model_input[0][:, valid_interval_start:predix_video_latent_length] * (1.0 - noise_factor)
 | 
			
		||||
                        + torch.randn_like(latent_model_input[0][:, valid_interval_start:predix_video_latent_length])
 | 
			
		||||
                        * noise_factor
 | 
			
		||||
                    )
 | 
			
		||||
                    timestep[:, valid_interval_start:predix_video_latent_length] = timestep_for_noised_condition
 | 
			
		||||
                kwrags = {
 | 
			
		||||
                    "x" : torch.stack([latent_model_input[0]]),
 | 
			
		||||
                    "t" : timestep,
 | 
			
		||||
                    "freqs" :freqs,
 | 
			
		||||
                    "fps" : fps_embeds,
 | 
			
		||||
                    # "causal_block_size" : causal_block_size,
 | 
			
		||||
                    "callback" : callback,
 | 
			
		||||
                    "pipeline" : self
 | 
			
		||||
                }
 | 
			
		||||
                kwrags.update(i2v_extra_kwrags)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
                if not self.do_classifier_free_guidance:
 | 
			
		||||
                    noise_pred = self.model(
 | 
			
		||||
                        context=prompt_embeds,
 | 
			
		||||
                        **kwrags,
 | 
			
		||||
                    )[0]
 | 
			
		||||
                    if self._interrupt:
 | 
			
		||||
                        return None                
 | 
			
		||||
                    noise_pred= noise_pred.to(torch.float32)                                          
 | 
			
		||||
                else:
 | 
			
		||||
                    if joint_pass:
 | 
			
		||||
                        noise_pred_cond, noise_pred_uncond = self.model(
 | 
			
		||||
                            context=prompt_embeds,
 | 
			
		||||
                            context2=negative_prompt_embeds,
 | 
			
		||||
                            **kwrags,
 | 
			
		||||
                        )
 | 
			
		||||
                        if self._interrupt:
 | 
			
		||||
                            return None
 | 
			
		||||
                    else:
 | 
			
		||||
                        noise_pred_cond = self.model(
 | 
			
		||||
                            context=prompt_embeds,
 | 
			
		||||
                            **kwrags,
 | 
			
		||||
                        )[0]
 | 
			
		||||
                        if self._interrupt:
 | 
			
		||||
                            return None                
 | 
			
		||||
                        noise_pred_uncond = self.model(
 | 
			
		||||
                            context=negative_prompt_embeds,
 | 
			
		||||
                            **kwrags,
 | 
			
		||||
                        )[0]
 | 
			
		||||
                        if self._interrupt:
 | 
			
		||||
                            return None
 | 
			
		||||
                    noise_pred_cond= noise_pred_cond.to(torch.float32)                                                                                 
 | 
			
		||||
                    noise_pred_uncond= noise_pred_uncond.to(torch.float32)                                                                                 
 | 
			
		||||
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
 | 
			
		||||
                    del noise_pred_cond, noise_pred_uncond
 | 
			
		||||
                for idx in range(valid_interval_start, valid_interval_end):
 | 
			
		||||
                    if update_mask_i[idx].item():
 | 
			
		||||
                        latents[0][:, idx] = sample_schedulers[idx].step(
 | 
			
		||||
                            noise_pred[:, idx - valid_interval_start],
 | 
			
		||||
                            timestep_i[idx],
 | 
			
		||||
                            latents[0][:, idx],
 | 
			
		||||
                            return_dict=False,
 | 
			
		||||
                            generator=generator,
 | 
			
		||||
                        )[0]
 | 
			
		||||
                        sample_schedulers_counter[idx] += 1
 | 
			
		||||
                if callback is not None:
 | 
			
		||||
                    callback(i, latents[0], False)         
 | 
			
		||||
 | 
			
		||||
            x0 = latents[0].unsqueeze(0)
 | 
			
		||||
            videos = self.vae.decode(x0, tile_size= VAE_tile_size)
 | 
			
		||||
            videos = (videos / 2 + 0.5).clamp(0, 1)
 | 
			
		||||
            videos = [video for video in videos]
 | 
			
		||||
            videos = [video.permute(1, 2, 3, 0) * 255 for video in videos]
 | 
			
		||||
            videos = [video.cpu().numpy().astype(np.uint8) for video in videos]
 | 
			
		||||
            return videos
 | 
			
		||||
        else:
 | 
			
		||||
            # long video generation
 | 
			
		||||
            base_num_frames = (base_num_frames - 1) // 4 + 1 if base_num_frames is not None else latent_length
 | 
			
		||||
            overlap_history_frames = (overlap_history - 1) // 4 + 1
 | 
			
		||||
            n_iter = 1 + (latent_length - base_num_frames - 1) // (base_num_frames - overlap_history_frames) + 1
 | 
			
		||||
            print(f"n_iter:{n_iter}")
 | 
			
		||||
            output_video = None
 | 
			
		||||
            for i in range(n_iter):
 | 
			
		||||
                if output_video is not None:  # i !=0
 | 
			
		||||
                    prefix_video = output_video[:, -overlap_history:].to(self.device)
 | 
			
		||||
                    prefix_video = [self.vae.encode(prefix_video.unsqueeze(0))[0]]  # [(c, f, h, w)]
 | 
			
		||||
                    if prefix_video[0].shape[1] % causal_block_size != 0:
 | 
			
		||||
                        truncate_len = prefix_video[0].shape[1] % causal_block_size
 | 
			
		||||
                        print("the length of prefix video is truncated for the casual block size alignment.")
 | 
			
		||||
                        prefix_video[0] = prefix_video[0][:, : prefix_video[0].shape[1] - truncate_len]
 | 
			
		||||
                    predix_video_latent_length = prefix_video[0].shape[1]
 | 
			
		||||
                    finished_frame_num = i * (base_num_frames - overlap_history_frames) + overlap_history_frames
 | 
			
		||||
                    left_frame_num = latent_length - finished_frame_num
 | 
			
		||||
                    base_num_frames_iter = min(left_frame_num + overlap_history_frames, base_num_frames)
 | 
			
		||||
                else:  # i == 0
 | 
			
		||||
                    base_num_frames_iter = base_num_frames
 | 
			
		||||
                latent_shape = [16, base_num_frames_iter, latent_height, latent_width]
 | 
			
		||||
                latents = self.prepare_latents(
 | 
			
		||||
                    latent_shape, dtype=torch.float32, device=self.device, generator=generator
 | 
			
		||||
                )
 | 
			
		||||
                latents = [latents]
 | 
			
		||||
                if prefix_video is not None:
 | 
			
		||||
                    latents[0][:, :predix_video_latent_length] = prefix_video[0].to(torch.float32)
 | 
			
		||||
                step_matrix, _, step_update_mask, valid_interval = self.generate_timestep_matrix(
 | 
			
		||||
                    base_num_frames_iter,
 | 
			
		||||
                    init_timesteps,
 | 
			
		||||
                    base_num_frames_iter,
 | 
			
		||||
                    ar_step,
 | 
			
		||||
                    predix_video_latent_length,
 | 
			
		||||
                    causal_block_size,
 | 
			
		||||
                )
 | 
			
		||||
                sample_schedulers = []
 | 
			
		||||
                for _ in range(base_num_frames_iter):
 | 
			
		||||
                    sample_scheduler = FlowUniPCMultistepScheduler(
 | 
			
		||||
                        num_train_timesteps=1000, shift=1, use_dynamic_shifting=False
 | 
			
		||||
                    )
 | 
			
		||||
                    sample_scheduler.set_timesteps(num_inference_steps, device=self.device, shift=shift)
 | 
			
		||||
                    sample_schedulers.append(sample_scheduler)
 | 
			
		||||
                sample_schedulers_counter = [0] * base_num_frames_iter
 | 
			
		||||
                if callback != None:
 | 
			
		||||
                    callback(-1, None, True)
 | 
			
		||||
 | 
			
		||||
                freqs = get_rotary_pos_embed(latents[0].shape[1:], enable_RIFLEx= False) 
 | 
			
		||||
                for i, timestep_i in enumerate(tqdm(step_matrix)):
 | 
			
		||||
                    update_mask_i = step_update_mask[i]
 | 
			
		||||
                    valid_interval_i = valid_interval[i]
 | 
			
		||||
                    valid_interval_start, valid_interval_end = valid_interval_i
 | 
			
		||||
                    timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone()
 | 
			
		||||
                    latent_model_input = [latents[0][:, valid_interval_start:valid_interval_end, :, :].clone()]
 | 
			
		||||
                    if addnoise_condition > 0 and valid_interval_start < predix_video_latent_length:
 | 
			
		||||
                        noise_factor = 0.001 * addnoise_condition
 | 
			
		||||
                        timestep_for_noised_condition = addnoise_condition
 | 
			
		||||
                        latent_model_input[0][:, valid_interval_start:predix_video_latent_length] = (
 | 
			
		||||
                            latent_model_input[0][:, valid_interval_start:predix_video_latent_length]
 | 
			
		||||
                            * (1.0 - noise_factor)
 | 
			
		||||
                            + torch.randn_like(
 | 
			
		||||
                                latent_model_input[0][:, valid_interval_start:predix_video_latent_length]
 | 
			
		||||
                            )
 | 
			
		||||
                            * noise_factor
 | 
			
		||||
                        )
 | 
			
		||||
                        timestep[:, valid_interval_start:predix_video_latent_length] = timestep_for_noised_condition
 | 
			
		||||
                    kwrags = {
 | 
			
		||||
                        "x" : torch.stack([latent_model_input[0]]),
 | 
			
		||||
                        "t" : timestep,
 | 
			
		||||
                        "freqs" :freqs,
 | 
			
		||||
                        "fps" : fps_embeds,
 | 
			
		||||
                        "causal_block_size" : causal_block_size,
 | 
			
		||||
                        "causal_attention" : causal_attention,
 | 
			
		||||
                        "callback" : callback,
 | 
			
		||||
                        "pipeline" : self
 | 
			
		||||
                    }
 | 
			
		||||
                    kwrags.update(i2v_extra_kwrags)
 | 
			
		||||
                        
 | 
			
		||||
                    if not self.do_classifier_free_guidance:
 | 
			
		||||
                        noise_pred = self.model(
 | 
			
		||||
                            context=prompt_embeds,
 | 
			
		||||
                            **kwrags,
 | 
			
		||||
                        )[0]
 | 
			
		||||
                        if self._interrupt:
 | 
			
		||||
                            return None
 | 
			
		||||
                        noise_pred= noise_pred.to(torch.float32)                                                                  
 | 
			
		||||
                    else:
 | 
			
		||||
                        if joint_pass:
 | 
			
		||||
                            noise_pred_cond, noise_pred_uncond = self.model(
 | 
			
		||||
                                context=prompt_embeds,
 | 
			
		||||
                                context2=negative_prompt_embeds,
 | 
			
		||||
                                **kwrags,
 | 
			
		||||
                            )
 | 
			
		||||
                            if self._interrupt:
 | 
			
		||||
                                return None                
 | 
			
		||||
                        else:
 | 
			
		||||
                            noise_pred_cond = self.model(
 | 
			
		||||
                                context=prompt_embeds,
 | 
			
		||||
                                **kwrags,
 | 
			
		||||
                            )[0]
 | 
			
		||||
                            if self._interrupt:
 | 
			
		||||
                                return None                
 | 
			
		||||
                            noise_pred_uncond = self.model(
 | 
			
		||||
                                context=negative_prompt_embeds,
 | 
			
		||||
                            )[0]
 | 
			
		||||
                            if self._interrupt:
 | 
			
		||||
                                return None
 | 
			
		||||
                        noise_pred_cond= noise_pred_cond.to(torch.float32)                                          
 | 
			
		||||
                        noise_pred_uncond= noise_pred_uncond.to(torch.float32)                                          
 | 
			
		||||
                        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
 | 
			
		||||
                        del noise_pred_cond, noise_pred_uncond
 | 
			
		||||
                    for idx in range(valid_interval_start, valid_interval_end):
 | 
			
		||||
                        if update_mask_i[idx].item():
 | 
			
		||||
                            latents[0][:, idx] = sample_schedulers[idx].step(
 | 
			
		||||
                                noise_pred[:, idx - valid_interval_start],
 | 
			
		||||
                                timestep_i[idx],
 | 
			
		||||
                                latents[0][:, idx],
 | 
			
		||||
                                return_dict=False,
 | 
			
		||||
                                generator=generator,
 | 
			
		||||
                            )[0]
 | 
			
		||||
                            sample_schedulers_counter[idx] += 1
 | 
			
		||||
                    if callback is not None:
 | 
			
		||||
                        callback(i, latents[0].squeeze(0), False)         
 | 
			
		||||
 | 
			
		||||
                x0 = latents[0].unsqueeze(0)
 | 
			
		||||
                videos = [self.vae.decode(x0, tile_size= VAE_tile_size)[0]]
 | 
			
		||||
                if output_video is None:
 | 
			
		||||
                    output_video = videos[0].clamp(-1, 1).cpu()  # c, f, h, w
 | 
			
		||||
                else:
 | 
			
		||||
                    output_video = torch.cat(
 | 
			
		||||
                        [output_video, videos[0][:, overlap_history:].clamp(-1, 1).cpu()], 1
 | 
			
		||||
                    )  # c, f, h, w
 | 
			
		||||
            return output_video
 | 
			
		||||
@ -1,698 +0,0 @@
 | 
			
		||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
			
		||||
import gc
 | 
			
		||||
import logging
 | 
			
		||||
import math
 | 
			
		||||
import os
 | 
			
		||||
import random
 | 
			
		||||
import sys
 | 
			
		||||
import types
 | 
			
		||||
from contextlib import contextmanager
 | 
			
		||||
from functools import partial
 | 
			
		||||
from mmgp import offload
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
import torch.cuda.amp as amp
 | 
			
		||||
import torch.distributed as dist
 | 
			
		||||
from tqdm import tqdm
 | 
			
		||||
from PIL import Image
 | 
			
		||||
import torchvision.transforms.functional as TF
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
from .distributed.fsdp import shard_model
 | 
			
		||||
from .modules.model import WanModel
 | 
			
		||||
from .modules.t5 import T5EncoderModel
 | 
			
		||||
from .modules.vae import WanVAE
 | 
			
		||||
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
 | 
			
		||||
                               get_sampling_sigmas, retrieve_timesteps)
 | 
			
		||||
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
 | 
			
		||||
from wan.modules.posemb_layers import get_rotary_pos_embed
 | 
			
		||||
from .utils.vace_preprocessor import VaceVideoProcessor
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def optimized_scale(positive_flat, negative_flat):
 | 
			
		||||
 | 
			
		||||
    # Calculate dot production
 | 
			
		||||
    dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True)
 | 
			
		||||
 | 
			
		||||
    # Squared norm of uncondition
 | 
			
		||||
    squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8
 | 
			
		||||
 | 
			
		||||
    # st_star = v_cond^T * v_uncond / ||v_uncond||^2
 | 
			
		||||
    st_star = dot_product / squared_norm
 | 
			
		||||
    
 | 
			
		||||
    return st_star
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
class WanT2V:
 | 
			
		||||
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        config,
 | 
			
		||||
        checkpoint_dir,
 | 
			
		||||
        rank=0,
 | 
			
		||||
        model_filename = None,
 | 
			
		||||
        text_encoder_filename = None,
 | 
			
		||||
        quantizeTransformer = False,
 | 
			
		||||
        dtype = torch.bfloat16
 | 
			
		||||
    ):
 | 
			
		||||
        self.device = torch.device(f"cuda")
 | 
			
		||||
        self.config = config
 | 
			
		||||
        self.rank = rank
 | 
			
		||||
        self.dtype = dtype
 | 
			
		||||
        self.num_train_timesteps = config.num_train_timesteps
 | 
			
		||||
        self.param_dtype = config.param_dtype
 | 
			
		||||
 | 
			
		||||
        self.text_encoder = T5EncoderModel(
 | 
			
		||||
            text_len=config.text_len,
 | 
			
		||||
            dtype=config.t5_dtype,
 | 
			
		||||
            device=torch.device('cpu'),
 | 
			
		||||
            checkpoint_path=text_encoder_filename,
 | 
			
		||||
            tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
 | 
			
		||||
            shard_fn= None)
 | 
			
		||||
 | 
			
		||||
        self.vae_stride = config.vae_stride
 | 
			
		||||
        self.patch_size = config.patch_size 
 | 
			
		||||
 | 
			
		||||
        
 | 
			
		||||
        self.vae = WanVAE(
 | 
			
		||||
            vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
 | 
			
		||||
            device=self.device)
 | 
			
		||||
 | 
			
		||||
        logging.info(f"Creating WanModel from {model_filename}")
 | 
			
		||||
        from mmgp import offload
 | 
			
		||||
 | 
			
		||||
        self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer, writable_tensors= False)
 | 
			
		||||
        # offload.load_model_data(self.model, "recam.ckpt")
 | 
			
		||||
        # self.model.cpu()
 | 
			
		||||
        # offload.save_model(self.model, "recam.safetensors")
 | 
			
		||||
        if self.dtype == torch.float16 and not "fp16" in model_filename:
 | 
			
		||||
            self.model.to(self.dtype) 
 | 
			
		||||
        # offload.save_model(self.model, "t2v_fp16.safetensors",do_quantize=True)
 | 
			
		||||
        if self.dtype == torch.float16:
 | 
			
		||||
            self.vae.model.to(self.dtype)
 | 
			
		||||
        self.model.eval().requires_grad_(False)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        self.sample_neg_prompt = config.sample_neg_prompt
 | 
			
		||||
 | 
			
		||||
        if "Vace" in model_filename:
 | 
			
		||||
            self.vid_proc = VaceVideoProcessor(downsample=tuple([x * y for x, y in zip(config.vae_stride, self.patch_size)]),
 | 
			
		||||
                                            min_area=480*832,
 | 
			
		||||
                                            max_area=480*832,
 | 
			
		||||
                                            min_fps=config.sample_fps,
 | 
			
		||||
                                            max_fps=config.sample_fps,
 | 
			
		||||
                                            zero_start=True,
 | 
			
		||||
                                            seq_len=32760,
 | 
			
		||||
                                            keep_last=True)
 | 
			
		||||
 | 
			
		||||
            self.adapt_vace_model()
 | 
			
		||||
 | 
			
		||||
        self.scheduler = FlowUniPCMultistepScheduler()
 | 
			
		||||
 | 
			
		||||
    def vace_encode_frames(self, frames, ref_images, masks=None, tile_size = 0):
 | 
			
		||||
        if ref_images is None:
 | 
			
		||||
            ref_images = [None] * len(frames)
 | 
			
		||||
        else:
 | 
			
		||||
            assert len(frames) == len(ref_images)
 | 
			
		||||
 | 
			
		||||
        if masks is None:
 | 
			
		||||
            latents = self.vae.encode(frames, tile_size = tile_size)
 | 
			
		||||
        else:
 | 
			
		||||
            inactive = [i * (1 - m) + 0 * m for i, m in zip(frames, masks)]
 | 
			
		||||
            reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)]
 | 
			
		||||
            inactive = self.vae.encode(inactive, tile_size = tile_size)
 | 
			
		||||
            reactive = self.vae.encode(reactive, tile_size = tile_size)
 | 
			
		||||
            latents = [torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)]
 | 
			
		||||
 | 
			
		||||
        cat_latents = []
 | 
			
		||||
        for latent, refs in zip(latents, ref_images):
 | 
			
		||||
            if refs is not None:
 | 
			
		||||
                if masks is None:
 | 
			
		||||
                    ref_latent = self.vae.encode(refs, tile_size = tile_size)
 | 
			
		||||
                else:
 | 
			
		||||
                    ref_latent = self.vae.encode(refs, tile_size = tile_size)
 | 
			
		||||
                    ref_latent = [torch.cat((u, torch.zeros_like(u)), dim=0) for u in ref_latent]
 | 
			
		||||
                assert all([x.shape[1] == 1 for x in ref_latent])
 | 
			
		||||
                latent = torch.cat([*ref_latent, latent], dim=1)
 | 
			
		||||
            cat_latents.append(latent)
 | 
			
		||||
        return cat_latents
 | 
			
		||||
 | 
			
		||||
    def vace_encode_masks(self, masks, ref_images=None):
 | 
			
		||||
        if ref_images is None:
 | 
			
		||||
            ref_images = [None] * len(masks)
 | 
			
		||||
        else:
 | 
			
		||||
            assert len(masks) == len(ref_images)
 | 
			
		||||
 | 
			
		||||
        result_masks = []
 | 
			
		||||
        for mask, refs in zip(masks, ref_images):
 | 
			
		||||
            c, depth, height, width = mask.shape
 | 
			
		||||
            new_depth = int((depth + 3) // self.vae_stride[0])
 | 
			
		||||
            height = 2 * (int(height) // (self.vae_stride[1] * 2))
 | 
			
		||||
            width = 2 * (int(width) // (self.vae_stride[2] * 2))
 | 
			
		||||
 | 
			
		||||
            # reshape
 | 
			
		||||
            mask = mask[0, :, :, :]
 | 
			
		||||
            mask = mask.view(
 | 
			
		||||
                depth, height, self.vae_stride[1], width, self.vae_stride[1]
 | 
			
		||||
            )  # depth, height, 8, width, 8
 | 
			
		||||
            mask = mask.permute(2, 4, 0, 1, 3)  # 8, 8, depth, height, width
 | 
			
		||||
            mask = mask.reshape(
 | 
			
		||||
                self.vae_stride[1] * self.vae_stride[2], depth, height, width
 | 
			
		||||
            )  # 8*8, depth, height, width
 | 
			
		||||
 | 
			
		||||
            # interpolation
 | 
			
		||||
            mask = F.interpolate(mask.unsqueeze(0), size=(new_depth, height, width), mode='nearest-exact').squeeze(0)
 | 
			
		||||
 | 
			
		||||
            if refs is not None:
 | 
			
		||||
                length = len(refs)
 | 
			
		||||
                mask_pad = torch.zeros_like(mask[:, :length, :, :])
 | 
			
		||||
                mask = torch.cat((mask_pad, mask), dim=1)
 | 
			
		||||
            result_masks.append(mask)
 | 
			
		||||
        return result_masks
 | 
			
		||||
 | 
			
		||||
    def vace_latent(self, z, m):
 | 
			
		||||
        return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)]
 | 
			
		||||
 | 
			
		||||
    def prepare_source(self, src_video, src_mask, src_ref_images, total_frames, image_size,  device, original_video = False, keep_frames= [], start_frame = 0, pre_src_video = None):
 | 
			
		||||
        image_sizes = []
 | 
			
		||||
        trim_video = len(keep_frames)
 | 
			
		||||
 | 
			
		||||
        for i, (sub_src_video, sub_src_mask, sub_pre_src_video) in enumerate(zip(src_video, src_mask,pre_src_video)):
 | 
			
		||||
            prepend_count = 0 if sub_pre_src_video == None else sub_pre_src_video.shape[1]
 | 
			
		||||
            num_frames = total_frames - prepend_count 
 | 
			
		||||
            if sub_src_mask is not None and sub_src_video is not None:
 | 
			
		||||
                src_video[i], src_mask[i], _, _, _ = self.vid_proc.load_video_pair(sub_src_video, sub_src_mask, max_frames= num_frames, trim_video = trim_video - prepend_count, start_frame = start_frame)
 | 
			
		||||
                # src_video is [-1, 1], 0 = inpainting area (in fact 127  in [0, 255])
 | 
			
		||||
                # src_mask is [-1, 1], 0 = preserve original video (in fact 127  in [0, 255]) and 1 = Inpainting (in fact 255  in [0, 255])
 | 
			
		||||
                src_video[i] = src_video[i].to(device)
 | 
			
		||||
                src_mask[i] = src_mask[i].to(device)
 | 
			
		||||
                if prepend_count > 0:
 | 
			
		||||
                    src_video[i] =  torch.cat( [sub_pre_src_video, src_video[i]], dim=1)
 | 
			
		||||
                    src_mask[i] =  torch.cat( [torch.zeros_like(sub_pre_src_video), src_mask[i]] ,1)
 | 
			
		||||
                src_video_shape = src_video[i].shape
 | 
			
		||||
                if src_video_shape[1] != total_frames:
 | 
			
		||||
                    src_video[i] =  torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
 | 
			
		||||
                    src_mask[i] =  torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
 | 
			
		||||
                src_mask[i] = torch.clamp((src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1)
 | 
			
		||||
                image_sizes.append(src_video[i].shape[2:])
 | 
			
		||||
            elif sub_src_video is None:
 | 
			
		||||
                if prepend_count > 0:
 | 
			
		||||
                    src_video[i] =  torch.cat( [sub_pre_src_video, torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)], dim=1)
 | 
			
		||||
                    src_mask[i] =  torch.cat( [torch.zeros_like(sub_pre_src_video), torch.ones((3, num_frames, image_size[0], image_size[1]), device=device)] ,1)
 | 
			
		||||
                else:
 | 
			
		||||
                    src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
 | 
			
		||||
                    src_mask[i] = torch.ones_like(src_video[i], device=device)
 | 
			
		||||
                image_sizes.append(image_size)
 | 
			
		||||
            else:
 | 
			
		||||
                src_video[i], _, _, _ = self.vid_proc.load_video(sub_src_video, max_frames= num_frames, trim_video = trim_video - prepend_count, start_frame = start_frame)
 | 
			
		||||
                src_video[i] = src_video[i].to(device)
 | 
			
		||||
                src_mask[i] = torch.zeros_like(src_video[i], device=device) if original_video else torch.ones_like(src_video[i], device=device)
 | 
			
		||||
                if prepend_count > 0:
 | 
			
		||||
                    src_video[i] =  torch.cat( [sub_pre_src_video, src_video[i]], dim=1)
 | 
			
		||||
                    src_mask[i] =  torch.cat( [torch.zeros_like(sub_pre_src_video), src_mask[i]] ,1)
 | 
			
		||||
                src_video_shape = src_video[i].shape
 | 
			
		||||
                if src_video_shape[1] != total_frames:
 | 
			
		||||
                    src_video[i] =  torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
 | 
			
		||||
                    src_mask[i] =  torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
 | 
			
		||||
                image_sizes.append(src_video[i].shape[2:])
 | 
			
		||||
            for k, keep in enumerate(keep_frames):
 | 
			
		||||
                if not keep:
 | 
			
		||||
                    src_video[i][:, k:k+1] = 0
 | 
			
		||||
                    src_mask[i][:, k:k+1] = 1
 | 
			
		||||
 | 
			
		||||
        for i, ref_images in enumerate(src_ref_images):
 | 
			
		||||
            if ref_images is not None:
 | 
			
		||||
                image_size = image_sizes[i]
 | 
			
		||||
                for j, ref_img in enumerate(ref_images):
 | 
			
		||||
                    if ref_img is not None:
 | 
			
		||||
                        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
 | 
			
		||||
                        if ref_img.shape[-2:] != image_size:
 | 
			
		||||
                            canvas_height, canvas_width = image_size
 | 
			
		||||
                            ref_height, ref_width = ref_img.shape[-2:]
 | 
			
		||||
                            white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) # [-1, 1]
 | 
			
		||||
                            scale = min(canvas_height / ref_height, canvas_width / ref_width)
 | 
			
		||||
                            new_height = int(ref_height * scale)
 | 
			
		||||
                            new_width = int(ref_width * scale)
 | 
			
		||||
                            resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1)
 | 
			
		||||
                            top = (canvas_height - new_height) // 2
 | 
			
		||||
                            left = (canvas_width - new_width) // 2
 | 
			
		||||
                            white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image
 | 
			
		||||
                            ref_img = white_canvas
 | 
			
		||||
                        src_ref_images[i][j] = ref_img.to(device)
 | 
			
		||||
        return src_video, src_mask, src_ref_images
 | 
			
		||||
 | 
			
		||||
    def decode_latent(self, zs, ref_images=None, tile_size= 0 ):
 | 
			
		||||
        if ref_images is None:
 | 
			
		||||
            ref_images = [None] * len(zs)
 | 
			
		||||
        else:
 | 
			
		||||
            assert len(zs) == len(ref_images)
 | 
			
		||||
 | 
			
		||||
        trimed_zs = []
 | 
			
		||||
        for z, refs in zip(zs, ref_images):
 | 
			
		||||
            if refs is not None:
 | 
			
		||||
                z = z[:, len(refs):, :, :]
 | 
			
		||||
            trimed_zs.append(z)
 | 
			
		||||
 | 
			
		||||
        return self.vae.decode(trimed_zs, tile_size= tile_size)
 | 
			
		||||
 | 
			
		||||
    def generate_timestep_matrix(
 | 
			
		||||
        self,
 | 
			
		||||
        num_frames,
 | 
			
		||||
        step_template,
 | 
			
		||||
        base_num_frames,
 | 
			
		||||
        ar_step=5,
 | 
			
		||||
        num_pre_ready=0,
 | 
			
		||||
        casual_block_size=1,
 | 
			
		||||
        shrink_interval_with_mask=False,
 | 
			
		||||
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, list[tuple]]:
 | 
			
		||||
        step_matrix, step_index = [], []
 | 
			
		||||
        update_mask, valid_interval = [], []
 | 
			
		||||
        num_iterations = len(step_template) + 1
 | 
			
		||||
        num_frames_block = num_frames // casual_block_size
 | 
			
		||||
        base_num_frames_block = base_num_frames // casual_block_size
 | 
			
		||||
        if base_num_frames_block < num_frames_block:
 | 
			
		||||
            infer_step_num = len(step_template)
 | 
			
		||||
            gen_block = base_num_frames_block
 | 
			
		||||
            min_ar_step = infer_step_num / gen_block
 | 
			
		||||
            assert ar_step >= min_ar_step, f"ar_step should be at least {math.ceil(min_ar_step)} in your setting"
 | 
			
		||||
        # print(num_frames, step_template, base_num_frames, ar_step, num_pre_ready, casual_block_size, num_frames_block, base_num_frames_block)
 | 
			
		||||
        step_template = torch.cat(
 | 
			
		||||
            [
 | 
			
		||||
                torch.tensor([999], dtype=torch.int64, device=step_template.device),
 | 
			
		||||
                step_template.long(),
 | 
			
		||||
                torch.tensor([0], dtype=torch.int64, device=step_template.device),
 | 
			
		||||
            ]
 | 
			
		||||
        )  # to handle the counter in row works starting from 1
 | 
			
		||||
        pre_row = torch.zeros(num_frames_block, dtype=torch.long)
 | 
			
		||||
        if num_pre_ready > 0:
 | 
			
		||||
            pre_row[: num_pre_ready // casual_block_size] = num_iterations
 | 
			
		||||
 | 
			
		||||
        while torch.all(pre_row >= (num_iterations - 1)) == False:
 | 
			
		||||
            new_row = torch.zeros(num_frames_block, dtype=torch.long)
 | 
			
		||||
            for i in range(num_frames_block):
 | 
			
		||||
                if i == 0 or pre_row[i - 1] >= (
 | 
			
		||||
                    num_iterations - 1
 | 
			
		||||
                ):  # the first frame or the last frame is completely denoised
 | 
			
		||||
                    new_row[i] = pre_row[i] + 1
 | 
			
		||||
                else:
 | 
			
		||||
                    new_row[i] = new_row[i - 1] - ar_step
 | 
			
		||||
            new_row = new_row.clamp(0, num_iterations)
 | 
			
		||||
 | 
			
		||||
            update_mask.append(
 | 
			
		||||
                (new_row != pre_row) & (new_row != num_iterations)
 | 
			
		||||
            )  # False: no need to update, True: need to update
 | 
			
		||||
            step_index.append(new_row)
 | 
			
		||||
            step_matrix.append(step_template[new_row])
 | 
			
		||||
            pre_row = new_row
 | 
			
		||||
 | 
			
		||||
        # for long video we split into several sequences, base_num_frames is set to the model max length (for training)
 | 
			
		||||
        terminal_flag = base_num_frames_block
 | 
			
		||||
        if shrink_interval_with_mask:
 | 
			
		||||
            idx_sequence = torch.arange(num_frames_block, dtype=torch.int64)
 | 
			
		||||
            update_mask = update_mask[0]
 | 
			
		||||
            update_mask_idx = idx_sequence[update_mask]
 | 
			
		||||
            last_update_idx = update_mask_idx[-1].item()
 | 
			
		||||
            terminal_flag = last_update_idx + 1
 | 
			
		||||
        # for i in range(0, len(update_mask)):
 | 
			
		||||
        for curr_mask in update_mask:
 | 
			
		||||
            if terminal_flag < num_frames_block and curr_mask[terminal_flag]:
 | 
			
		||||
                terminal_flag += 1
 | 
			
		||||
            valid_interval.append((max(terminal_flag - base_num_frames_block, 0), terminal_flag))
 | 
			
		||||
 | 
			
		||||
        step_update_mask = torch.stack(update_mask, dim=0)
 | 
			
		||||
        step_index = torch.stack(step_index, dim=0)
 | 
			
		||||
        step_matrix = torch.stack(step_matrix, dim=0)
 | 
			
		||||
 | 
			
		||||
        if casual_block_size > 1:
 | 
			
		||||
            step_update_mask = step_update_mask.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
 | 
			
		||||
            step_index = step_index.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
 | 
			
		||||
            step_matrix = step_matrix.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
 | 
			
		||||
            valid_interval = [(s * casual_block_size, e * casual_block_size) for s, e in valid_interval]
 | 
			
		||||
 | 
			
		||||
        return step_matrix, step_index, step_update_mask, valid_interval
 | 
			
		||||
    
 | 
			
		||||
    def generate(self,
 | 
			
		||||
                input_prompt,
 | 
			
		||||
                input_frames= None,
 | 
			
		||||
                input_masks = None,
 | 
			
		||||
                input_ref_images = None,      
 | 
			
		||||
                source_video=None,
 | 
			
		||||
                target_camera=None,                  
 | 
			
		||||
                context_scale=1.0,
 | 
			
		||||
                size=(1280, 720),
 | 
			
		||||
                frame_num=81,
 | 
			
		||||
                shift=5.0,
 | 
			
		||||
                sample_solver='unipc',
 | 
			
		||||
                sampling_steps=50,
 | 
			
		||||
                guide_scale=5.0,
 | 
			
		||||
                n_prompt="",
 | 
			
		||||
                seed=-1,
 | 
			
		||||
                offload_model=True,
 | 
			
		||||
                callback = None,
 | 
			
		||||
                enable_RIFLEx = None,
 | 
			
		||||
                VAE_tile_size = 0,
 | 
			
		||||
                joint_pass = False,
 | 
			
		||||
                slg_layers = None,
 | 
			
		||||
                slg_start = 0.0,
 | 
			
		||||
                slg_end = 1.0,
 | 
			
		||||
                cfg_star_switch = True,
 | 
			
		||||
                cfg_zero_step = 5,
 | 
			
		||||
                 ):
 | 
			
		||||
        r"""
 | 
			
		||||
        Generates video frames from text prompt using diffusion process.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            input_prompt (`str`):
 | 
			
		||||
                Text prompt for content generation
 | 
			
		||||
            size (tupele[`int`], *optional*, defaults to (1280,720)):
 | 
			
		||||
                Controls video resolution, (width,height).
 | 
			
		||||
            frame_num (`int`, *optional*, defaults to 81):
 | 
			
		||||
                How many frames to sample from a video. The number should be 4n+1
 | 
			
		||||
            shift (`float`, *optional*, defaults to 5.0):
 | 
			
		||||
                Noise schedule shift parameter. Affects temporal dynamics
 | 
			
		||||
            sample_solver (`str`, *optional*, defaults to 'unipc'):
 | 
			
		||||
                Solver used to sample the video.
 | 
			
		||||
            sampling_steps (`int`, *optional*, defaults to 40):
 | 
			
		||||
                Number of diffusion sampling steps. Higher values improve quality but slow generation
 | 
			
		||||
            guide_scale (`float`, *optional*, defaults 5.0):
 | 
			
		||||
                Classifier-free guidance scale. Controls prompt adherence vs. creativity
 | 
			
		||||
            n_prompt (`str`, *optional*, defaults to ""):
 | 
			
		||||
                Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
 | 
			
		||||
            seed (`int`, *optional*, defaults to -1):
 | 
			
		||||
                Random seed for noise generation. If -1, use random seed.
 | 
			
		||||
            offload_model (`bool`, *optional*, defaults to True):
 | 
			
		||||
                If True, offloads models to CPU during generation to save VRAM
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            torch.Tensor:
 | 
			
		||||
                Generated video frames tensor. Dimensions: (C, N H, W) where:
 | 
			
		||||
                - C: Color channels (3 for RGB)
 | 
			
		||||
                - N: Number of frames (81)
 | 
			
		||||
                - H: Frame height (from size)
 | 
			
		||||
                - W: Frame width from size)
 | 
			
		||||
        """
 | 
			
		||||
        # preprocess
 | 
			
		||||
 | 
			
		||||
        if n_prompt == "":
 | 
			
		||||
            n_prompt = self.sample_neg_prompt
 | 
			
		||||
        seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
 | 
			
		||||
        seed_g = torch.Generator(device=self.device)
 | 
			
		||||
        seed_g.manual_seed(seed)
 | 
			
		||||
 | 
			
		||||
        frame_num = max(17, frame_num) # must match causal_block_size for value of 5
 | 
			
		||||
        frame_num = int( round( (frame_num - 17) / 20)* 20 + 17 )
 | 
			
		||||
        num_frames = frame_num
 | 
			
		||||
        addnoise_condition = 20
 | 
			
		||||
        causal_attention = True
 | 
			
		||||
        fps = 16
 | 
			
		||||
        ar_step = 5
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        context = self.text_encoder([input_prompt], self.device)
 | 
			
		||||
        context_null = self.text_encoder([n_prompt], self.device)
 | 
			
		||||
        if target_camera != None:
 | 
			
		||||
            size = (source_video.shape[2], source_video.shape[1])
 | 
			
		||||
            source_video = source_video.to(dtype=self.dtype , device=self.device)
 | 
			
		||||
            source_video = source_video.permute(3, 0, 1, 2).div_(127.5).sub_(1.)            
 | 
			
		||||
            source_latents = self.vae.encode([source_video]) #.to(dtype=self.dtype, device=self.device)
 | 
			
		||||
            del source_video
 | 
			
		||||
            # Process target camera (recammaster)
 | 
			
		||||
            from wan.utils.cammmaster_tools import get_camera_embedding
 | 
			
		||||
            cam_emb = get_camera_embedding(target_camera)       
 | 
			
		||||
            cam_emb = cam_emb.to(dtype=self.dtype, device=self.device)
 | 
			
		||||
 | 
			
		||||
        if input_frames != None:
 | 
			
		||||
            # vace context encode
 | 
			
		||||
            input_frames = [u.to(self.device) for u in input_frames]
 | 
			
		||||
            input_ref_images = [ None if u == None else [v.to(self.device) for v in u]  for u in input_ref_images]
 | 
			
		||||
            input_masks = [u.to(self.device) for u in input_masks]
 | 
			
		||||
 | 
			
		||||
            z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks, tile_size = VAE_tile_size)
 | 
			
		||||
            m0 = self.vace_encode_masks(input_masks, input_ref_images)
 | 
			
		||||
            z = self.vace_latent(z0, m0)
 | 
			
		||||
 | 
			
		||||
            target_shape = list(z0[0].shape)
 | 
			
		||||
            target_shape[0] = int(target_shape[0] / 2)
 | 
			
		||||
        else:
 | 
			
		||||
            F = frame_num
 | 
			
		||||
            target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
 | 
			
		||||
                            size[1] // self.vae_stride[1],
 | 
			
		||||
                            size[0] // self.vae_stride[2])
 | 
			
		||||
 | 
			
		||||
        seq_len = math.ceil((target_shape[2] * target_shape[3]) /
 | 
			
		||||
                            (self.patch_size[1] * self.patch_size[2]) *
 | 
			
		||||
                            target_shape[1]) 
 | 
			
		||||
 | 
			
		||||
        context  = [u.to(self.dtype) for u in context]
 | 
			
		||||
        context_null  = [u.to(self.dtype) for u in context_null]
 | 
			
		||||
 | 
			
		||||
        noise = [ torch.randn( *target_shape, dtype=torch.float32, device=self.device, generator=seed_g) ]
 | 
			
		||||
 | 
			
		||||
        # evaluation mode
 | 
			
		||||
 | 
			
		||||
        # if sample_solver == 'unipc':
 | 
			
		||||
        #     sample_scheduler = FlowUniPCMultistepScheduler(
 | 
			
		||||
        #         num_train_timesteps=self.num_train_timesteps,
 | 
			
		||||
        #         shift=1,
 | 
			
		||||
        #         use_dynamic_shifting=False)
 | 
			
		||||
        #     sample_scheduler.set_timesteps(
 | 
			
		||||
        #         sampling_steps, device=self.device, shift=shift)
 | 
			
		||||
        #     timesteps = sample_scheduler.timesteps
 | 
			
		||||
        # elif sample_solver == 'dpm++':
 | 
			
		||||
        #     sample_scheduler = FlowDPMSolverMultistepScheduler(
 | 
			
		||||
        #         num_train_timesteps=self.num_train_timesteps,
 | 
			
		||||
        #         shift=1,
 | 
			
		||||
        #         use_dynamic_shifting=False)
 | 
			
		||||
        #     sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
 | 
			
		||||
        #     timesteps, _ = retrieve_timesteps(
 | 
			
		||||
        #         sample_scheduler,
 | 
			
		||||
        #         device=self.device,
 | 
			
		||||
        #         sigmas=sampling_sigmas)
 | 
			
		||||
        # else:
 | 
			
		||||
        #     raise NotImplementedError("Unsupported solver.")
 | 
			
		||||
 | 
			
		||||
        # sample videos
 | 
			
		||||
        latents = noise
 | 
			
		||||
        del noise
 | 
			
		||||
        batch_size =len(latents)
 | 
			
		||||
        if target_camera != None:
 | 
			
		||||
            shape = list(latents[0].shape[1:])
 | 
			
		||||
            shape[0] *= 2
 | 
			
		||||
            freqs = get_rotary_pos_embed(shape, enable_RIFLEx= False) 
 | 
			
		||||
        else:
 | 
			
		||||
            freqs = get_rotary_pos_embed(latents[0].shape[1:], enable_RIFLEx= enable_RIFLEx) 
 | 
			
		||||
        # arg_c = {'context': context, 'freqs': freqs, 'pipeline': self, 'callback': callback}
 | 
			
		||||
        # arg_null = {'context': context_null, 'freqs': freqs, 'pipeline': self, 'callback': callback}
 | 
			
		||||
        # arg_both = {'context': context, 'context2': context_null,  'freqs': freqs, 'pipeline': self, 'callback': callback}
 | 
			
		||||
 | 
			
		||||
        i2v_extra_kwrags = {}
 | 
			
		||||
 | 
			
		||||
        if target_camera != None:
 | 
			
		||||
            recam_dict = {'cam_emb': cam_emb}
 | 
			
		||||
            i2v_extra_kwrags.update(recam_dict)
 | 
			
		||||
 | 
			
		||||
        if input_frames != None:
 | 
			
		||||
            vace_dict = {'vace_context' : z, 'vace_context_scale' : context_scale}
 | 
			
		||||
            i2v_extra_kwrags.update(vace_dict)
 | 
			
		||||
 | 
			
		||||
        
 | 
			
		||||
        latent_length = (num_frames - 1) // 4 + 1
 | 
			
		||||
        latent_height = height // 8
 | 
			
		||||
        latent_width = width // 8
 | 
			
		||||
        if ar_step == 0: 
 | 
			
		||||
            causal_block_size = 1
 | 
			
		||||
        fps_embeds = [fps] #* prompt_embeds[0].shape[0]
 | 
			
		||||
        fps_embeds = [0 if i == 16 else 1 for i in fps_embeds]
 | 
			
		||||
 | 
			
		||||
        self.scheduler.set_timesteps(sampling_steps, device=self.device, shift=shift)
 | 
			
		||||
        init_timesteps = self.scheduler.timesteps
 | 
			
		||||
        base_num_frames_iter = latent_length
 | 
			
		||||
        latent_shape = [16, base_num_frames_iter, latent_height, latent_width]
 | 
			
		||||
 | 
			
		||||
        prefix_video = None
 | 
			
		||||
        predix_video_latent_length = 0
 | 
			
		||||
 | 
			
		||||
        if prefix_video is not None:
 | 
			
		||||
            latents[0][:, :predix_video_latent_length] = prefix_video[0].to(torch.float32)
 | 
			
		||||
        step_matrix, _, step_update_mask, valid_interval = self.generate_timestep_matrix(
 | 
			
		||||
            base_num_frames_iter,
 | 
			
		||||
            init_timesteps,
 | 
			
		||||
            base_num_frames_iter,
 | 
			
		||||
            ar_step,
 | 
			
		||||
            predix_video_latent_length,
 | 
			
		||||
            causal_block_size,
 | 
			
		||||
        )
 | 
			
		||||
        sample_schedulers = []
 | 
			
		||||
        for _ in range(base_num_frames_iter):
 | 
			
		||||
            sample_scheduler = FlowUniPCMultistepScheduler(
 | 
			
		||||
                num_train_timesteps=1000, shift=1, use_dynamic_shifting=False
 | 
			
		||||
            )
 | 
			
		||||
            sample_scheduler.set_timesteps(sampling_steps, device=self.device, shift=shift)
 | 
			
		||||
            sample_schedulers.append(sample_scheduler)
 | 
			
		||||
        sample_schedulers_counter = [0] * base_num_frames_iter
 | 
			
		||||
 | 
			
		||||
        updated_num_steps=  len(step_matrix)
 | 
			
		||||
 | 
			
		||||
        if callback != None:
 | 
			
		||||
            callback(-1, None, True, override_num_inference_steps = updated_num_steps)
 | 
			
		||||
        if self.model.enable_teacache:
 | 
			
		||||
            self.model.compute_teacache_threshold(self.model.teacache_start_step, timesteps, self.model.teacache_multiplier)
 | 
			
		||||
        # if callback != None:
 | 
			
		||||
        #     callback(-1, None, True)
 | 
			
		||||
 | 
			
		||||
        for i, timestep_i in enumerate(tqdm(step_matrix)):
 | 
			
		||||
            update_mask_i = step_update_mask[i]
 | 
			
		||||
            valid_interval_i = valid_interval[i]
 | 
			
		||||
            valid_interval_start, valid_interval_end = valid_interval_i
 | 
			
		||||
            timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone()
 | 
			
		||||
            latent_model_input = [latents[0][:, valid_interval_start:valid_interval_end, :, :].clone()]
 | 
			
		||||
            if addnoise_condition > 0 and valid_interval_start < predix_video_latent_length:
 | 
			
		||||
                noise_factor = 0.001 * addnoise_condition
 | 
			
		||||
                timestep_for_noised_condition = addnoise_condition
 | 
			
		||||
                latent_model_input[0][:, valid_interval_start:predix_video_latent_length] = (
 | 
			
		||||
                    latent_model_input[0][:, valid_interval_start:predix_video_latent_length]
 | 
			
		||||
                    * (1.0 - noise_factor)
 | 
			
		||||
                    + torch.randn_like(
 | 
			
		||||
                        latent_model_input[0][:, valid_interval_start:predix_video_latent_length]
 | 
			
		||||
                    )
 | 
			
		||||
                    * noise_factor
 | 
			
		||||
                )
 | 
			
		||||
                timestep[:, valid_interval_start:predix_video_latent_length] = timestep_for_noised_condition
 | 
			
		||||
            kwrags = {
 | 
			
		||||
                "x" : torch.stack([latent_model_input[0]]),
 | 
			
		||||
                "t" : timestep,
 | 
			
		||||
                "freqs" :freqs,
 | 
			
		||||
                "fps" : fps_embeds,
 | 
			
		||||
                "causal_block_size" : causal_block_size,
 | 
			
		||||
                "causal_attention" : causal_attention,
 | 
			
		||||
                "callback" : callback,
 | 
			
		||||
                "pipeline" : self,
 | 
			
		||||
                "current_step" : i,                 
 | 
			
		||||
            }   
 | 
			
		||||
            kwrags.update(i2v_extra_kwrags)
 | 
			
		||||
                
 | 
			
		||||
            if not self.do_classifier_free_guidance:
 | 
			
		||||
                noise_pred = self.model(
 | 
			
		||||
                    context=context,
 | 
			
		||||
                    **kwrags,
 | 
			
		||||
                )[0]
 | 
			
		||||
                if self._interrupt:
 | 
			
		||||
                    return None
 | 
			
		||||
                noise_pred= noise_pred.to(torch.float32)                                                                  
 | 
			
		||||
            else:
 | 
			
		||||
                if joint_pass:
 | 
			
		||||
                    noise_pred_cond, noise_pred_uncond = self.model(
 | 
			
		||||
                        context=context,
 | 
			
		||||
                        context2=context_null,
 | 
			
		||||
                        **kwrags,
 | 
			
		||||
                    )
 | 
			
		||||
                    if self._interrupt:
 | 
			
		||||
                        return None                
 | 
			
		||||
                else:
 | 
			
		||||
                    noise_pred_cond = self.model(
 | 
			
		||||
                        context=context,
 | 
			
		||||
                        **kwrags,
 | 
			
		||||
                    )[0]
 | 
			
		||||
                    if self._interrupt:
 | 
			
		||||
                        return None                
 | 
			
		||||
                    noise_pred_uncond = self.model(
 | 
			
		||||
                        context=context_null,
 | 
			
		||||
                    )[0]
 | 
			
		||||
                    if self._interrupt:
 | 
			
		||||
                        return None
 | 
			
		||||
                noise_pred_cond= noise_pred_cond.to(torch.float32)                                          
 | 
			
		||||
                noise_pred_uncond= noise_pred_uncond.to(torch.float32)                                          
 | 
			
		||||
                noise_pred = noise_pred_uncond + guide_scale * (noise_pred_cond - noise_pred_uncond)
 | 
			
		||||
                del noise_pred_cond, noise_pred_uncond
 | 
			
		||||
            for idx in range(valid_interval_start, valid_interval_end):
 | 
			
		||||
                if update_mask_i[idx].item():
 | 
			
		||||
                    latents[0][:, idx] = sample_schedulers[idx].step(
 | 
			
		||||
                        noise_pred[:, idx - valid_interval_start],
 | 
			
		||||
                        timestep_i[idx],
 | 
			
		||||
                        latents[0][:, idx],
 | 
			
		||||
                        return_dict=False,
 | 
			
		||||
                        generator=seed_g,
 | 
			
		||||
                    )[0]
 | 
			
		||||
                    sample_schedulers_counter[idx] += 1
 | 
			
		||||
            if callback is not None:
 | 
			
		||||
                callback(i, latents[0].squeeze(0), False)         
 | 
			
		||||
 | 
			
		||||
        # for i, t in enumerate(tqdm(timesteps)):
 | 
			
		||||
        #     if target_camera != None:
 | 
			
		||||
        #         latent_model_input = [torch.cat([u,v], dim=1) for u,v in zip(latents,source_latents )]
 | 
			
		||||
        #     else:
 | 
			
		||||
        #         latent_model_input = latents
 | 
			
		||||
        #     slg_layers_local = None
 | 
			
		||||
        #     if int(slg_start * sampling_steps) <= i < int(slg_end * sampling_steps):
 | 
			
		||||
        #         slg_layers_local = slg_layers
 | 
			
		||||
        #     timestep = [t]
 | 
			
		||||
        #     offload.set_step_no_for_lora(self.model, i)
 | 
			
		||||
        #     timestep = torch.stack(timestep)
 | 
			
		||||
 | 
			
		||||
        #     if joint_pass:
 | 
			
		||||
        #         noise_pred_cond, noise_pred_uncond = self.model(
 | 
			
		||||
        #             latent_model_input, t=timestep,  current_step=i, slg_layers=slg_layers_local, **arg_both)
 | 
			
		||||
        #         if self._interrupt:
 | 
			
		||||
        #             return None
 | 
			
		||||
        #     else:
 | 
			
		||||
        #         noise_pred_cond = self.model(
 | 
			
		||||
        #             latent_model_input, t=timestep,current_step=i, is_uncond = False, **arg_c)[0]
 | 
			
		||||
        #         if self._interrupt:
 | 
			
		||||
        #             return None               
 | 
			
		||||
        #         noise_pred_uncond = self.model(
 | 
			
		||||
        #             latent_model_input, t=timestep,current_step=i, is_uncond = True, slg_layers=slg_layers_local, **arg_null)[0]
 | 
			
		||||
        #         if self._interrupt:
 | 
			
		||||
        #             return None
 | 
			
		||||
 | 
			
		||||
        #     # del latent_model_input
 | 
			
		||||
 | 
			
		||||
        #     # CFG Zero *. Thanks to https://github.com/WeichenFan/CFG-Zero-star/
 | 
			
		||||
        #     noise_pred_text = noise_pred_cond
 | 
			
		||||
        #     if cfg_star_switch:
 | 
			
		||||
        #         positive_flat = noise_pred_text.view(batch_size, -1)  
 | 
			
		||||
        #         negative_flat = noise_pred_uncond.view(batch_size, -1)  
 | 
			
		||||
 | 
			
		||||
        #         alpha = optimized_scale(positive_flat,negative_flat)
 | 
			
		||||
        #         alpha = alpha.view(batch_size, 1, 1, 1)
 | 
			
		||||
 | 
			
		||||
        #         if (i <= cfg_zero_step):
 | 
			
		||||
        #             noise_pred = noise_pred_text*0. # it would be faster not to compute noise_pred...
 | 
			
		||||
        #         else:
 | 
			
		||||
        #             noise_pred_uncond *= alpha
 | 
			
		||||
        #     noise_pred = noise_pred_uncond + guide_scale * (noise_pred_text - noise_pred_uncond)            
 | 
			
		||||
        #     del noise_pred_uncond
 | 
			
		||||
 | 
			
		||||
        #     temp_x0 = sample_scheduler.step(
 | 
			
		||||
        #         noise_pred[:, :target_shape[1]].unsqueeze(0),
 | 
			
		||||
        #         t,
 | 
			
		||||
        #         latents[0].unsqueeze(0),
 | 
			
		||||
        #         return_dict=False,
 | 
			
		||||
        #         generator=seed_g)[0]
 | 
			
		||||
        #     latents = [temp_x0.squeeze(0)]
 | 
			
		||||
        #     del temp_x0
 | 
			
		||||
 | 
			
		||||
        #     if callback is not None:
 | 
			
		||||
        #         callback(i, latents[0], False)         
 | 
			
		||||
 | 
			
		||||
        x0 = latents
 | 
			
		||||
 | 
			
		||||
        if input_frames == None:
 | 
			
		||||
            videos = self.vae.decode(x0, VAE_tile_size)
 | 
			
		||||
        else:
 | 
			
		||||
            videos = self.decode_latent(x0, input_ref_images, VAE_tile_size)
 | 
			
		||||
 | 
			
		||||
        del latents
 | 
			
		||||
        del sample_scheduler
 | 
			
		||||
 | 
			
		||||
        return videos[0] if self.rank == 0 else None
 | 
			
		||||
 | 
			
		||||
    def adapt_vace_model(self):
 | 
			
		||||
        model = self.model
 | 
			
		||||
        modules_dict= { k: m for k, m in model.named_modules()}
 | 
			
		||||
        for model_layer, vace_layer in model.vace_layers_mapping.items():
 | 
			
		||||
            module = modules_dict[f"vace_blocks.{vace_layer}"]
 | 
			
		||||
            target = modules_dict[f"blocks.{model_layer}"]
 | 
			
		||||
            setattr(target, "vace", module )
 | 
			
		||||
        delattr(model, "vace_blocks")
 | 
			
		||||
                    
 | 
			
		||||
 
 | 
			
		||||
@ -245,8 +245,10 @@ class family_handler():
 | 
			
		||||
                    "visible" : False,
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
        if vace_class or base_model_type in ["infinitetalk", "animate"]:
 | 
			
		||||
        if vace_class or base_model_type in ["animate"]:
 | 
			
		||||
            image_prompt_types_allowed = "TVL"
 | 
			
		||||
        elif base_model_type in ["infinitetalk"]:
 | 
			
		||||
            image_prompt_types_allowed = "TSVL"
 | 
			
		||||
        elif base_model_type in ["ti2v_2_2"]:
 | 
			
		||||
            image_prompt_types_allowed = "TSVL"
 | 
			
		||||
        elif base_model_type in ["lucy_edit"]:
 | 
			
		||||
 | 
			
		||||
@ -21,6 +21,7 @@ from .utils.get_default_model import get_matanyone_model
 | 
			
		||||
from .matanyone.inference.inference_core import InferenceCore
 | 
			
		||||
from .matanyone_wrapper import matanyone
 | 
			
		||||
from shared.utils.audio_video import save_video, save_image
 | 
			
		||||
from mmgp import offload
 | 
			
		||||
 | 
			
		||||
arg_device = "cuda"
 | 
			
		||||
arg_sam_model_type="vit_h"
 | 
			
		||||
@ -539,7 +540,7 @@ def video_matting(video_state,video_input, end_slider, matting_type, interactive
 | 
			
		||||
    file_name = ".".join(file_name.split(".")[:-1]) 
 | 
			
		||||
 
 | 
			
		||||
    from shared.utils.audio_video import extract_audio_tracks, combine_video_with_audio_tracks, cleanup_temp_audio_files    
 | 
			
		||||
    source_audio_tracks, audio_metadata  = extract_audio_tracks(video_input)
 | 
			
		||||
    source_audio_tracks, audio_metadata  = extract_audio_tracks(video_input, verbose= offload.default_verboseLevel )
 | 
			
		||||
    output_fg_path =  f"./mask_outputs/{file_name}_fg.mp4"
 | 
			
		||||
    output_fg_temp_path =  f"./mask_outputs/{file_name}_fg_tmp.mp4"
 | 
			
		||||
    if len(source_audio_tracks) == 0:
 | 
			
		||||
@ -679,7 +680,6 @@ def load_unload_models(selected):
 | 
			
		||||
            }
 | 
			
		||||
            # os.path.join('.')
 | 
			
		||||
 | 
			
		||||
            from mmgp import offload
 | 
			
		||||
 | 
			
		||||
            # sam_checkpoint = load_file_from_url(sam_checkpoint_url_dict[arg_sam_model_type], ".")
 | 
			
		||||
            sam_checkpoint = None
 | 
			
		||||
 | 
			
		||||
@ -52,7 +52,7 @@ matplotlib
 | 
			
		||||
# Utilities
 | 
			
		||||
ftfy
 | 
			
		||||
piexif
 | 
			
		||||
pynvml
 | 
			
		||||
nvidia-ml-py 
 | 
			
		||||
misaki
 | 
			
		||||
 | 
			
		||||
# Optional / commented out
 | 
			
		||||
 | 
			
		||||
@ -1,6 +1,6 @@
 | 
			
		||||
# thanks Comfyui for the rgb factors (https://github.com/comfyanonymous/ComfyUI/blob/master/comfy/latent_formats.py)
 | 
			
		||||
def get_rgb_factors(model_family, model_type = None): 
 | 
			
		||||
    if model_family == "wan":
 | 
			
		||||
    if model_family in ["wan", "qwen"]:
 | 
			
		||||
        if model_type =="ti2v_2_2":
 | 
			
		||||
            latent_channels = 48
 | 
			
		||||
            latent_dimensions = 3            
 | 
			
		||||
@ -261,7 +261,7 @@ def get_rgb_factors(model_family, model_type = None):
 | 
			
		||||
            [ 0.0249, -0.0469, -0.1703]
 | 
			
		||||
        ]
 | 
			
		||||
 | 
			
		||||
        latent_rgb_factors_bias = [ 0.0259, -0.0192, -0.0761]        
 | 
			
		||||
        latent_rgb_factors_bias = [ 0.0259, -0.0192, -0.0761]
 | 
			
		||||
    else:
 | 
			
		||||
        latent_rgb_factors_bias = latent_rgb_factors = None
 | 
			
		||||
    return latent_rgb_factors, latent_rgb_factors_bias
 | 
			
		||||
@ -321,7 +321,7 @@ def fit_image_into_canvas(ref_img, image_size, canvas_tf_bg =127.5, device ="cpu
 | 
			
		||||
    ref_width, ref_height = ref_img.size
 | 
			
		||||
    if (ref_height, ref_width) == image_size and outpainting_dims  == None:
 | 
			
		||||
        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
 | 
			
		||||
        canvas = torch.zeros_like(ref_img) if return_mask else None
 | 
			
		||||
        canvas = torch.zeros_like(ref_img[:1]) if return_mask else None
 | 
			
		||||
    else:
 | 
			
		||||
        if outpainting_dims != None:
 | 
			
		||||
            final_height, final_width = image_size
 | 
			
		||||
@ -374,7 +374,7 @@ def prepare_video_guide_and_mask( video_guides, video_masks, pre_video_guide, im
 | 
			
		||||
        if pre_video_guide is not None:
 | 
			
		||||
            src_video = pre_video_guide if src_video is None else torch.cat( [pre_video_guide, src_video], dim=1)
 | 
			
		||||
            if any_mask:
 | 
			
		||||
                src_mask = torch.zeros_like(pre_video_guide[0:1]) if src_mask is None else torch.cat( [torch.zeros_like(pre_video_guide[0:1]), src_mask], dim=1)
 | 
			
		||||
                src_mask = torch.zeros_like(pre_video_guide[:1]) if src_mask is None else torch.cat( [torch.zeros_like(pre_video_guide[:1]), src_mask], dim=1)
 | 
			
		||||
 | 
			
		||||
        if any_guide_padding:
 | 
			
		||||
            if src_video is None:
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										48
									
								
								wgp.py
									
									
									
									
									
								
							
							
						
						
									
										48
									
								
								wgp.py
									
									
									
									
									
								
							@ -63,8 +63,8 @@ AUTOSAVE_FILENAME = "queue.zip"
 | 
			
		||||
PROMPT_VARS_MAX = 10
 | 
			
		||||
 | 
			
		||||
target_mmgp_version = "3.6.0"
 | 
			
		||||
WanGP_version = "8.71"
 | 
			
		||||
settings_version = 2.35
 | 
			
		||||
WanGP_version = "8.73"
 | 
			
		||||
settings_version = 2.36
 | 
			
		||||
max_source_video_frames = 3000
 | 
			
		||||
prompt_enhancer_image_caption_model, prompt_enhancer_image_caption_processor, prompt_enhancer_llm_model, prompt_enhancer_llm_tokenizer = None, None, None, None
 | 
			
		||||
 | 
			
		||||
@ -5041,7 +5041,7 @@ def generate_video(
 | 
			
		||||
        if repeat_no >= total_generation: break
 | 
			
		||||
        repeat_no +=1
 | 
			
		||||
        gen["repeat_no"] = repeat_no
 | 
			
		||||
        src_video = src_video2 = src_mask = src_mask2 = src_faces = src_ref_images = src_ref_masks = None
 | 
			
		||||
        src_video = src_video2 = src_mask = src_mask2 = src_faces = src_ref_images = src_ref_masks = sparse_video_image = None
 | 
			
		||||
        prefix_video = pre_video_frame = None
 | 
			
		||||
        source_video_overlap_frames_count = 0 # number of frames overalapped in source video for first window
 | 
			
		||||
        source_video_frames_count = 0  # number of frames to use in source video (processing starts source_video_overlap_frames_count frames before )
 | 
			
		||||
@ -5169,7 +5169,7 @@ def generate_video(
 | 
			
		||||
                        frames_to_inject[pos] = image_refs[i] 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
            video_guide_processed = video_mask_processed = video_guide_processed2 = video_mask_processed2 = None
 | 
			
		||||
            video_guide_processed = video_mask_processed = video_guide_processed2 = video_mask_processed2 = sparse_video_image = None
 | 
			
		||||
            if video_guide is not None:
 | 
			
		||||
                keep_frames_parsed_full, error = parse_keep_frames_video_guide(keep_frames_video_guide, source_video_frames_count -source_video_overlap_frames_count + requested_frames_to_generate)
 | 
			
		||||
                if len(error) > 0:
 | 
			
		||||
@ -5259,7 +5259,7 @@ def generate_video(
 | 
			
		||||
                any_guide_padding = model_def.get("pad_guide_video", False)
 | 
			
		||||
                from shared.utils.utils import prepare_video_guide_and_mask
 | 
			
		||||
                src_videos, src_masks = prepare_video_guide_and_mask(   [video_guide_processed] + ([] if video_guide_processed2 is None else [video_guide_processed2]), 
 | 
			
		||||
                                                                        [video_mask_processed] + ([] if video_mask_processed2 is None else [video_mask_processed2]),
 | 
			
		||||
                                                                        [video_mask_processed] + ([] if video_guide_processed2 is None else [video_mask_processed2]),
 | 
			
		||||
                                                                        None if extract_guide_from_window_start or model_def.get("dont_cat_preguide", False) or sparse_video_image is not None else pre_video_guide, 
 | 
			
		||||
                                                                        image_size, current_video_length, latent_size,
 | 
			
		||||
                                                                        any_mask, any_guide_padding, guide_inpaint_color, 
 | 
			
		||||
@ -5281,9 +5281,12 @@ def generate_video(
 | 
			
		||||
                        src_faces = src_faces[:, :src_video.shape[1]]
 | 
			
		||||
                if video_guide is not None or len(frames_to_inject_parsed) > 0:
 | 
			
		||||
                    if args.save_masks:
 | 
			
		||||
                        if src_video is not None: save_video( src_video, "masked_frames.mp4", fps)
 | 
			
		||||
                        if src_video2 is not None: save_video( src_video2, "masked_frames2.mp4", fps)
 | 
			
		||||
                        if any_mask: save_video( src_mask, "masks.mp4", fps, value_range=(0, 1))
 | 
			
		||||
                        if src_video is not None: 
 | 
			
		||||
                            save_video( src_video, "masked_frames.mp4", fps)
 | 
			
		||||
                            if any_mask: save_video( src_mask, "masks.mp4", fps, value_range=(0, 1))
 | 
			
		||||
                        if src_video2 is not None: 
 | 
			
		||||
                            save_video( src_video2, "masked_frames2.mp4", fps)
 | 
			
		||||
                            if any_mask: save_video( src_mask2, "masks2.mp4", fps, value_range=(0, 1))
 | 
			
		||||
                if video_guide is not None:                        
 | 
			
		||||
                    preview_frame_no = 0 if extract_guide_from_window_start or model_def.get("dont_cat_preguide", False) or sparse_video_image is not None else (guide_start_frame - window_start_frame) 
 | 
			
		||||
                    refresh_preview["video_guide"] = convert_tensor_to_image(src_video, preview_frame_no)
 | 
			
		||||
@ -6766,11 +6769,11 @@ def switch_image_mode(state):
 | 
			
		||||
    inpaint_support = model_def.get("inpaint_support", False)
 | 
			
		||||
    if inpaint_support:
 | 
			
		||||
        if image_mode == 1:
 | 
			
		||||
            video_prompt_type = del_in_sequence(video_prompt_type, "VAG")  
 | 
			
		||||
            video_prompt_type = del_in_sequence(video_prompt_type, "VAG" + all_guide_processes)  
 | 
			
		||||
            video_prompt_type = add_to_sequence(video_prompt_type, "KI")
 | 
			
		||||
        elif image_mode == 2:
 | 
			
		||||
            video_prompt_type = del_in_sequence(video_prompt_type, "KI" + all_guide_processes)
 | 
			
		||||
            video_prompt_type = add_to_sequence(video_prompt_type, "VAG")  
 | 
			
		||||
            video_prompt_type = del_in_sequence(video_prompt_type, "KI")
 | 
			
		||||
        ui_defaults["video_prompt_type"] = video_prompt_type 
 | 
			
		||||
        
 | 
			
		||||
    return  str(time.time())
 | 
			
		||||
@ -7156,10 +7159,11 @@ def refresh_video_prompt_type_alignment(state, video_prompt_type, video_prompt_t
 | 
			
		||||
    video_prompt_type = add_to_sequence(video_prompt_type, video_prompt_type_video_guide)
 | 
			
		||||
    return video_prompt_type
 | 
			
		||||
 | 
			
		||||
all_guide_processes ="PDESLCMUVB"
 | 
			
		||||
 | 
			
		||||
def refresh_video_prompt_type_video_guide(state, video_prompt_type, video_prompt_type_video_guide,  image_mode, old_image_mask_guide_value, old_image_guide_value, old_image_mask_value ):
 | 
			
		||||
    old_video_prompt_type = video_prompt_type
 | 
			
		||||
    video_prompt_type = del_in_sequence(video_prompt_type, "PDESLCMUVB")
 | 
			
		||||
    video_prompt_type = del_in_sequence(video_prompt_type, all_guide_processes)
 | 
			
		||||
    video_prompt_type = add_to_sequence(video_prompt_type, video_prompt_type_video_guide)
 | 
			
		||||
    visible = "V" in video_prompt_type
 | 
			
		||||
    model_type = state["model_type"]
 | 
			
		||||
@ -7169,8 +7173,12 @@ def refresh_video_prompt_type_video_guide(state, video_prompt_type, video_prompt
 | 
			
		||||
    image_outputs =  image_mode > 0
 | 
			
		||||
    keep_frames_video_guide_visible = not image_outputs and visible and not model_def.get("keep_frames_video_guide_not_supported", False)
 | 
			
		||||
    image_mask_guide, image_guide, image_mask = switch_image_guide_editor(image_mode, old_video_prompt_type , video_prompt_type, old_image_mask_guide_value, old_image_guide_value, old_image_mask_value )
 | 
			
		||||
 | 
			
		||||
    return video_prompt_type,  gr.update(visible = visible and not image_outputs), image_guide, gr.update(visible = keep_frames_video_guide_visible), gr.update(visible = visible and "G" in video_prompt_type), gr.update(visible= (visible or "F" in video_prompt_type or "K" in video_prompt_type) and any_outpainting), gr.update(visible= visible and not "U" in video_prompt_type ),  gr.update(visible= mask_visible and not image_outputs), image_mask, image_mask_guide, gr.update(visible= mask_visible) 
 | 
			
		||||
    mask_preprocessing = model_def.get("mask_preprocessing", None)
 | 
			
		||||
    if mask_preprocessing  is not None:
 | 
			
		||||
        mask_selector_visible = mask_preprocessing.get("visible", True)
 | 
			
		||||
    else:
 | 
			
		||||
        mask_selector_visible = True
 | 
			
		||||
    return video_prompt_type,  gr.update(visible = visible and not image_outputs), image_guide, gr.update(visible = keep_frames_video_guide_visible), gr.update(visible = visible and "G" in video_prompt_type), gr.update(visible= (visible or "F" in video_prompt_type or "K" in video_prompt_type) and any_outpainting), gr.update(visible= visible and mask_selector_visible and  not "U" in video_prompt_type ) ,  gr.update(visible= mask_visible and not image_outputs), image_mask, image_mask_guide, gr.update(visible= mask_visible) 
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def refresh_video_prompt_type_video_guide_alt(state, video_prompt_type, video_prompt_type_video_guide_alt, image_mode):
 | 
			
		||||
@ -7662,8 +7670,12 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
 | 
			
		||||
                keep_frames_video_source = gr.Text(value=ui_defaults.get("keep_frames_video_source","") , visible= len(filter_letters(image_prompt_type_value, "VL"))>0 , scale = 2, label= "Truncate Video beyond this number of resampled Frames (empty=Keep All, negative truncates from End)" ) 
 | 
			
		||||
 | 
			
		||||
            any_control_video = any_control_image = False
 | 
			
		||||
            guide_preprocessing = model_def.get("guide_preprocessing", None)
 | 
			
		||||
            mask_preprocessing = model_def.get("mask_preprocessing", None)
 | 
			
		||||
            if image_mode_value ==2:
 | 
			
		||||
                guide_preprocessing = { "selection": ["V", "VG"]}
 | 
			
		||||
                mask_preprocessing = { "selection": ["A"]}
 | 
			
		||||
            else:
 | 
			
		||||
                guide_preprocessing = model_def.get("guide_preprocessing", None)
 | 
			
		||||
                mask_preprocessing = model_def.get("mask_preprocessing", None)
 | 
			
		||||
            guide_custom_choices = model_def.get("guide_custom_choices", None)
 | 
			
		||||
            image_ref_choices = model_def.get("image_ref_choices", None)
 | 
			
		||||
 | 
			
		||||
@ -7707,7 +7719,7 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
 | 
			
		||||
                        if image_outputs: video_prompt_type_video_guide_label = video_prompt_type_video_guide_label.replace("Video", "Image")
 | 
			
		||||
                        video_prompt_type_video_guide = gr.Dropdown(
 | 
			
		||||
                            guide_preprocessing_choices,
 | 
			
		||||
                            value=filter_letters(video_prompt_type_value, "PDESLCMUVB", guide_preprocessing.get("default", "") ),
 | 
			
		||||
                            value=filter_letters(video_prompt_type_value,  all_guide_processes, guide_preprocessing.get("default", "") ),
 | 
			
		||||
                            label= video_prompt_type_video_guide_label , scale = 2, visible= guide_preprocessing.get("visible", True) , show_label= True,
 | 
			
		||||
                        )
 | 
			
		||||
                        any_control_video = True
 | 
			
		||||
@ -7793,8 +7805,8 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
 | 
			
		||||
                    if image_guide_value is None:
 | 
			
		||||
                        image_mask_guide_value = None
 | 
			
		||||
                    else:
 | 
			
		||||
                        image_mask_value = rgb_bw_to_rgba_mask(image_mask_value)
 | 
			
		||||
                        image_mask_guide_value = { "background" : image_guide_value, "composite" : None, "layers": [image_mask_value] }
 | 
			
		||||
                        image_mask_guide_value = { "background" : image_guide_value, "composite" : None}
 | 
			
		||||
                        image_mask_guide_value["layers"] = [] if image_mask_value is None else [rgb_bw_to_rgba_mask(image_mask_value)]
 | 
			
		||||
 | 
			
		||||
                    image_mask_guide = gr.ImageEditor(
 | 
			
		||||
                        label="Control Image to be Inpainted" if image_mode_value == 2 else "Control Image and Mask",
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user