mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-03 22:04:21 +00:00 
			
		
		
		
	missed files
This commit is contained in:
		
							parent
							
								
									5ce8fc3d53
								
							
						
					
					
						commit
						d62748a226
					
				
							
								
								
									
										49
									
								
								shared/radial_attention/attention.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										49
									
								
								shared/radial_attention/attention.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,49 @@
 | 
			
		||||
from typing import Optional, Tuple
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
from einops import rearrange
 | 
			
		||||
from .attn_mask import RadialAttention, MaskMap
 | 
			
		||||
 | 
			
		||||
def fill_radial_cache(radial_cache, nb_layers, lat_t, lat_h, lat_w):
 | 
			
		||||
    MaskMap._log_mask = None
 | 
			
		||||
 | 
			
		||||
    for i in range(nb_layers):
 | 
			
		||||
        radial_cache[i] =  WanSparseAttnProcessor2_0(i, lat_t, lat_h, lat_w)
 | 
			
		||||
 | 
			
		||||
class WanSparseAttnProcessor2_0: 
 | 
			
		||||
    mask_map = None
 | 
			
		||||
    dense_timestep = 0
 | 
			
		||||
    dense_block = 0
 | 
			
		||||
    decay_factor = 1.0
 | 
			
		||||
    sparse_type = "radial"  # default to radial attention, can be changed to "dense" for dense attention
 | 
			
		||||
    use_sage_attention = True
 | 
			
		||||
    
 | 
			
		||||
    def __init__(self, layer_idx,  lat_t, lat_h, lat_w):
 | 
			
		||||
        self.layer_idx = layer_idx
 | 
			
		||||
        self.mask_map = MaskMap(video_token_num=lat_t * lat_h * lat_w // 4 , num_frame=lat_t)        
 | 
			
		||||
    def __call__(
 | 
			
		||||
        self,
 | 
			
		||||
        qkv_list,
 | 
			
		||||
        timestep_no = 0,
 | 
			
		||||
    ) -> torch.Tensor:
 | 
			
		||||
        query, key, value = qkv_list
 | 
			
		||||
 | 
			
		||||
        batch_size = query.shape[0]
 | 
			
		||||
        # transform (batch_size, seq_len, num_heads, head_dim) to (seq_len * batch_size, num_heads, head_dim)
 | 
			
		||||
        query = rearrange(query, "b s h d -> (b s) h d")
 | 
			
		||||
        key = rearrange(key, "b s h d -> (b s) h d")
 | 
			
		||||
        value = rearrange(value, "b s h d -> (b s) h d")
 | 
			
		||||
        if timestep_no < self.dense_timestep or self.layer_idx < self.dense_block or self.sparse_type == "dense":
 | 
			
		||||
            hidden_states = RadialAttention(
 | 
			
		||||
                query=query, key=key, value=value, mask_map=self.mask_map, sparsity_type="dense", block_size=128, decay_factor=self.decay_factor, model_type="wan", pre_defined_mask=None, use_sage_attention=self.use_sage_attention
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            # apply radial attention
 | 
			
		||||
            hidden_states = RadialAttention(
 | 
			
		||||
                query=query, key=key, value=value, mask_map=self.mask_map, sparsity_type="radial", block_size=128, decay_factor=self.decay_factor, model_type="wan", pre_defined_mask=None, use_sage_attention=self.use_sage_attention
 | 
			
		||||
            )
 | 
			
		||||
        # transform back to (batch_size, num_heads, seq_len, head_dim)
 | 
			
		||||
        hidden_states = rearrange(hidden_states, "(b s) h d -> b s h d", b=batch_size)
 | 
			
		||||
 | 
			
		||||
        return hidden_states
 | 
			
		||||
							
								
								
									
										379
									
								
								shared/radial_attention/attn_mask.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										379
									
								
								shared/radial_attention/attn_mask.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,379 @@
 | 
			
		||||
import torch
 | 
			
		||||
# import flashinfer
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
# from sparse_sageattn import sparse_sageattn
 | 
			
		||||
from einops import rearrange, repeat
 | 
			
		||||
from sageattention import sageattn
 | 
			
		||||
from spas_sage_attn import block_sparse_sage2_attn_cuda
 | 
			
		||||
 | 
			
		||||
def get_cuda_arch_versions():
 | 
			
		||||
    cuda_archs = []
 | 
			
		||||
    for i in range(torch.cuda.device_count()):
 | 
			
		||||
        major, minor = torch.cuda.get_device_capability(i)
 | 
			
		||||
        cuda_archs.append(f"sm{major}{minor}")
 | 
			
		||||
    return cuda_archs
 | 
			
		||||
 | 
			
		||||
from spas_sage_attn import block_sparse_sage2_attn_cuda
 | 
			
		||||
 | 
			
		||||
def sparge_mask_convert(mask: torch.Tensor, block_size: int = 128, arch="sm") -> torch.Tensor:
 | 
			
		||||
    assert block_size in [128, 64], "Radial Attention only supports block size of 128 or 64"
 | 
			
		||||
    assert mask.shape[0] == mask.shape[1], "Input mask must be square."
 | 
			
		||||
 | 
			
		||||
    if block_size == 128:
 | 
			
		||||
        if arch == "sm90":
 | 
			
		||||
            new_mask = torch.repeat_interleave(mask, 2, dim=0)
 | 
			
		||||
        else:
 | 
			
		||||
            new_mask = torch.repeat_interleave(mask, 2, dim=1)
 | 
			
		||||
        
 | 
			
		||||
    elif block_size == 64:
 | 
			
		||||
        if arch == "sm90":
 | 
			
		||||
            num_row, num_col = mask.shape
 | 
			
		||||
            reshaped_mask = mask.view(num_row, num_col // 2, 2)
 | 
			
		||||
            new_mask = torch.max(reshaped_mask, dim=2).values
 | 
			
		||||
        else:
 | 
			
		||||
            num_row, num_col = mask.shape
 | 
			
		||||
            reshaped_mask = mask.view(num_row // 2, 2, num_col)
 | 
			
		||||
            new_mask = torch.max(reshaped_mask, dim=1).values
 | 
			
		||||
 | 
			
		||||
    return new_mask
 | 
			
		||||
 | 
			
		||||
def get_indptr_from_mask(mask, query):
 | 
			
		||||
    # query shows the device of the indptr
 | 
			
		||||
    # indptr (torch.Tensor) - the block index pointer of the block-sparse matrix on row dimension,
 | 
			
		||||
    # shape `(MB + 1,)`, where `MB` is the number of blocks in the row dimension.
 | 
			
		||||
    # The first element is always 0, and the last element is the number of blocks in the row dimension.
 | 
			
		||||
    # The rest of the elements are the number of blocks in each row.
 | 
			
		||||
    # the mask is already a block sparse mask
 | 
			
		||||
    indptr = torch.zeros(mask.shape[0] + 1, device=query.device, dtype=torch.int32)
 | 
			
		||||
    indptr[0] = 0
 | 
			
		||||
    row_counts = mask.sum(dim=1).flatten()  # Ensure 1D output [num_blocks_row]
 | 
			
		||||
    indptr[1:] = torch.cumsum(row_counts, dim=0)
 | 
			
		||||
    return indptr
 | 
			
		||||
 | 
			
		||||
def get_indices_from_mask(mask, query):
 | 
			
		||||
    # indices (torch.Tensor) - the block indices of the block-sparse matrix on column dimension,
 | 
			
		||||
    # shape `(nnz,),` where `nnz` is the number of non-zero blocks.
 | 
			
		||||
    # The elements in `indices` array should be less than `NB`: the number of blocks in the column dimension.
 | 
			
		||||
    nonzero_indices = torch.nonzero(mask)
 | 
			
		||||
    indices = nonzero_indices[:, 1].to(dtype=torch.int32, device=query.device)
 | 
			
		||||
    return indices
 | 
			
		||||
 | 
			
		||||
def shrinkMaskStrict(mask, block_size=128):
 | 
			
		||||
    seqlen = mask.shape[0]
 | 
			
		||||
    block_num = seqlen // block_size
 | 
			
		||||
    mask = mask[:block_num * block_size, :block_num * block_size].view(block_num, block_size, block_num, block_size)
 | 
			
		||||
    col_densities = mask.sum(dim = 1) / block_size
 | 
			
		||||
    # we want the minimum non-zero column density in the block
 | 
			
		||||
    non_zero_densities = col_densities > 0
 | 
			
		||||
    high_density_cols = col_densities > 1/3
 | 
			
		||||
    frac_high_density_cols = high_density_cols.sum(dim=-1) / (non_zero_densities.sum(dim=-1) + 1e-9)
 | 
			
		||||
    block_mask = frac_high_density_cols > 0.6
 | 
			
		||||
    block_mask[0:0] = True
 | 
			
		||||
    block_mask[-1:-1] = True
 | 
			
		||||
    return block_mask
 | 
			
		||||
 | 
			
		||||
def pad_qkv(input_tensor, block_size=128):
 | 
			
		||||
    """
 | 
			
		||||
    Pad the input tensor to be a multiple of the block size.
 | 
			
		||||
    input shape: (seqlen, num_heads, hidden_dim)
 | 
			
		||||
    """
 | 
			
		||||
    seqlen, num_heads, hidden_dim = input_tensor.shape
 | 
			
		||||
    # Calculate the necessary padding
 | 
			
		||||
    padding_length = (block_size - (seqlen % block_size)) % block_size
 | 
			
		||||
    # Create a padded tensor with zeros
 | 
			
		||||
    padded_tensor = torch.zeros((seqlen + padding_length, num_heads, hidden_dim), device=input_tensor.device, dtype=input_tensor.dtype)
 | 
			
		||||
    # Copy the original tensor into the padded tensor
 | 
			
		||||
    padded_tensor[:seqlen, :, :] = input_tensor
 | 
			
		||||
    
 | 
			
		||||
    return padded_tensor
 | 
			
		||||
 | 
			
		||||
def get_diagonal_split_mask(i, j, token_per_frame, sparse_type, query):
 | 
			
		||||
    assert(sparse_type in ["radial"])
 | 
			
		||||
    dist = abs(i - j)
 | 
			
		||||
    group = dist.bit_length()
 | 
			
		||||
    threshold = 128 # hardcoded threshold for now, which is equal to block-size
 | 
			
		||||
    decay_length = 2 ** token_per_frame.bit_length() / 2 ** group
 | 
			
		||||
    if decay_length >= threshold:
 | 
			
		||||
        return torch.ones((token_per_frame, token_per_frame), device=query.device, dtype=torch.bool)
 | 
			
		||||
    
 | 
			
		||||
    split_factor = int(threshold / decay_length)
 | 
			
		||||
    modular = dist % split_factor
 | 
			
		||||
    if modular == 0:
 | 
			
		||||
        return torch.ones((token_per_frame, token_per_frame), device=query.device, dtype=torch.bool)
 | 
			
		||||
    else:
 | 
			
		||||
        return torch.zeros((token_per_frame, token_per_frame), device=query.device, dtype=torch.bool)
 | 
			
		||||
 | 
			
		||||
def get_window_width(i, j, token_per_frame, sparse_type, num_frame, decay_factor=1, block_size=128, model_type=None):
 | 
			
		||||
    assert(sparse_type in ["radial"])
 | 
			
		||||
    dist = abs(i - j)
 | 
			
		||||
    if model_type == "wan":
 | 
			
		||||
        if dist < 1:
 | 
			
		||||
            return token_per_frame
 | 
			
		||||
        if dist == 1:
 | 
			
		||||
            return token_per_frame // 2
 | 
			
		||||
    elif model_type == "hunyuan":
 | 
			
		||||
        if dist <= 1:
 | 
			
		||||
            return token_per_frame
 | 
			
		||||
    else:
 | 
			
		||||
        raise ValueError(f"Unknown model type: {model_type}")
 | 
			
		||||
    group = dist.bit_length()
 | 
			
		||||
    decay_length = 2 ** token_per_frame.bit_length() / 2 ** group * decay_factor
 | 
			
		||||
    threshold = block_size
 | 
			
		||||
    if decay_length >= threshold:
 | 
			
		||||
        return decay_length
 | 
			
		||||
    else:
 | 
			
		||||
        return threshold
 | 
			
		||||
 | 
			
		||||
def gen_log_mask_shrinked(query, s, video_token_num, num_frame, block_size=128, sparse_type="log", decay_factor=0.5, model_type=None):
 | 
			
		||||
    """
 | 
			
		||||
    A more memory friendly version, we generate the attention mask of each frame pair at a time,
 | 
			
		||||
    shrinks it, and stores it into the final result
 | 
			
		||||
    """
 | 
			
		||||
    final_log_mask = torch.zeros((s // block_size, s // block_size), device=query.device, dtype=torch.bool)
 | 
			
		||||
    token_per_frame = video_token_num // num_frame
 | 
			
		||||
    video_text_border = video_token_num // block_size
 | 
			
		||||
 | 
			
		||||
    col_indices = torch.arange(0, token_per_frame, device=query.device).view(1, -1)
 | 
			
		||||
    row_indices = torch.arange(0, token_per_frame, device=query.device).view(-1, 1)
 | 
			
		||||
    final_log_mask[video_text_border:] = True
 | 
			
		||||
    final_log_mask[:, video_text_border:] = True
 | 
			
		||||
    for i in range(num_frame):
 | 
			
		||||
        for j in range(num_frame):
 | 
			
		||||
            local_mask = torch.zeros((token_per_frame, token_per_frame), device=query.device, dtype=torch.bool)
 | 
			
		||||
            if j == 0 and model_type == "wan": # this is attention sink
 | 
			
		||||
                local_mask = torch.ones((token_per_frame, token_per_frame), device=query.device, dtype=torch.bool)
 | 
			
		||||
            else:
 | 
			
		||||
                window_width = get_window_width(i, j, token_per_frame, sparse_type, num_frame, decay_factor=decay_factor, block_size=block_size, model_type=model_type)
 | 
			
		||||
                local_mask = torch.abs(col_indices - row_indices) <= window_width
 | 
			
		||||
                split_mask = get_diagonal_split_mask(i, j, token_per_frame, sparse_type, query)
 | 
			
		||||
                local_mask = torch.logical_and(local_mask, split_mask)
 | 
			
		||||
 | 
			
		||||
            remainder_row = (i * token_per_frame) % block_size
 | 
			
		||||
            remainder_col = (j * token_per_frame) % block_size
 | 
			
		||||
            # get the padded size
 | 
			
		||||
            all_length_row = remainder_row + ((token_per_frame - 1) // block_size + 1) * block_size
 | 
			
		||||
            all_length_col = remainder_col + ((token_per_frame - 1) // block_size + 1) * block_size
 | 
			
		||||
            padded_local_mask = torch.zeros((all_length_row, all_length_col), device=query.device, dtype=torch.bool)
 | 
			
		||||
            padded_local_mask[remainder_row:remainder_row + token_per_frame, remainder_col:remainder_col + token_per_frame] = local_mask
 | 
			
		||||
            # shrink the mask
 | 
			
		||||
            block_mask = shrinkMaskStrict(padded_local_mask, block_size=block_size)
 | 
			
		||||
            # set the block mask to the final log mask
 | 
			
		||||
            block_row_start = (i * token_per_frame) // block_size
 | 
			
		||||
            block_col_start = (j * token_per_frame) // block_size
 | 
			
		||||
            block_row_end = block_row_start + block_mask.shape[0]
 | 
			
		||||
            block_col_end = block_col_start + block_mask.shape[1]
 | 
			
		||||
            final_log_mask[block_row_start:block_row_end, block_col_start:block_col_end] = torch.logical_or(
 | 
			
		||||
                final_log_mask[block_row_start:block_row_end, block_col_start:block_col_end], block_mask)
 | 
			
		||||
    print(f"mask sparsity: {1 - final_log_mask.sum() / final_log_mask.numel()}")
 | 
			
		||||
    return final_log_mask
 | 
			
		||||
 | 
			
		||||
class MaskMap:
 | 
			
		||||
    _log_mask = None
 | 
			
		||||
 | 
			
		||||
    def __init__(self, video_token_num=25440, num_frame=16):
 | 
			
		||||
        self.video_token_num = video_token_num
 | 
			
		||||
        self.num_frame = num_frame
 | 
			
		||||
 | 
			
		||||
    def queryLogMask(self, query, sparse_type, block_size=128, decay_factor=0.5, model_type=None):
 | 
			
		||||
        if MaskMap._log_mask is None:
 | 
			
		||||
            MaskMap._log_mask = torch.ones((query.shape[0] // block_size, query.shape[0] // block_size), device=query.device, dtype=torch.bool)
 | 
			
		||||
            MaskMap._log_mask = gen_log_mask_shrinked(query, query.shape[0], self.video_token_num, self.num_frame, sparse_type=sparse_type, decay_factor=decay_factor, model_type=model_type, block_size=block_size)
 | 
			
		||||
        return MaskMap._log_mask
 | 
			
		||||
 | 
			
		||||
def SpargeSageAttnBackend(query, key, value, mask_map=None, video_mask=None, pre_defined_mask=None, block_size=128):
 | 
			
		||||
    if video_mask.all():
 | 
			
		||||
        # dense case
 | 
			
		||||
        kv_border = pre_defined_mask[0].sum() if pre_defined_mask is not None else key.shape[0]
 | 
			
		||||
        output_video = sageattn(
 | 
			
		||||
            query[:mask_map.video_token_num, :, :].unsqueeze(0),
 | 
			
		||||
            key[:kv_border, :, :].unsqueeze(0),
 | 
			
		||||
            value[:kv_border, :, :].unsqueeze(0),
 | 
			
		||||
            tensor_layout="NHD",
 | 
			
		||||
        )[0]
 | 
			
		||||
        
 | 
			
		||||
        if pre_defined_mask is not None:
 | 
			
		||||
            output_text = flashinfer.single_prefill_with_kv_cache(
 | 
			
		||||
                q=query[mask_map.video_token_num:, :, :],
 | 
			
		||||
                k=key[:pre_defined_mask[0].sum(), :, :],
 | 
			
		||||
                v=value[:pre_defined_mask[0].sum(), :, :],
 | 
			
		||||
                causal=False,
 | 
			
		||||
                return_lse=False,
 | 
			
		||||
            )
 | 
			
		||||
            return torch.cat([output_video, output_text], dim=0)
 | 
			
		||||
        else:
 | 
			
		||||
            return output_video
 | 
			
		||||
    
 | 
			
		||||
    # sparse-sageattention only supports (b, h, s, d) layout, need rearrange first
 | 
			
		||||
    query_hnd = rearrange(query.unsqueeze(0), "b s h d -> b h s d")
 | 
			
		||||
    key_hnd = rearrange(key.unsqueeze(0), "b s h d -> b h s d")
 | 
			
		||||
    value_hnd = rearrange(value.unsqueeze(0), "b s h d -> b h s d")
 | 
			
		||||
    arch = get_cuda_arch_versions()[query.device.index]
 | 
			
		||||
    converted_mask = repeat(sparge_mask_convert(mask=video_mask, block_size=block_size, arch=arch), "s t -> b h s t", b=query_hnd.shape[0], h=query_hnd.shape[1])
 | 
			
		||||
    
 | 
			
		||||
    converted_mask = converted_mask.to(torch.int8)
 | 
			
		||||
    if pre_defined_mask is None:
 | 
			
		||||
        # wan case
 | 
			
		||||
        output = block_sparse_sage2_attn_cuda(
 | 
			
		||||
            query_hnd[:, :, :mask_map.video_token_num, :],
 | 
			
		||||
            key_hnd[:, :, :mask_map.video_token_num, :],
 | 
			
		||||
            value_hnd[:, :, :mask_map.video_token_num, :],
 | 
			
		||||
            mask_id=converted_mask,
 | 
			
		||||
            tensor_layout="HND",
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # rearrange back to (s, h, d), we know that b = 1
 | 
			
		||||
        output = rearrange(output, "b h s d -> s (b h) d", b=1)
 | 
			
		||||
        return output
 | 
			
		||||
    
 | 
			
		||||
    query_video = query_hnd[:, :, :mask_map.video_token_num, :]
 | 
			
		||||
    key_video = key_hnd
 | 
			
		||||
    value_video = value_hnd
 | 
			
		||||
    kv_border = (pre_defined_mask[0].sum() + 63) // 64
 | 
			
		||||
    converted_mask[:, :, :, kv_border:] = False
 | 
			
		||||
    output_video = block_sparse_sage2_attn_cuda(
 | 
			
		||||
        query_video,
 | 
			
		||||
        key_video,
 | 
			
		||||
        value_video,
 | 
			
		||||
        mask_id=converted_mask[:, :, :mask_map.video_token_num // block_size, :].contiguous(),
 | 
			
		||||
        tensor_layout="HND",
 | 
			
		||||
    )
 | 
			
		||||
    
 | 
			
		||||
    # rearrange back to (s, h, d), we know that b = 1
 | 
			
		||||
    output_video = rearrange(output_video, "b h s d -> s (b h) d", b=1)
 | 
			
		||||
    
 | 
			
		||||
    # gt = sparse_sageattn(
 | 
			
		||||
    #     query_video,
 | 
			
		||||
    #     key_video,
 | 
			
		||||
    #     value_video,
 | 
			
		||||
    #     mask_id=None,
 | 
			
		||||
    #     is_causal=False,
 | 
			
		||||
    #     tensor_layout="HND",
 | 
			
		||||
    # )[0]
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
    # import pdb; pdb.set_trace()
 | 
			
		||||
    
 | 
			
		||||
    output_text = flashinfer.single_prefill_with_kv_cache(
 | 
			
		||||
        q=query[mask_map.video_token_num:, :, :],
 | 
			
		||||
        k=key[:pre_defined_mask[0].sum(), :, :],
 | 
			
		||||
        v=value[:pre_defined_mask[0].sum(), :, :],
 | 
			
		||||
        causal=False,
 | 
			
		||||
        return_lse=False,
 | 
			
		||||
    )
 | 
			
		||||
    
 | 
			
		||||
    return torch.cat([output_video, output_text], dim=0)
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
def FlashInferBackend(query, key, value, mask_map=None, pre_defined_mask=None, bsr_wrapper=None):
 | 
			
		||||
    if pre_defined_mask is not None:
 | 
			
		||||
        video_video_o, video_video_o_lse = bsr_wrapper.run(
 | 
			
		||||
            query[:mask_map.video_token_num, :, :], 
 | 
			
		||||
            key[:mask_map.video_token_num, :, :],
 | 
			
		||||
            value[:mask_map.video_token_num, :, :],
 | 
			
		||||
            return_lse=True
 | 
			
		||||
        ) 
 | 
			
		||||
        # perform non-causal flashinfer on the text tokens
 | 
			
		||||
        video_text_o, video_text_o_lse = flashinfer.single_prefill_with_kv_cache(
 | 
			
		||||
            q=query[:mask_map.video_token_num, :, :],
 | 
			
		||||
            k=key[mask_map.video_token_num:, :, :],
 | 
			
		||||
            v=value[mask_map.video_token_num:, :, :],
 | 
			
		||||
            causal=False,
 | 
			
		||||
            return_lse=True,
 | 
			
		||||
            custom_mask=pre_defined_mask[:mask_map.video_token_num, mask_map.video_token_num:]
 | 
			
		||||
        )
 | 
			
		||||
        
 | 
			
		||||
        # merge the two results
 | 
			
		||||
        o_video, _ = flashinfer.merge_state(v_a=video_video_o, s_a=video_video_o_lse, v_b=video_text_o, s_b=video_text_o_lse)
 | 
			
		||||
        
 | 
			
		||||
        o_text = flashinfer.single_prefill_with_kv_cache(
 | 
			
		||||
            q=query[mask_map.video_token_num:, :, :],
 | 
			
		||||
            k=key,
 | 
			
		||||
            v=value,
 | 
			
		||||
            causal=False,
 | 
			
		||||
            return_lse=False,
 | 
			
		||||
            custom_mask=pre_defined_mask[mask_map.video_token_num:, :]
 | 
			
		||||
        )
 | 
			
		||||
        
 | 
			
		||||
        return torch.cat([o_video, o_text], dim=0)
 | 
			
		||||
    else:
 | 
			
		||||
        o = bsr_wrapper.run(
 | 
			
		||||
            query[:mask_map.video_token_num, :, :],
 | 
			
		||||
            key[:mask_map.video_token_num, :, :],
 | 
			
		||||
            value[:mask_map.video_token_num, :, :]
 | 
			
		||||
        )
 | 
			
		||||
        return o
 | 
			
		||||
 | 
			
		||||
def RadialAttention(query, key, value, mask_map=None, sparsity_type="radial", block_size=128, decay_factor=1, model_type=None, pre_defined_mask=None, use_sage_attention=False):
 | 
			
		||||
    orig_seqlen, num_head, hidden_dim = query.shape
 | 
			
		||||
 | 
			
		||||
    if sparsity_type == "dense":
 | 
			
		||||
        video_mask = torch.ones((mask_map.video_token_num // block_size, mask_map.video_token_num // block_size), device=query.device, dtype=torch.bool)
 | 
			
		||||
    else:
 | 
			
		||||
        video_mask = mask_map.queryLogMask(query, sparsity_type, block_size=block_size, decay_factor=decay_factor, model_type=model_type) if mask_map else None
 | 
			
		||||
    
 | 
			
		||||
    backend = "sparse_sageattn" if use_sage_attention else "flashinfer"
 | 
			
		||||
    
 | 
			
		||||
    if backend == "flashinfer":
 | 
			
		||||
        video_mask = video_mask[:mask_map.video_token_num // block_size, :mask_map.video_token_num // block_size]
 | 
			
		||||
        # perform block-sparse attention on the video tokens
 | 
			
		||||
        workspace_buffer = torch.empty(128 * 1024 * 1024, device=query.device, dtype=torch.uint8)
 | 
			
		||||
        bsr_wrapper = flashinfer.BlockSparseAttentionWrapper(
 | 
			
		||||
            workspace_buffer,
 | 
			
		||||
            backend="fa2",
 | 
			
		||||
        )
 | 
			
		||||
        
 | 
			
		||||
        indptr = get_indptr_from_mask(video_mask, query)
 | 
			
		||||
        indices = get_indices_from_mask(video_mask, query)
 | 
			
		||||
        
 | 
			
		||||
        bsr_wrapper.plan(
 | 
			
		||||
            indptr=indptr,
 | 
			
		||||
            indices=indices,
 | 
			
		||||
            M=mask_map.video_token_num,
 | 
			
		||||
            N=mask_map.video_token_num,
 | 
			
		||||
            R=block_size,
 | 
			
		||||
            C=block_size,
 | 
			
		||||
            num_qo_heads=num_head,
 | 
			
		||||
            num_kv_heads=num_head,
 | 
			
		||||
            head_dim=hidden_dim,
 | 
			
		||||
            q_data_type=query.dtype,
 | 
			
		||||
            kv_data_type=key.dtype,
 | 
			
		||||
            o_data_type=query.dtype,
 | 
			
		||||
        )
 | 
			
		||||
        
 | 
			
		||||
        return FlashInferBackend(query, key, value, mask_map, pre_defined_mask, bsr_wrapper)
 | 
			
		||||
    elif backend == "sparse_sageattn":
 | 
			
		||||
        return SpargeSageAttnBackend(query, key, value, mask_map, video_mask, pre_defined_mask, block_size=block_size)
 | 
			
		||||
        
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    query = torch.randn(1, 2, 4, 64).cuda()
 | 
			
		||||
    # mask = torch.tensor([
 | 
			
		||||
    #     [True, False, True, False],
 | 
			
		||||
    #     [False, True, False, True],
 | 
			
		||||
    #     [True, False, False, True],
 | 
			
		||||
    #     [False, True, True, False]
 | 
			
		||||
    # ], dtype=torch.bool)
 | 
			
		||||
    # indices = get_indices_from_mask(mask, query)
 | 
			
		||||
    # indptr = get_indptr_from_mask(mask, query)
 | 
			
		||||
    # print("Indices: ", indices)
 | 
			
		||||
    # print("Indptr: ", indptr)
 | 
			
		||||
    video_token_num = 3840 * 30
 | 
			
		||||
    num_frame = 30
 | 
			
		||||
    token_per_frame = video_token_num / num_frame
 | 
			
		||||
    padded_video_token_num = ((video_token_num + 1) // 128 + 1) * 128
 | 
			
		||||
    print("padded: ", padded_video_token_num)
 | 
			
		||||
    temporal_mask = gen_log_mask_shrinked(query, padded_video_token_num, video_token_num, num_frame, sparse_type="radial", decay_factor=1, model_type="hunyuan")
 | 
			
		||||
    plt.figure(figsize=(10, 8), dpi=500)
 | 
			
		||||
 | 
			
		||||
    plt.imshow(temporal_mask.cpu().numpy()[:, :], cmap='hot')
 | 
			
		||||
    plt.colorbar()
 | 
			
		||||
    plt.title("Temporal Mask")
 | 
			
		||||
 | 
			
		||||
    plt.savefig("temporal_mask.png",
 | 
			
		||||
                dpi=300,
 | 
			
		||||
                bbox_inches='tight',
 | 
			
		||||
                pad_inches=0.1)
 | 
			
		||||
 | 
			
		||||
    plt.close()
 | 
			
		||||
    # save the mask tensor
 | 
			
		||||
    torch.save(temporal_mask, "temporal_mask.pt")
 | 
			
		||||
							
								
								
									
										41
									
								
								shared/radial_attention/inference.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										41
									
								
								shared/radial_attention/inference.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,41 @@
 | 
			
		||||
import torch
 | 
			
		||||
from diffusers.models.attention_processor import Attention
 | 
			
		||||
from diffusers.models.attention import AttentionModuleMixin
 | 
			
		||||
from .attention import WanSparseAttnProcessor 
 | 
			
		||||
from .attn_mask import MaskMap
 | 
			
		||||
 | 
			
		||||
def setup_radial_attention(
 | 
			
		||||
    pipe,
 | 
			
		||||
    height,
 | 
			
		||||
    width,
 | 
			
		||||
    num_frames,
 | 
			
		||||
    dense_layers=0,
 | 
			
		||||
    dense_timesteps=0,
 | 
			
		||||
    decay_factor=1.0,
 | 
			
		||||
    sparsity_type="radial",
 | 
			
		||||
    use_sage_attention=False,
 | 
			
		||||
):
 | 
			
		||||
 | 
			
		||||
    num_frames = 1 + num_frames // (pipe.vae_scale_factor_temporal * pipe.transformer.config.patch_size[0])
 | 
			
		||||
    mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
 | 
			
		||||
    frame_size = int(height // mod_value) * int(width // mod_value)
 | 
			
		||||
    
 | 
			
		||||
    AttnModule = WanSparseAttnProcessor
 | 
			
		||||
    AttnModule.dense_block = dense_layers
 | 
			
		||||
    AttnModule.dense_timestep = dense_timesteps
 | 
			
		||||
    AttnModule.mask_map = MaskMap(video_token_num=frame_size * num_frames, num_frame=num_frames)
 | 
			
		||||
    AttnModule.decay_factor = decay_factor
 | 
			
		||||
    AttnModule.sparse_type = sparsity_type
 | 
			
		||||
    AttnModule.use_sage_attention = use_sage_attention
 | 
			
		||||
    
 | 
			
		||||
    print(f"Replacing Wan attention with {sparsity_type} attention")
 | 
			
		||||
    print(f"video token num: {AttnModule.mask_map.video_token_num}, num frames: {num_frames}")
 | 
			
		||||
    print(f"dense layers: {dense_layers}, dense timesteps: {dense_timesteps}, decay factor: {decay_factor}")
 | 
			
		||||
    
 | 
			
		||||
    for layer_idx, m in enumerate(pipe.transformer.blocks):
 | 
			
		||||
        m.attn1.processor.layer_idx = layer_idx
 | 
			
		||||
        
 | 
			
		||||
    for _, m in pipe.transformer.named_modules():
 | 
			
		||||
        if isinstance(m, AttentionModuleMixin) and hasattr(m.processor, 'layer_idx'):
 | 
			
		||||
            layer_idx = m.processor.layer_idx
 | 
			
		||||
            m.set_processor(AttnModule(layer_idx))
 | 
			
		||||
							
								
								
									
										424
									
								
								shared/radial_attention/sparse_transformer.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										424
									
								
								shared/radial_attention/sparse_transformer.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,424 @@
 | 
			
		||||
# borrowed from svg-project/Sparse-VideoGen
 | 
			
		||||
 | 
			
		||||
from typing import Any, Dict, Optional, Tuple, Union
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
 | 
			
		||||
from diffusers.models.transformers.transformer_wan import WanTransformerBlock, WanTransformer3DModel
 | 
			
		||||
from diffusers import WanPipeline
 | 
			
		||||
from diffusers.models.modeling_outputs import Transformer2DModelOutput
 | 
			
		||||
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
from typing import Any, Callable, Dict, List, Optional, Union
 | 
			
		||||
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
 | 
			
		||||
from diffusers.pipelines.wan.pipeline_output import WanPipelineOutput
 | 
			
		||||
import torch.distributed as dist
 | 
			
		||||
 | 
			
		||||
try:
 | 
			
		||||
    from xfuser.core.distributed import (
 | 
			
		||||
        get_ulysses_parallel_world_size,
 | 
			
		||||
        get_ulysses_parallel_rank,
 | 
			
		||||
        get_sp_group
 | 
			
		||||
    )
 | 
			
		||||
except:
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
class WanTransformerBlock_Sparse(WanTransformerBlock):
 | 
			
		||||
    def forward(
 | 
			
		||||
        self,
 | 
			
		||||
        hidden_states: torch.Tensor,
 | 
			
		||||
        encoder_hidden_states: torch.Tensor,
 | 
			
		||||
        temb: torch.Tensor,
 | 
			
		||||
        rotary_emb: torch.Tensor,
 | 
			
		||||
        numeral_timestep: Optional[int] = None,
 | 
			
		||||
    ) -> torch.Tensor:
 | 
			
		||||
        if temb.ndim == 4:
 | 
			
		||||
            # temb: batch_size, seq_len, 6, inner_dim (wan2.2 ti2v)
 | 
			
		||||
            shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = (
 | 
			
		||||
                self.scale_shift_table.unsqueeze(0) + temb.float()
 | 
			
		||||
            ).chunk(6, dim=2)
 | 
			
		||||
            # batch_size, seq_len, 1, inner_dim
 | 
			
		||||
            shift_msa = shift_msa.squeeze(2)
 | 
			
		||||
            scale_msa = scale_msa.squeeze(2)
 | 
			
		||||
            gate_msa = gate_msa.squeeze(2)
 | 
			
		||||
            c_shift_msa = c_shift_msa.squeeze(2)
 | 
			
		||||
            c_scale_msa = c_scale_msa.squeeze(2)
 | 
			
		||||
            c_gate_msa = c_gate_msa.squeeze(2)
 | 
			
		||||
        else:
 | 
			
		||||
            # temb: batch_size, 6, inner_dim (wan2.1/wan2.2 14B)
 | 
			
		||||
            shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = (
 | 
			
		||||
                self.scale_shift_table + temb.float()
 | 
			
		||||
            ).chunk(6, dim=1)
 | 
			
		||||
 | 
			
		||||
        # 1. Self-attention
 | 
			
		||||
        norm_hidden_states = (self.norm1(hidden_states.float()) * (1 + scale_msa) + shift_msa).type_as(hidden_states)
 | 
			
		||||
        attn_output = self.attn1(hidden_states=norm_hidden_states, rotary_emb=rotary_emb, numerical_timestep=numeral_timestep)
 | 
			
		||||
        hidden_states = (hidden_states.float() + attn_output * gate_msa).type_as(hidden_states).contiguous()
 | 
			
		||||
 | 
			
		||||
        # 2. Cross-attention
 | 
			
		||||
        norm_hidden_states = self.norm2(hidden_states.float()).type_as(hidden_states)
 | 
			
		||||
        attn_output = self.attn2(hidden_states=norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
 | 
			
		||||
        hidden_states = hidden_states + attn_output
 | 
			
		||||
 | 
			
		||||
        # 3. Feed-forward
 | 
			
		||||
        norm_hidden_states = (self.norm3(hidden_states.float()) * (1 + c_scale_msa) + c_shift_msa).type_as(
 | 
			
		||||
            hidden_states
 | 
			
		||||
        )
 | 
			
		||||
        ff_output = self.ffn(norm_hidden_states)
 | 
			
		||||
        hidden_states = (hidden_states.float() + ff_output.float() * c_gate_msa).type_as(hidden_states)
 | 
			
		||||
 | 
			
		||||
        return hidden_states
 | 
			
		||||
 | 
			
		||||
class WanTransformer3DModel_Sparse(WanTransformer3DModel):
 | 
			
		||||
    def forward(
 | 
			
		||||
        self,
 | 
			
		||||
        hidden_states: torch.Tensor,
 | 
			
		||||
        timestep: torch.LongTensor,
 | 
			
		||||
        encoder_hidden_states: torch.Tensor,
 | 
			
		||||
        numeral_timestep: Optional[int] = None,
 | 
			
		||||
        encoder_hidden_states_image: Optional[torch.Tensor] = None,
 | 
			
		||||
        return_dict: bool = True,
 | 
			
		||||
        attention_kwargs: Optional[Dict[str, Any]] = None,
 | 
			
		||||
    ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
 | 
			
		||||
        if attention_kwargs is not None:
 | 
			
		||||
            attention_kwargs = attention_kwargs.copy()
 | 
			
		||||
            lora_scale = attention_kwargs.pop("scale", 1.0)
 | 
			
		||||
        else:
 | 
			
		||||
            lora_scale = 1.0
 | 
			
		||||
 | 
			
		||||
        if USE_PEFT_BACKEND:
 | 
			
		||||
            # weight the lora layers by setting `lora_scale` for each PEFT layer
 | 
			
		||||
            scale_lora_layers(self, lora_scale)
 | 
			
		||||
        else:
 | 
			
		||||
            if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
 | 
			
		||||
                logger.warning(
 | 
			
		||||
                    "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
        batch_size, num_channels, num_frames, height, width = hidden_states.shape
 | 
			
		||||
        p_t, p_h, p_w = self.config.patch_size
 | 
			
		||||
        post_patch_num_frames = num_frames // p_t
 | 
			
		||||
        post_patch_height = height // p_h
 | 
			
		||||
        post_patch_width = width // p_w
 | 
			
		||||
 | 
			
		||||
        rotary_emb = self.rope(hidden_states)
 | 
			
		||||
 | 
			
		||||
        hidden_states = self.patch_embedding(hidden_states)
 | 
			
		||||
        hidden_states = hidden_states.flatten(2).transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
        # timestep shape: batch_size, or batch_size, seq_len (wan 2.2 ti2v)
 | 
			
		||||
        if timestep.ndim == 2:
 | 
			
		||||
            ts_seq_len = timestep.shape[1]
 | 
			
		||||
            timestep = timestep.flatten() # batch_size * seq_len
 | 
			
		||||
        else:
 | 
			
		||||
            ts_seq_len = None
 | 
			
		||||
 | 
			
		||||
        temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image = self.condition_embedder(
 | 
			
		||||
            timestep, encoder_hidden_states, encoder_hidden_states_image, timestep_seq_len=ts_seq_len
 | 
			
		||||
        )
 | 
			
		||||
        
 | 
			
		||||
        if ts_seq_len is not None:
 | 
			
		||||
            # batch_size, seq_len, 6, inner_dim
 | 
			
		||||
            timestep_proj = timestep_proj.unflatten(2, (6, -1))
 | 
			
		||||
        else:
 | 
			
		||||
            # batch_size, 6, inner_dim
 | 
			
		||||
            timestep_proj = timestep_proj.unflatten(1, (6, -1))
 | 
			
		||||
 | 
			
		||||
        if encoder_hidden_states_image is not None:
 | 
			
		||||
            encoder_hidden_states = torch.concat([encoder_hidden_states_image, encoder_hidden_states], dim=1)
 | 
			
		||||
 | 
			
		||||
        if dist.is_initialized() and get_ulysses_parallel_world_size() > 1:
 | 
			
		||||
            # split video latents on dim TS
 | 
			
		||||
            hidden_states = torch.chunk(hidden_states, get_ulysses_parallel_world_size(), dim=-2)[get_ulysses_parallel_rank()]
 | 
			
		||||
            rotary_emb = (
 | 
			
		||||
                torch.chunk(rotary_emb[0], get_ulysses_parallel_world_size(), dim=1)[get_ulysses_parallel_rank()],
 | 
			
		||||
                torch.chunk(rotary_emb[1], get_ulysses_parallel_world_size(), dim=1)[get_ulysses_parallel_rank()],
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        # 4. Transformer blocks
 | 
			
		||||
        if torch.is_grad_enabled() and self.gradient_checkpointing:
 | 
			
		||||
            for block in self.blocks:
 | 
			
		||||
                hidden_states = self._gradient_checkpointing_func(
 | 
			
		||||
                    block, hidden_states, encoder_hidden_states, timestep_proj, rotary_emb, numeral_timestep=numeral_timestep
 | 
			
		||||
                )
 | 
			
		||||
        else:
 | 
			
		||||
            for block in self.blocks:
 | 
			
		||||
                hidden_states = block(
 | 
			
		||||
                    hidden_states, 
 | 
			
		||||
                    encoder_hidden_states, 
 | 
			
		||||
                    timestep_proj, 
 | 
			
		||||
                    rotary_emb,
 | 
			
		||||
                    numeral_timestep=numeral_timestep,
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
        # 5. Output norm, projection & unpatchify
 | 
			
		||||
        if temb.ndim == 3:
 | 
			
		||||
            # batch_size, seq_len, inner_dim (wan 2.2 ti2v)
 | 
			
		||||
            shift, scale = (self.scale_shift_table.unsqueeze(0) + temb.unsqueeze(2)).chunk(2, dim=2)
 | 
			
		||||
            shift = shift.squeeze(2)
 | 
			
		||||
            scale = scale.squeeze(2)
 | 
			
		||||
        else:
 | 
			
		||||
            # batch_size, inner_dim
 | 
			
		||||
            shift, scale = (self.scale_shift_table + temb.unsqueeze(1)).chunk(2, dim=1)
 | 
			
		||||
            
 | 
			
		||||
        # Move the shift and scale tensors to the same device as hidden_states.
 | 
			
		||||
        # When using multi-GPU inference via accelerate these will be on the
 | 
			
		||||
        # first device rather than the last device, which hidden_states ends up
 | 
			
		||||
        # on.
 | 
			
		||||
        shift = shift.to(hidden_states.device)
 | 
			
		||||
        scale = scale.to(hidden_states.device)
 | 
			
		||||
 | 
			
		||||
        hidden_states = (self.norm_out(hidden_states.float()) * (1 + scale) + shift).type_as(hidden_states)
 | 
			
		||||
        hidden_states = self.proj_out(hidden_states)
 | 
			
		||||
 | 
			
		||||
        if dist.is_initialized() and get_ulysses_parallel_world_size() > 1:
 | 
			
		||||
            hidden_states = get_sp_group().all_gather(hidden_states, dim=-2)
 | 
			
		||||
 | 
			
		||||
        hidden_states = hidden_states.reshape(
 | 
			
		||||
            batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p_h, p_w, -1
 | 
			
		||||
        )
 | 
			
		||||
        hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
 | 
			
		||||
        output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
 | 
			
		||||
 | 
			
		||||
        if USE_PEFT_BACKEND:
 | 
			
		||||
            # remove `lora_scale` from each PEFT layer
 | 
			
		||||
            unscale_lora_layers(self, lora_scale)
 | 
			
		||||
 | 
			
		||||
        if not return_dict:
 | 
			
		||||
            return (output,)
 | 
			
		||||
 | 
			
		||||
        return Transformer2DModelOutput(sample=output)
 | 
			
		||||
    
 | 
			
		||||
class WanPipeline_Sparse(WanPipeline):
 | 
			
		||||
    @torch.no_grad()
 | 
			
		||||
    def __call__(
 | 
			
		||||
        self,
 | 
			
		||||
        prompt: Union[str, List[str]] = None,
 | 
			
		||||
        negative_prompt: Union[str, List[str]] = None,
 | 
			
		||||
        height: int = 480,
 | 
			
		||||
        width: int = 832,
 | 
			
		||||
        num_frames: int = 81,
 | 
			
		||||
        num_inference_steps: int = 50,
 | 
			
		||||
        guidance_scale: float = 5.0,
 | 
			
		||||
        num_videos_per_prompt: Optional[int] = 1,
 | 
			
		||||
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
 | 
			
		||||
        latents: Optional[torch.Tensor] = None,
 | 
			
		||||
        prompt_embeds: Optional[torch.Tensor] = None,
 | 
			
		||||
        negative_prompt_embeds: Optional[torch.Tensor] = None,
 | 
			
		||||
        output_type: Optional[str] = "np",
 | 
			
		||||
        return_dict: bool = True,
 | 
			
		||||
        attention_kwargs: Optional[Dict[str, Any]] = None,
 | 
			
		||||
        callback_on_step_end: Optional[
 | 
			
		||||
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
 | 
			
		||||
        ] = None,
 | 
			
		||||
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
 | 
			
		||||
        max_sequence_length: int = 512,
 | 
			
		||||
    ):
 | 
			
		||||
        r"""
 | 
			
		||||
        The call function to the pipeline for generation.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            prompt (`str` or `List[str]`, *optional*):
 | 
			
		||||
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
 | 
			
		||||
                instead.
 | 
			
		||||
            height (`int`, defaults to `480`):
 | 
			
		||||
                The height in pixels of the generated image.
 | 
			
		||||
            width (`int`, defaults to `832`):
 | 
			
		||||
                The width in pixels of the generated image.
 | 
			
		||||
            num_frames (`int`, defaults to `81`):
 | 
			
		||||
                The number of frames in the generated video.
 | 
			
		||||
            num_inference_steps (`int`, defaults to `50`):
 | 
			
		||||
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
 | 
			
		||||
                expense of slower inference.
 | 
			
		||||
            guidance_scale (`float`, defaults to `5.0`):
 | 
			
		||||
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
 | 
			
		||||
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
 | 
			
		||||
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
 | 
			
		||||
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
 | 
			
		||||
                usually at the expense of lower image quality.
 | 
			
		||||
            num_videos_per_prompt (`int`, *optional*, defaults to 1):
 | 
			
		||||
                The number of images to generate per prompt.
 | 
			
		||||
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
 | 
			
		||||
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
 | 
			
		||||
                generation deterministic.
 | 
			
		||||
            latents (`torch.Tensor`, *optional*):
 | 
			
		||||
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
 | 
			
		||||
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
 | 
			
		||||
                tensor is generated by sampling using the supplied random `generator`.
 | 
			
		||||
            prompt_embeds (`torch.Tensor`, *optional*):
 | 
			
		||||
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
 | 
			
		||||
                provided, text embeddings are generated from the `prompt` input argument.
 | 
			
		||||
            output_type (`str`, *optional*, defaults to `"pil"`):
 | 
			
		||||
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
 | 
			
		||||
            return_dict (`bool`, *optional*, defaults to `True`):
 | 
			
		||||
                Whether or not to return a [`WanPipelineOutput`] instead of a plain tuple.
 | 
			
		||||
            attention_kwargs (`dict`, *optional*):
 | 
			
		||||
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
 | 
			
		||||
                `self.processor` in
 | 
			
		||||
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
 | 
			
		||||
            callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
 | 
			
		||||
                A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
 | 
			
		||||
                each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
 | 
			
		||||
                DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
 | 
			
		||||
                list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
 | 
			
		||||
            callback_on_step_end_tensor_inputs (`List`, *optional*):
 | 
			
		||||
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
 | 
			
		||||
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
 | 
			
		||||
                `._callback_tensor_inputs` attribute of your pipeline class.
 | 
			
		||||
            autocast_dtype (`torch.dtype`, *optional*, defaults to `torch.bfloat16`):
 | 
			
		||||
                The dtype to use for the torch.amp.autocast.
 | 
			
		||||
 | 
			
		||||
        Examples:
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            [`~WanPipelineOutput`] or `tuple`:
 | 
			
		||||
                If `return_dict` is `True`, [`WanPipelineOutput`] is returned, otherwise a `tuple` is returned where
 | 
			
		||||
                the first element is a list with the generated images and the second element is a list of `bool`s
 | 
			
		||||
                indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
 | 
			
		||||
        """
 | 
			
		||||
 | 
			
		||||
        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
 | 
			
		||||
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
 | 
			
		||||
 | 
			
		||||
        # 1. Check inputs. Raise error if not correct
 | 
			
		||||
        self.check_inputs(
 | 
			
		||||
            prompt,
 | 
			
		||||
            negative_prompt,
 | 
			
		||||
            height,
 | 
			
		||||
            width,
 | 
			
		||||
            prompt_embeds,
 | 
			
		||||
            negative_prompt_embeds,
 | 
			
		||||
            callback_on_step_end_tensor_inputs,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        self._guidance_scale = guidance_scale
 | 
			
		||||
        self._attention_kwargs = attention_kwargs
 | 
			
		||||
        self._current_timestep = None
 | 
			
		||||
        self._interrupt = False
 | 
			
		||||
 | 
			
		||||
        device = self._execution_device
 | 
			
		||||
 | 
			
		||||
        # 2. Define call parameters
 | 
			
		||||
        if prompt is not None and isinstance(prompt, str):
 | 
			
		||||
            batch_size = 1
 | 
			
		||||
        elif prompt is not None and isinstance(prompt, list):
 | 
			
		||||
            batch_size = len(prompt)
 | 
			
		||||
        else:
 | 
			
		||||
            batch_size = prompt_embeds.shape[0]
 | 
			
		||||
 | 
			
		||||
        # 3. Encode input prompt
 | 
			
		||||
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
 | 
			
		||||
            prompt=prompt,
 | 
			
		||||
            negative_prompt=negative_prompt,
 | 
			
		||||
            do_classifier_free_guidance=self.do_classifier_free_guidance,
 | 
			
		||||
            num_videos_per_prompt=num_videos_per_prompt,
 | 
			
		||||
            prompt_embeds=prompt_embeds,
 | 
			
		||||
            negative_prompt_embeds=negative_prompt_embeds,
 | 
			
		||||
            max_sequence_length=max_sequence_length,
 | 
			
		||||
            device=device,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        transformer_dtype = self.transformer.dtype
 | 
			
		||||
        prompt_embeds = prompt_embeds.to(transformer_dtype)
 | 
			
		||||
        if negative_prompt_embeds is not None:
 | 
			
		||||
            negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
 | 
			
		||||
 | 
			
		||||
        # 4. Prepare timesteps
 | 
			
		||||
        self.scheduler.set_timesteps(num_inference_steps, device=device)
 | 
			
		||||
        timesteps = self.scheduler.timesteps
 | 
			
		||||
 | 
			
		||||
        # 5. Prepare latent variables
 | 
			
		||||
        num_channels_latents = self.transformer.config.in_channels
 | 
			
		||||
        latents = self.prepare_latents(
 | 
			
		||||
            batch_size * num_videos_per_prompt,
 | 
			
		||||
            num_channels_latents,
 | 
			
		||||
            height,
 | 
			
		||||
            width,
 | 
			
		||||
            num_frames,
 | 
			
		||||
            torch.float32,
 | 
			
		||||
            device,
 | 
			
		||||
            generator,
 | 
			
		||||
            latents,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # 6. Denoising loop
 | 
			
		||||
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
 | 
			
		||||
        self._num_timesteps = len(timesteps)
 | 
			
		||||
 | 
			
		||||
        with self.progress_bar(total=num_inference_steps) as progress_bar:
 | 
			
		||||
            for i, t in enumerate(timesteps):
 | 
			
		||||
                if self.interrupt:
 | 
			
		||||
                    continue
 | 
			
		||||
 | 
			
		||||
                self._current_timestep = t
 | 
			
		||||
                latent_model_input = latents.to(transformer_dtype)
 | 
			
		||||
                timestep = t.expand(latents.shape[0])
 | 
			
		||||
 | 
			
		||||
                noise_pred = self.transformer(
 | 
			
		||||
                    hidden_states=latent_model_input,
 | 
			
		||||
                    timestep=timestep,
 | 
			
		||||
                    encoder_hidden_states=prompt_embeds,
 | 
			
		||||
                    attention_kwargs=attention_kwargs,
 | 
			
		||||
                    return_dict=False,
 | 
			
		||||
                    numeral_timestep=i,
 | 
			
		||||
                )[0]
 | 
			
		||||
 | 
			
		||||
                if self.do_classifier_free_guidance:
 | 
			
		||||
                    noise_uncond = self.transformer(
 | 
			
		||||
                        hidden_states=latent_model_input,
 | 
			
		||||
                        timestep=timestep,
 | 
			
		||||
                        encoder_hidden_states=negative_prompt_embeds,
 | 
			
		||||
                        attention_kwargs=attention_kwargs,
 | 
			
		||||
                        return_dict=False,
 | 
			
		||||
                        numeral_timestep=i,
 | 
			
		||||
                    )[0]
 | 
			
		||||
                    noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)
 | 
			
		||||
 | 
			
		||||
                # compute the previous noisy sample x_t -> x_t-1
 | 
			
		||||
                latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
 | 
			
		||||
 | 
			
		||||
                if callback_on_step_end is not None:
 | 
			
		||||
                    callback_kwargs = {}
 | 
			
		||||
                    for k in callback_on_step_end_tensor_inputs:
 | 
			
		||||
                        callback_kwargs[k] = locals()[k]
 | 
			
		||||
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
 | 
			
		||||
 | 
			
		||||
                    latents = callback_outputs.pop("latents", latents)
 | 
			
		||||
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
 | 
			
		||||
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
 | 
			
		||||
 | 
			
		||||
                # call the callback, if provided
 | 
			
		||||
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
 | 
			
		||||
                    progress_bar.update()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        self._current_timestep = None
 | 
			
		||||
 | 
			
		||||
        if not output_type == "latent":
 | 
			
		||||
            latents = latents.to(self.vae.dtype)
 | 
			
		||||
            latents_mean = (
 | 
			
		||||
                torch.tensor(self.vae.config.latents_mean)
 | 
			
		||||
                .view(1, self.vae.config.z_dim, 1, 1, 1)
 | 
			
		||||
                .to(latents.device, latents.dtype)
 | 
			
		||||
            )
 | 
			
		||||
            latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
 | 
			
		||||
                latents.device, latents.dtype
 | 
			
		||||
            )
 | 
			
		||||
            latents = latents / latents_std + latents_mean
 | 
			
		||||
            video = self.vae.decode(latents, return_dict=False)[0]
 | 
			
		||||
            video = self.video_processor.postprocess_video(video, output_type=output_type)
 | 
			
		||||
        else:
 | 
			
		||||
            video = latents
 | 
			
		||||
 | 
			
		||||
        # Offload all models
 | 
			
		||||
        self.maybe_free_model_hooks()
 | 
			
		||||
 | 
			
		||||
        if not return_dict:
 | 
			
		||||
            return (video,)
 | 
			
		||||
 | 
			
		||||
        return WanPipelineOutput(frames=video)
 | 
			
		||||
 | 
			
		||||
def replace_sparse_forward():
 | 
			
		||||
    WanTransformerBlock.forward = WanTransformerBlock_Sparse.forward
 | 
			
		||||
    WanTransformer3DModel.forward = WanTransformer3DModel_Sparse.forward
 | 
			
		||||
    WanPipeline.__call__ = WanPipeline_Sparse.__call__
 | 
			
		||||
							
								
								
									
										16
									
								
								shared/radial_attention/utils.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										16
									
								
								shared/radial_attention/utils.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,16 @@
 | 
			
		||||
import os
 | 
			
		||||
import random
 | 
			
		||||
import numpy as np
 | 
			
		||||
import torch
 | 
			
		||||
 | 
			
		||||
def set_seed(seed):
 | 
			
		||||
    """
 | 
			
		||||
    Set the random seed for reproducibility.
 | 
			
		||||
    """
 | 
			
		||||
    random.seed(seed)
 | 
			
		||||
    os.environ['PYTHONHASHSEED'] = str(seed)
 | 
			
		||||
    np.random.seed(seed)
 | 
			
		||||
    torch.manual_seed(seed)
 | 
			
		||||
    torch.cuda.manual_seed(seed)
 | 
			
		||||
    torch.backends.cudnn.deterministic = True
 | 
			
		||||
    torch.backends.cudnn.benchmark = False
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user