Wan2.1/shared/radial_attention/inference.py
2025-09-27 15:22:31 +02:00

41 lines
1.6 KiB
Python

import torch
from diffusers.models.attention_processor import Attention
from diffusers.models.attention import AttentionModuleMixin
from .attention import WanSparseAttnProcessor
from .attn_mask import MaskMap
def setup_radial_attention(
pipe,
height,
width,
num_frames,
dense_layers=0,
dense_timesteps=0,
decay_factor=1.0,
sparsity_type="radial",
use_sage_attention=False,
):
num_frames = 1 + num_frames // (pipe.vae_scale_factor_temporal * pipe.transformer.config.patch_size[0])
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
frame_size = int(height // mod_value) * int(width // mod_value)
AttnModule = WanSparseAttnProcessor
AttnModule.dense_block = dense_layers
AttnModule.dense_timestep = dense_timesteps
AttnModule.mask_map = MaskMap(video_token_num=frame_size * num_frames, num_frame=num_frames)
AttnModule.decay_factor = decay_factor
AttnModule.sparse_type = sparsity_type
AttnModule.use_sage_attention = use_sage_attention
print(f"Replacing Wan attention with {sparsity_type} attention")
print(f"video token num: {AttnModule.mask_map.video_token_num}, num frames: {num_frames}")
print(f"dense layers: {dense_layers}, dense timesteps: {dense_timesteps}, decay factor: {decay_factor}")
for layer_idx, m in enumerate(pipe.transformer.blocks):
m.attn1.processor.layer_idx = layer_idx
for _, m in pipe.transformer.named_modules():
if isinstance(m, AttentionModuleMixin) and hasattr(m.processor, 'layer_idx'):
layer_idx = m.processor.layer_idx
m.set_processor(AttnModule(layer_idx))