missed files

This commit is contained in:
DeepBeepMeep 2025-09-27 15:22:31 +02:00
parent 5ce8fc3d53
commit d62748a226
5 changed files with 909 additions and 0 deletions

View File

@ -0,0 +1,49 @@
from typing import Optional, Tuple
import torch
import torch.nn.functional as F
from einops import rearrange
from .attn_mask import RadialAttention, MaskMap
def fill_radial_cache(radial_cache, nb_layers, lat_t, lat_h, lat_w):
MaskMap._log_mask = None
for i in range(nb_layers):
radial_cache[i] = WanSparseAttnProcessor2_0(i, lat_t, lat_h, lat_w)
class WanSparseAttnProcessor2_0:
mask_map = None
dense_timestep = 0
dense_block = 0
decay_factor = 1.0
sparse_type = "radial" # default to radial attention, can be changed to "dense" for dense attention
use_sage_attention = True
def __init__(self, layer_idx, lat_t, lat_h, lat_w):
self.layer_idx = layer_idx
self.mask_map = MaskMap(video_token_num=lat_t * lat_h * lat_w // 4 , num_frame=lat_t)
def __call__(
self,
qkv_list,
timestep_no = 0,
) -> torch.Tensor:
query, key, value = qkv_list
batch_size = query.shape[0]
# transform (batch_size, seq_len, num_heads, head_dim) to (seq_len * batch_size, num_heads, head_dim)
query = rearrange(query, "b s h d -> (b s) h d")
key = rearrange(key, "b s h d -> (b s) h d")
value = rearrange(value, "b s h d -> (b s) h d")
if timestep_no < self.dense_timestep or self.layer_idx < self.dense_block or self.sparse_type == "dense":
hidden_states = RadialAttention(
query=query, key=key, value=value, mask_map=self.mask_map, sparsity_type="dense", block_size=128, decay_factor=self.decay_factor, model_type="wan", pre_defined_mask=None, use_sage_attention=self.use_sage_attention
)
else:
# apply radial attention
hidden_states = RadialAttention(
query=query, key=key, value=value, mask_map=self.mask_map, sparsity_type="radial", block_size=128, decay_factor=self.decay_factor, model_type="wan", pre_defined_mask=None, use_sage_attention=self.use_sage_attention
)
# transform back to (batch_size, num_heads, seq_len, head_dim)
hidden_states = rearrange(hidden_states, "(b s) h d -> b s h d", b=batch_size)
return hidden_states

View File

@ -0,0 +1,379 @@
import torch
# import flashinfer
import matplotlib.pyplot as plt
# from sparse_sageattn import sparse_sageattn
from einops import rearrange, repeat
from sageattention import sageattn
from spas_sage_attn import block_sparse_sage2_attn_cuda
def get_cuda_arch_versions():
cuda_archs = []
for i in range(torch.cuda.device_count()):
major, minor = torch.cuda.get_device_capability(i)
cuda_archs.append(f"sm{major}{minor}")
return cuda_archs
from spas_sage_attn import block_sparse_sage2_attn_cuda
def sparge_mask_convert(mask: torch.Tensor, block_size: int = 128, arch="sm") -> torch.Tensor:
assert block_size in [128, 64], "Radial Attention only supports block size of 128 or 64"
assert mask.shape[0] == mask.shape[1], "Input mask must be square."
if block_size == 128:
if arch == "sm90":
new_mask = torch.repeat_interleave(mask, 2, dim=0)
else:
new_mask = torch.repeat_interleave(mask, 2, dim=1)
elif block_size == 64:
if arch == "sm90":
num_row, num_col = mask.shape
reshaped_mask = mask.view(num_row, num_col // 2, 2)
new_mask = torch.max(reshaped_mask, dim=2).values
else:
num_row, num_col = mask.shape
reshaped_mask = mask.view(num_row // 2, 2, num_col)
new_mask = torch.max(reshaped_mask, dim=1).values
return new_mask
def get_indptr_from_mask(mask, query):
# query shows the device of the indptr
# indptr (torch.Tensor) - the block index pointer of the block-sparse matrix on row dimension,
# shape `(MB + 1,)`, where `MB` is the number of blocks in the row dimension.
# The first element is always 0, and the last element is the number of blocks in the row dimension.
# The rest of the elements are the number of blocks in each row.
# the mask is already a block sparse mask
indptr = torch.zeros(mask.shape[0] + 1, device=query.device, dtype=torch.int32)
indptr[0] = 0
row_counts = mask.sum(dim=1).flatten() # Ensure 1D output [num_blocks_row]
indptr[1:] = torch.cumsum(row_counts, dim=0)
return indptr
def get_indices_from_mask(mask, query):
# indices (torch.Tensor) - the block indices of the block-sparse matrix on column dimension,
# shape `(nnz,),` where `nnz` is the number of non-zero blocks.
# The elements in `indices` array should be less than `NB`: the number of blocks in the column dimension.
nonzero_indices = torch.nonzero(mask)
indices = nonzero_indices[:, 1].to(dtype=torch.int32, device=query.device)
return indices
def shrinkMaskStrict(mask, block_size=128):
seqlen = mask.shape[0]
block_num = seqlen // block_size
mask = mask[:block_num * block_size, :block_num * block_size].view(block_num, block_size, block_num, block_size)
col_densities = mask.sum(dim = 1) / block_size
# we want the minimum non-zero column density in the block
non_zero_densities = col_densities > 0
high_density_cols = col_densities > 1/3
frac_high_density_cols = high_density_cols.sum(dim=-1) / (non_zero_densities.sum(dim=-1) + 1e-9)
block_mask = frac_high_density_cols > 0.6
block_mask[0:0] = True
block_mask[-1:-1] = True
return block_mask
def pad_qkv(input_tensor, block_size=128):
"""
Pad the input tensor to be a multiple of the block size.
input shape: (seqlen, num_heads, hidden_dim)
"""
seqlen, num_heads, hidden_dim = input_tensor.shape
# Calculate the necessary padding
padding_length = (block_size - (seqlen % block_size)) % block_size
# Create a padded tensor with zeros
padded_tensor = torch.zeros((seqlen + padding_length, num_heads, hidden_dim), device=input_tensor.device, dtype=input_tensor.dtype)
# Copy the original tensor into the padded tensor
padded_tensor[:seqlen, :, :] = input_tensor
return padded_tensor
def get_diagonal_split_mask(i, j, token_per_frame, sparse_type, query):
assert(sparse_type in ["radial"])
dist = abs(i - j)
group = dist.bit_length()
threshold = 128 # hardcoded threshold for now, which is equal to block-size
decay_length = 2 ** token_per_frame.bit_length() / 2 ** group
if decay_length >= threshold:
return torch.ones((token_per_frame, token_per_frame), device=query.device, dtype=torch.bool)
split_factor = int(threshold / decay_length)
modular = dist % split_factor
if modular == 0:
return torch.ones((token_per_frame, token_per_frame), device=query.device, dtype=torch.bool)
else:
return torch.zeros((token_per_frame, token_per_frame), device=query.device, dtype=torch.bool)
def get_window_width(i, j, token_per_frame, sparse_type, num_frame, decay_factor=1, block_size=128, model_type=None):
assert(sparse_type in ["radial"])
dist = abs(i - j)
if model_type == "wan":
if dist < 1:
return token_per_frame
if dist == 1:
return token_per_frame // 2
elif model_type == "hunyuan":
if dist <= 1:
return token_per_frame
else:
raise ValueError(f"Unknown model type: {model_type}")
group = dist.bit_length()
decay_length = 2 ** token_per_frame.bit_length() / 2 ** group * decay_factor
threshold = block_size
if decay_length >= threshold:
return decay_length
else:
return threshold
def gen_log_mask_shrinked(query, s, video_token_num, num_frame, block_size=128, sparse_type="log", decay_factor=0.5, model_type=None):
"""
A more memory friendly version, we generate the attention mask of each frame pair at a time,
shrinks it, and stores it into the final result
"""
final_log_mask = torch.zeros((s // block_size, s // block_size), device=query.device, dtype=torch.bool)
token_per_frame = video_token_num // num_frame
video_text_border = video_token_num // block_size
col_indices = torch.arange(0, token_per_frame, device=query.device).view(1, -1)
row_indices = torch.arange(0, token_per_frame, device=query.device).view(-1, 1)
final_log_mask[video_text_border:] = True
final_log_mask[:, video_text_border:] = True
for i in range(num_frame):
for j in range(num_frame):
local_mask = torch.zeros((token_per_frame, token_per_frame), device=query.device, dtype=torch.bool)
if j == 0 and model_type == "wan": # this is attention sink
local_mask = torch.ones((token_per_frame, token_per_frame), device=query.device, dtype=torch.bool)
else:
window_width = get_window_width(i, j, token_per_frame, sparse_type, num_frame, decay_factor=decay_factor, block_size=block_size, model_type=model_type)
local_mask = torch.abs(col_indices - row_indices) <= window_width
split_mask = get_diagonal_split_mask(i, j, token_per_frame, sparse_type, query)
local_mask = torch.logical_and(local_mask, split_mask)
remainder_row = (i * token_per_frame) % block_size
remainder_col = (j * token_per_frame) % block_size
# get the padded size
all_length_row = remainder_row + ((token_per_frame - 1) // block_size + 1) * block_size
all_length_col = remainder_col + ((token_per_frame - 1) // block_size + 1) * block_size
padded_local_mask = torch.zeros((all_length_row, all_length_col), device=query.device, dtype=torch.bool)
padded_local_mask[remainder_row:remainder_row + token_per_frame, remainder_col:remainder_col + token_per_frame] = local_mask
# shrink the mask
block_mask = shrinkMaskStrict(padded_local_mask, block_size=block_size)
# set the block mask to the final log mask
block_row_start = (i * token_per_frame) // block_size
block_col_start = (j * token_per_frame) // block_size
block_row_end = block_row_start + block_mask.shape[0]
block_col_end = block_col_start + block_mask.shape[1]
final_log_mask[block_row_start:block_row_end, block_col_start:block_col_end] = torch.logical_or(
final_log_mask[block_row_start:block_row_end, block_col_start:block_col_end], block_mask)
print(f"mask sparsity: {1 - final_log_mask.sum() / final_log_mask.numel()}")
return final_log_mask
class MaskMap:
_log_mask = None
def __init__(self, video_token_num=25440, num_frame=16):
self.video_token_num = video_token_num
self.num_frame = num_frame
def queryLogMask(self, query, sparse_type, block_size=128, decay_factor=0.5, model_type=None):
if MaskMap._log_mask is None:
MaskMap._log_mask = torch.ones((query.shape[0] // block_size, query.shape[0] // block_size), device=query.device, dtype=torch.bool)
MaskMap._log_mask = gen_log_mask_shrinked(query, query.shape[0], self.video_token_num, self.num_frame, sparse_type=sparse_type, decay_factor=decay_factor, model_type=model_type, block_size=block_size)
return MaskMap._log_mask
def SpargeSageAttnBackend(query, key, value, mask_map=None, video_mask=None, pre_defined_mask=None, block_size=128):
if video_mask.all():
# dense case
kv_border = pre_defined_mask[0].sum() if pre_defined_mask is not None else key.shape[0]
output_video = sageattn(
query[:mask_map.video_token_num, :, :].unsqueeze(0),
key[:kv_border, :, :].unsqueeze(0),
value[:kv_border, :, :].unsqueeze(0),
tensor_layout="NHD",
)[0]
if pre_defined_mask is not None:
output_text = flashinfer.single_prefill_with_kv_cache(
q=query[mask_map.video_token_num:, :, :],
k=key[:pre_defined_mask[0].sum(), :, :],
v=value[:pre_defined_mask[0].sum(), :, :],
causal=False,
return_lse=False,
)
return torch.cat([output_video, output_text], dim=0)
else:
return output_video
# sparse-sageattention only supports (b, h, s, d) layout, need rearrange first
query_hnd = rearrange(query.unsqueeze(0), "b s h d -> b h s d")
key_hnd = rearrange(key.unsqueeze(0), "b s h d -> b h s d")
value_hnd = rearrange(value.unsqueeze(0), "b s h d -> b h s d")
arch = get_cuda_arch_versions()[query.device.index]
converted_mask = repeat(sparge_mask_convert(mask=video_mask, block_size=block_size, arch=arch), "s t -> b h s t", b=query_hnd.shape[0], h=query_hnd.shape[1])
converted_mask = converted_mask.to(torch.int8)
if pre_defined_mask is None:
# wan case
output = block_sparse_sage2_attn_cuda(
query_hnd[:, :, :mask_map.video_token_num, :],
key_hnd[:, :, :mask_map.video_token_num, :],
value_hnd[:, :, :mask_map.video_token_num, :],
mask_id=converted_mask,
tensor_layout="HND",
)
# rearrange back to (s, h, d), we know that b = 1
output = rearrange(output, "b h s d -> s (b h) d", b=1)
return output
query_video = query_hnd[:, :, :mask_map.video_token_num, :]
key_video = key_hnd
value_video = value_hnd
kv_border = (pre_defined_mask[0].sum() + 63) // 64
converted_mask[:, :, :, kv_border:] = False
output_video = block_sparse_sage2_attn_cuda(
query_video,
key_video,
value_video,
mask_id=converted_mask[:, :, :mask_map.video_token_num // block_size, :].contiguous(),
tensor_layout="HND",
)
# rearrange back to (s, h, d), we know that b = 1
output_video = rearrange(output_video, "b h s d -> s (b h) d", b=1)
# gt = sparse_sageattn(
# query_video,
# key_video,
# value_video,
# mask_id=None,
# is_causal=False,
# tensor_layout="HND",
# )[0]
# import pdb; pdb.set_trace()
output_text = flashinfer.single_prefill_with_kv_cache(
q=query[mask_map.video_token_num:, :, :],
k=key[:pre_defined_mask[0].sum(), :, :],
v=value[:pre_defined_mask[0].sum(), :, :],
causal=False,
return_lse=False,
)
return torch.cat([output_video, output_text], dim=0)
def FlashInferBackend(query, key, value, mask_map=None, pre_defined_mask=None, bsr_wrapper=None):
if pre_defined_mask is not None:
video_video_o, video_video_o_lse = bsr_wrapper.run(
query[:mask_map.video_token_num, :, :],
key[:mask_map.video_token_num, :, :],
value[:mask_map.video_token_num, :, :],
return_lse=True
)
# perform non-causal flashinfer on the text tokens
video_text_o, video_text_o_lse = flashinfer.single_prefill_with_kv_cache(
q=query[:mask_map.video_token_num, :, :],
k=key[mask_map.video_token_num:, :, :],
v=value[mask_map.video_token_num:, :, :],
causal=False,
return_lse=True,
custom_mask=pre_defined_mask[:mask_map.video_token_num, mask_map.video_token_num:]
)
# merge the two results
o_video, _ = flashinfer.merge_state(v_a=video_video_o, s_a=video_video_o_lse, v_b=video_text_o, s_b=video_text_o_lse)
o_text = flashinfer.single_prefill_with_kv_cache(
q=query[mask_map.video_token_num:, :, :],
k=key,
v=value,
causal=False,
return_lse=False,
custom_mask=pre_defined_mask[mask_map.video_token_num:, :]
)
return torch.cat([o_video, o_text], dim=0)
else:
o = bsr_wrapper.run(
query[:mask_map.video_token_num, :, :],
key[:mask_map.video_token_num, :, :],
value[:mask_map.video_token_num, :, :]
)
return o
def RadialAttention(query, key, value, mask_map=None, sparsity_type="radial", block_size=128, decay_factor=1, model_type=None, pre_defined_mask=None, use_sage_attention=False):
orig_seqlen, num_head, hidden_dim = query.shape
if sparsity_type == "dense":
video_mask = torch.ones((mask_map.video_token_num // block_size, mask_map.video_token_num // block_size), device=query.device, dtype=torch.bool)
else:
video_mask = mask_map.queryLogMask(query, sparsity_type, block_size=block_size, decay_factor=decay_factor, model_type=model_type) if mask_map else None
backend = "sparse_sageattn" if use_sage_attention else "flashinfer"
if backend == "flashinfer":
video_mask = video_mask[:mask_map.video_token_num // block_size, :mask_map.video_token_num // block_size]
# perform block-sparse attention on the video tokens
workspace_buffer = torch.empty(128 * 1024 * 1024, device=query.device, dtype=torch.uint8)
bsr_wrapper = flashinfer.BlockSparseAttentionWrapper(
workspace_buffer,
backend="fa2",
)
indptr = get_indptr_from_mask(video_mask, query)
indices = get_indices_from_mask(video_mask, query)
bsr_wrapper.plan(
indptr=indptr,
indices=indices,
M=mask_map.video_token_num,
N=mask_map.video_token_num,
R=block_size,
C=block_size,
num_qo_heads=num_head,
num_kv_heads=num_head,
head_dim=hidden_dim,
q_data_type=query.dtype,
kv_data_type=key.dtype,
o_data_type=query.dtype,
)
return FlashInferBackend(query, key, value, mask_map, pre_defined_mask, bsr_wrapper)
elif backend == "sparse_sageattn":
return SpargeSageAttnBackend(query, key, value, mask_map, video_mask, pre_defined_mask, block_size=block_size)
if __name__ == "__main__":
query = torch.randn(1, 2, 4, 64).cuda()
# mask = torch.tensor([
# [True, False, True, False],
# [False, True, False, True],
# [True, False, False, True],
# [False, True, True, False]
# ], dtype=torch.bool)
# indices = get_indices_from_mask(mask, query)
# indptr = get_indptr_from_mask(mask, query)
# print("Indices: ", indices)
# print("Indptr: ", indptr)
video_token_num = 3840 * 30
num_frame = 30
token_per_frame = video_token_num / num_frame
padded_video_token_num = ((video_token_num + 1) // 128 + 1) * 128
print("padded: ", padded_video_token_num)
temporal_mask = gen_log_mask_shrinked(query, padded_video_token_num, video_token_num, num_frame, sparse_type="radial", decay_factor=1, model_type="hunyuan")
plt.figure(figsize=(10, 8), dpi=500)
plt.imshow(temporal_mask.cpu().numpy()[:, :], cmap='hot')
plt.colorbar()
plt.title("Temporal Mask")
plt.savefig("temporal_mask.png",
dpi=300,
bbox_inches='tight',
pad_inches=0.1)
plt.close()
# save the mask tensor
torch.save(temporal_mask, "temporal_mask.pt")

View File

@ -0,0 +1,41 @@
import torch
from diffusers.models.attention_processor import Attention
from diffusers.models.attention import AttentionModuleMixin
from .attention import WanSparseAttnProcessor
from .attn_mask import MaskMap
def setup_radial_attention(
pipe,
height,
width,
num_frames,
dense_layers=0,
dense_timesteps=0,
decay_factor=1.0,
sparsity_type="radial",
use_sage_attention=False,
):
num_frames = 1 + num_frames // (pipe.vae_scale_factor_temporal * pipe.transformer.config.patch_size[0])
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
frame_size = int(height // mod_value) * int(width // mod_value)
AttnModule = WanSparseAttnProcessor
AttnModule.dense_block = dense_layers
AttnModule.dense_timestep = dense_timesteps
AttnModule.mask_map = MaskMap(video_token_num=frame_size * num_frames, num_frame=num_frames)
AttnModule.decay_factor = decay_factor
AttnModule.sparse_type = sparsity_type
AttnModule.use_sage_attention = use_sage_attention
print(f"Replacing Wan attention with {sparsity_type} attention")
print(f"video token num: {AttnModule.mask_map.video_token_num}, num frames: {num_frames}")
print(f"dense layers: {dense_layers}, dense timesteps: {dense_timesteps}, decay factor: {decay_factor}")
for layer_idx, m in enumerate(pipe.transformer.blocks):
m.attn1.processor.layer_idx = layer_idx
for _, m in pipe.transformer.named_modules():
if isinstance(m, AttentionModuleMixin) and hasattr(m.processor, 'layer_idx'):
layer_idx = m.processor.layer_idx
m.set_processor(AttnModule(layer_idx))

View File

@ -0,0 +1,424 @@
# borrowed from svg-project/Sparse-VideoGen
from typing import Any, Dict, Optional, Tuple, Union
import torch
from diffusers.models.transformers.transformer_wan import WanTransformerBlock, WanTransformer3DModel
from diffusers import WanPipeline
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
logger = logging.get_logger(__name__)
from typing import Any, Callable, Dict, List, Optional, Union
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.pipelines.wan.pipeline_output import WanPipelineOutput
import torch.distributed as dist
try:
from xfuser.core.distributed import (
get_ulysses_parallel_world_size,
get_ulysses_parallel_rank,
get_sp_group
)
except:
pass
class WanTransformerBlock_Sparse(WanTransformerBlock):
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
rotary_emb: torch.Tensor,
numeral_timestep: Optional[int] = None,
) -> torch.Tensor:
if temb.ndim == 4:
# temb: batch_size, seq_len, 6, inner_dim (wan2.2 ti2v)
shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = (
self.scale_shift_table.unsqueeze(0) + temb.float()
).chunk(6, dim=2)
# batch_size, seq_len, 1, inner_dim
shift_msa = shift_msa.squeeze(2)
scale_msa = scale_msa.squeeze(2)
gate_msa = gate_msa.squeeze(2)
c_shift_msa = c_shift_msa.squeeze(2)
c_scale_msa = c_scale_msa.squeeze(2)
c_gate_msa = c_gate_msa.squeeze(2)
else:
# temb: batch_size, 6, inner_dim (wan2.1/wan2.2 14B)
shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = (
self.scale_shift_table + temb.float()
).chunk(6, dim=1)
# 1. Self-attention
norm_hidden_states = (self.norm1(hidden_states.float()) * (1 + scale_msa) + shift_msa).type_as(hidden_states)
attn_output = self.attn1(hidden_states=norm_hidden_states, rotary_emb=rotary_emb, numerical_timestep=numeral_timestep)
hidden_states = (hidden_states.float() + attn_output * gate_msa).type_as(hidden_states).contiguous()
# 2. Cross-attention
norm_hidden_states = self.norm2(hidden_states.float()).type_as(hidden_states)
attn_output = self.attn2(hidden_states=norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
hidden_states = hidden_states + attn_output
# 3. Feed-forward
norm_hidden_states = (self.norm3(hidden_states.float()) * (1 + c_scale_msa) + c_shift_msa).type_as(
hidden_states
)
ff_output = self.ffn(norm_hidden_states)
hidden_states = (hidden_states.float() + ff_output.float() * c_gate_msa).type_as(hidden_states)
return hidden_states
class WanTransformer3DModel_Sparse(WanTransformer3DModel):
def forward(
self,
hidden_states: torch.Tensor,
timestep: torch.LongTensor,
encoder_hidden_states: torch.Tensor,
numeral_timestep: Optional[int] = None,
encoder_hidden_states_image: Optional[torch.Tensor] = None,
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p_t, p_h, p_w = self.config.patch_size
post_patch_num_frames = num_frames // p_t
post_patch_height = height // p_h
post_patch_width = width // p_w
rotary_emb = self.rope(hidden_states)
hidden_states = self.patch_embedding(hidden_states)
hidden_states = hidden_states.flatten(2).transpose(1, 2)
# timestep shape: batch_size, or batch_size, seq_len (wan 2.2 ti2v)
if timestep.ndim == 2:
ts_seq_len = timestep.shape[1]
timestep = timestep.flatten() # batch_size * seq_len
else:
ts_seq_len = None
temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image = self.condition_embedder(
timestep, encoder_hidden_states, encoder_hidden_states_image, timestep_seq_len=ts_seq_len
)
if ts_seq_len is not None:
# batch_size, seq_len, 6, inner_dim
timestep_proj = timestep_proj.unflatten(2, (6, -1))
else:
# batch_size, 6, inner_dim
timestep_proj = timestep_proj.unflatten(1, (6, -1))
if encoder_hidden_states_image is not None:
encoder_hidden_states = torch.concat([encoder_hidden_states_image, encoder_hidden_states], dim=1)
if dist.is_initialized() and get_ulysses_parallel_world_size() > 1:
# split video latents on dim TS
hidden_states = torch.chunk(hidden_states, get_ulysses_parallel_world_size(), dim=-2)[get_ulysses_parallel_rank()]
rotary_emb = (
torch.chunk(rotary_emb[0], get_ulysses_parallel_world_size(), dim=1)[get_ulysses_parallel_rank()],
torch.chunk(rotary_emb[1], get_ulysses_parallel_world_size(), dim=1)[get_ulysses_parallel_rank()],
)
# 4. Transformer blocks
if torch.is_grad_enabled() and self.gradient_checkpointing:
for block in self.blocks:
hidden_states = self._gradient_checkpointing_func(
block, hidden_states, encoder_hidden_states, timestep_proj, rotary_emb, numeral_timestep=numeral_timestep
)
else:
for block in self.blocks:
hidden_states = block(
hidden_states,
encoder_hidden_states,
timestep_proj,
rotary_emb,
numeral_timestep=numeral_timestep,
)
# 5. Output norm, projection & unpatchify
if temb.ndim == 3:
# batch_size, seq_len, inner_dim (wan 2.2 ti2v)
shift, scale = (self.scale_shift_table.unsqueeze(0) + temb.unsqueeze(2)).chunk(2, dim=2)
shift = shift.squeeze(2)
scale = scale.squeeze(2)
else:
# batch_size, inner_dim
shift, scale = (self.scale_shift_table + temb.unsqueeze(1)).chunk(2, dim=1)
# Move the shift and scale tensors to the same device as hidden_states.
# When using multi-GPU inference via accelerate these will be on the
# first device rather than the last device, which hidden_states ends up
# on.
shift = shift.to(hidden_states.device)
scale = scale.to(hidden_states.device)
hidden_states = (self.norm_out(hidden_states.float()) * (1 + scale) + shift).type_as(hidden_states)
hidden_states = self.proj_out(hidden_states)
if dist.is_initialized() and get_ulysses_parallel_world_size() > 1:
hidden_states = get_sp_group().all_gather(hidden_states, dim=-2)
hidden_states = hidden_states.reshape(
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p_h, p_w, -1
)
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
class WanPipeline_Sparse(WanPipeline):
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
negative_prompt: Union[str, List[str]] = None,
height: int = 480,
width: int = 832,
num_frames: int = 81,
num_inference_steps: int = 50,
guidance_scale: float = 5.0,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
output_type: Optional[str] = "np",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
height (`int`, defaults to `480`):
The height in pixels of the generated image.
width (`int`, defaults to `832`):
The width in pixels of the generated image.
num_frames (`int`, defaults to `81`):
The number of frames in the generated video.
num_inference_steps (`int`, defaults to `50`):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, defaults to `5.0`):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`WanPipelineOutput`] instead of a plain tuple.
attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
autocast_dtype (`torch.dtype`, *optional*, defaults to `torch.bfloat16`):
The dtype to use for the torch.amp.autocast.
Examples:
Returns:
[`~WanPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`WanPipelineOutput`] is returned, otherwise a `tuple` is returned where
the first element is a list with the generated images and the second element is a list of `bool`s
indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
"""
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
negative_prompt,
height,
width,
prompt_embeds,
negative_prompt_embeds,
callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._current_timestep = None
self._interrupt = False
device = self._execution_device
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# 3. Encode input prompt
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt=prompt,
negative_prompt=negative_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
num_videos_per_prompt=num_videos_per_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
max_sequence_length=max_sequence_length,
device=device,
)
transformer_dtype = self.transformer.dtype
prompt_embeds = prompt_embeds.to(transformer_dtype)
if negative_prompt_embeds is not None:
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
height,
width,
num_frames,
torch.float32,
device,
generator,
latents,
)
# 6. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
self._current_timestep = t
latent_model_input = latents.to(transformer_dtype)
timestep = t.expand(latents.shape[0])
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
attention_kwargs=attention_kwargs,
return_dict=False,
numeral_timestep=i,
)[0]
if self.do_classifier_free_guidance:
noise_uncond = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=negative_prompt_embeds,
attention_kwargs=attention_kwargs,
return_dict=False,
numeral_timestep=i,
)[0]
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
self._current_timestep = None
if not output_type == "latent":
latents = latents.to(self.vae.dtype)
latents_mean = (
torch.tensor(self.vae.config.latents_mean)
.view(1, self.vae.config.z_dim, 1, 1, 1)
.to(latents.device, latents.dtype)
)
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
latents.device, latents.dtype
)
latents = latents / latents_std + latents_mean
video = self.vae.decode(latents, return_dict=False)[0]
video = self.video_processor.postprocess_video(video, output_type=output_type)
else:
video = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return WanPipelineOutput(frames=video)
def replace_sparse_forward():
WanTransformerBlock.forward = WanTransformerBlock_Sparse.forward
WanTransformer3DModel.forward = WanTransformer3DModel_Sparse.forward
WanPipeline.__call__ = WanPipeline_Sparse.__call__

View File

@ -0,0 +1,16 @@
import os
import random
import numpy as np
import torch
def set_seed(seed):
"""
Set the random seed for reproducibility.
"""
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False