mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 14:16:57 +00:00
missed files
This commit is contained in:
parent
5ce8fc3d53
commit
d62748a226
49
shared/radial_attention/attention.py
Normal file
49
shared/radial_attention/attention.py
Normal file
@ -0,0 +1,49 @@
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
from .attn_mask import RadialAttention, MaskMap
|
||||
|
||||
def fill_radial_cache(radial_cache, nb_layers, lat_t, lat_h, lat_w):
|
||||
MaskMap._log_mask = None
|
||||
|
||||
for i in range(nb_layers):
|
||||
radial_cache[i] = WanSparseAttnProcessor2_0(i, lat_t, lat_h, lat_w)
|
||||
|
||||
class WanSparseAttnProcessor2_0:
|
||||
mask_map = None
|
||||
dense_timestep = 0
|
||||
dense_block = 0
|
||||
decay_factor = 1.0
|
||||
sparse_type = "radial" # default to radial attention, can be changed to "dense" for dense attention
|
||||
use_sage_attention = True
|
||||
|
||||
def __init__(self, layer_idx, lat_t, lat_h, lat_w):
|
||||
self.layer_idx = layer_idx
|
||||
self.mask_map = MaskMap(video_token_num=lat_t * lat_h * lat_w // 4 , num_frame=lat_t)
|
||||
def __call__(
|
||||
self,
|
||||
qkv_list,
|
||||
timestep_no = 0,
|
||||
) -> torch.Tensor:
|
||||
query, key, value = qkv_list
|
||||
|
||||
batch_size = query.shape[0]
|
||||
# transform (batch_size, seq_len, num_heads, head_dim) to (seq_len * batch_size, num_heads, head_dim)
|
||||
query = rearrange(query, "b s h d -> (b s) h d")
|
||||
key = rearrange(key, "b s h d -> (b s) h d")
|
||||
value = rearrange(value, "b s h d -> (b s) h d")
|
||||
if timestep_no < self.dense_timestep or self.layer_idx < self.dense_block or self.sparse_type == "dense":
|
||||
hidden_states = RadialAttention(
|
||||
query=query, key=key, value=value, mask_map=self.mask_map, sparsity_type="dense", block_size=128, decay_factor=self.decay_factor, model_type="wan", pre_defined_mask=None, use_sage_attention=self.use_sage_attention
|
||||
)
|
||||
else:
|
||||
# apply radial attention
|
||||
hidden_states = RadialAttention(
|
||||
query=query, key=key, value=value, mask_map=self.mask_map, sparsity_type="radial", block_size=128, decay_factor=self.decay_factor, model_type="wan", pre_defined_mask=None, use_sage_attention=self.use_sage_attention
|
||||
)
|
||||
# transform back to (batch_size, num_heads, seq_len, head_dim)
|
||||
hidden_states = rearrange(hidden_states, "(b s) h d -> b s h d", b=batch_size)
|
||||
|
||||
return hidden_states
|
||||
379
shared/radial_attention/attn_mask.py
Normal file
379
shared/radial_attention/attn_mask.py
Normal file
@ -0,0 +1,379 @@
|
||||
import torch
|
||||
# import flashinfer
|
||||
import matplotlib.pyplot as plt
|
||||
# from sparse_sageattn import sparse_sageattn
|
||||
from einops import rearrange, repeat
|
||||
from sageattention import sageattn
|
||||
from spas_sage_attn import block_sparse_sage2_attn_cuda
|
||||
|
||||
def get_cuda_arch_versions():
|
||||
cuda_archs = []
|
||||
for i in range(torch.cuda.device_count()):
|
||||
major, minor = torch.cuda.get_device_capability(i)
|
||||
cuda_archs.append(f"sm{major}{minor}")
|
||||
return cuda_archs
|
||||
|
||||
from spas_sage_attn import block_sparse_sage2_attn_cuda
|
||||
|
||||
def sparge_mask_convert(mask: torch.Tensor, block_size: int = 128, arch="sm") -> torch.Tensor:
|
||||
assert block_size in [128, 64], "Radial Attention only supports block size of 128 or 64"
|
||||
assert mask.shape[0] == mask.shape[1], "Input mask must be square."
|
||||
|
||||
if block_size == 128:
|
||||
if arch == "sm90":
|
||||
new_mask = torch.repeat_interleave(mask, 2, dim=0)
|
||||
else:
|
||||
new_mask = torch.repeat_interleave(mask, 2, dim=1)
|
||||
|
||||
elif block_size == 64:
|
||||
if arch == "sm90":
|
||||
num_row, num_col = mask.shape
|
||||
reshaped_mask = mask.view(num_row, num_col // 2, 2)
|
||||
new_mask = torch.max(reshaped_mask, dim=2).values
|
||||
else:
|
||||
num_row, num_col = mask.shape
|
||||
reshaped_mask = mask.view(num_row // 2, 2, num_col)
|
||||
new_mask = torch.max(reshaped_mask, dim=1).values
|
||||
|
||||
return new_mask
|
||||
|
||||
def get_indptr_from_mask(mask, query):
|
||||
# query shows the device of the indptr
|
||||
# indptr (torch.Tensor) - the block index pointer of the block-sparse matrix on row dimension,
|
||||
# shape `(MB + 1,)`, where `MB` is the number of blocks in the row dimension.
|
||||
# The first element is always 0, and the last element is the number of blocks in the row dimension.
|
||||
# The rest of the elements are the number of blocks in each row.
|
||||
# the mask is already a block sparse mask
|
||||
indptr = torch.zeros(mask.shape[0] + 1, device=query.device, dtype=torch.int32)
|
||||
indptr[0] = 0
|
||||
row_counts = mask.sum(dim=1).flatten() # Ensure 1D output [num_blocks_row]
|
||||
indptr[1:] = torch.cumsum(row_counts, dim=0)
|
||||
return indptr
|
||||
|
||||
def get_indices_from_mask(mask, query):
|
||||
# indices (torch.Tensor) - the block indices of the block-sparse matrix on column dimension,
|
||||
# shape `(nnz,),` where `nnz` is the number of non-zero blocks.
|
||||
# The elements in `indices` array should be less than `NB`: the number of blocks in the column dimension.
|
||||
nonzero_indices = torch.nonzero(mask)
|
||||
indices = nonzero_indices[:, 1].to(dtype=torch.int32, device=query.device)
|
||||
return indices
|
||||
|
||||
def shrinkMaskStrict(mask, block_size=128):
|
||||
seqlen = mask.shape[0]
|
||||
block_num = seqlen // block_size
|
||||
mask = mask[:block_num * block_size, :block_num * block_size].view(block_num, block_size, block_num, block_size)
|
||||
col_densities = mask.sum(dim = 1) / block_size
|
||||
# we want the minimum non-zero column density in the block
|
||||
non_zero_densities = col_densities > 0
|
||||
high_density_cols = col_densities > 1/3
|
||||
frac_high_density_cols = high_density_cols.sum(dim=-1) / (non_zero_densities.sum(dim=-1) + 1e-9)
|
||||
block_mask = frac_high_density_cols > 0.6
|
||||
block_mask[0:0] = True
|
||||
block_mask[-1:-1] = True
|
||||
return block_mask
|
||||
|
||||
def pad_qkv(input_tensor, block_size=128):
|
||||
"""
|
||||
Pad the input tensor to be a multiple of the block size.
|
||||
input shape: (seqlen, num_heads, hidden_dim)
|
||||
"""
|
||||
seqlen, num_heads, hidden_dim = input_tensor.shape
|
||||
# Calculate the necessary padding
|
||||
padding_length = (block_size - (seqlen % block_size)) % block_size
|
||||
# Create a padded tensor with zeros
|
||||
padded_tensor = torch.zeros((seqlen + padding_length, num_heads, hidden_dim), device=input_tensor.device, dtype=input_tensor.dtype)
|
||||
# Copy the original tensor into the padded tensor
|
||||
padded_tensor[:seqlen, :, :] = input_tensor
|
||||
|
||||
return padded_tensor
|
||||
|
||||
def get_diagonal_split_mask(i, j, token_per_frame, sparse_type, query):
|
||||
assert(sparse_type in ["radial"])
|
||||
dist = abs(i - j)
|
||||
group = dist.bit_length()
|
||||
threshold = 128 # hardcoded threshold for now, which is equal to block-size
|
||||
decay_length = 2 ** token_per_frame.bit_length() / 2 ** group
|
||||
if decay_length >= threshold:
|
||||
return torch.ones((token_per_frame, token_per_frame), device=query.device, dtype=torch.bool)
|
||||
|
||||
split_factor = int(threshold / decay_length)
|
||||
modular = dist % split_factor
|
||||
if modular == 0:
|
||||
return torch.ones((token_per_frame, token_per_frame), device=query.device, dtype=torch.bool)
|
||||
else:
|
||||
return torch.zeros((token_per_frame, token_per_frame), device=query.device, dtype=torch.bool)
|
||||
|
||||
def get_window_width(i, j, token_per_frame, sparse_type, num_frame, decay_factor=1, block_size=128, model_type=None):
|
||||
assert(sparse_type in ["radial"])
|
||||
dist = abs(i - j)
|
||||
if model_type == "wan":
|
||||
if dist < 1:
|
||||
return token_per_frame
|
||||
if dist == 1:
|
||||
return token_per_frame // 2
|
||||
elif model_type == "hunyuan":
|
||||
if dist <= 1:
|
||||
return token_per_frame
|
||||
else:
|
||||
raise ValueError(f"Unknown model type: {model_type}")
|
||||
group = dist.bit_length()
|
||||
decay_length = 2 ** token_per_frame.bit_length() / 2 ** group * decay_factor
|
||||
threshold = block_size
|
||||
if decay_length >= threshold:
|
||||
return decay_length
|
||||
else:
|
||||
return threshold
|
||||
|
||||
def gen_log_mask_shrinked(query, s, video_token_num, num_frame, block_size=128, sparse_type="log", decay_factor=0.5, model_type=None):
|
||||
"""
|
||||
A more memory friendly version, we generate the attention mask of each frame pair at a time,
|
||||
shrinks it, and stores it into the final result
|
||||
"""
|
||||
final_log_mask = torch.zeros((s // block_size, s // block_size), device=query.device, dtype=torch.bool)
|
||||
token_per_frame = video_token_num // num_frame
|
||||
video_text_border = video_token_num // block_size
|
||||
|
||||
col_indices = torch.arange(0, token_per_frame, device=query.device).view(1, -1)
|
||||
row_indices = torch.arange(0, token_per_frame, device=query.device).view(-1, 1)
|
||||
final_log_mask[video_text_border:] = True
|
||||
final_log_mask[:, video_text_border:] = True
|
||||
for i in range(num_frame):
|
||||
for j in range(num_frame):
|
||||
local_mask = torch.zeros((token_per_frame, token_per_frame), device=query.device, dtype=torch.bool)
|
||||
if j == 0 and model_type == "wan": # this is attention sink
|
||||
local_mask = torch.ones((token_per_frame, token_per_frame), device=query.device, dtype=torch.bool)
|
||||
else:
|
||||
window_width = get_window_width(i, j, token_per_frame, sparse_type, num_frame, decay_factor=decay_factor, block_size=block_size, model_type=model_type)
|
||||
local_mask = torch.abs(col_indices - row_indices) <= window_width
|
||||
split_mask = get_diagonal_split_mask(i, j, token_per_frame, sparse_type, query)
|
||||
local_mask = torch.logical_and(local_mask, split_mask)
|
||||
|
||||
remainder_row = (i * token_per_frame) % block_size
|
||||
remainder_col = (j * token_per_frame) % block_size
|
||||
# get the padded size
|
||||
all_length_row = remainder_row + ((token_per_frame - 1) // block_size + 1) * block_size
|
||||
all_length_col = remainder_col + ((token_per_frame - 1) // block_size + 1) * block_size
|
||||
padded_local_mask = torch.zeros((all_length_row, all_length_col), device=query.device, dtype=torch.bool)
|
||||
padded_local_mask[remainder_row:remainder_row + token_per_frame, remainder_col:remainder_col + token_per_frame] = local_mask
|
||||
# shrink the mask
|
||||
block_mask = shrinkMaskStrict(padded_local_mask, block_size=block_size)
|
||||
# set the block mask to the final log mask
|
||||
block_row_start = (i * token_per_frame) // block_size
|
||||
block_col_start = (j * token_per_frame) // block_size
|
||||
block_row_end = block_row_start + block_mask.shape[0]
|
||||
block_col_end = block_col_start + block_mask.shape[1]
|
||||
final_log_mask[block_row_start:block_row_end, block_col_start:block_col_end] = torch.logical_or(
|
||||
final_log_mask[block_row_start:block_row_end, block_col_start:block_col_end], block_mask)
|
||||
print(f"mask sparsity: {1 - final_log_mask.sum() / final_log_mask.numel()}")
|
||||
return final_log_mask
|
||||
|
||||
class MaskMap:
|
||||
_log_mask = None
|
||||
|
||||
def __init__(self, video_token_num=25440, num_frame=16):
|
||||
self.video_token_num = video_token_num
|
||||
self.num_frame = num_frame
|
||||
|
||||
def queryLogMask(self, query, sparse_type, block_size=128, decay_factor=0.5, model_type=None):
|
||||
if MaskMap._log_mask is None:
|
||||
MaskMap._log_mask = torch.ones((query.shape[0] // block_size, query.shape[0] // block_size), device=query.device, dtype=torch.bool)
|
||||
MaskMap._log_mask = gen_log_mask_shrinked(query, query.shape[0], self.video_token_num, self.num_frame, sparse_type=sparse_type, decay_factor=decay_factor, model_type=model_type, block_size=block_size)
|
||||
return MaskMap._log_mask
|
||||
|
||||
def SpargeSageAttnBackend(query, key, value, mask_map=None, video_mask=None, pre_defined_mask=None, block_size=128):
|
||||
if video_mask.all():
|
||||
# dense case
|
||||
kv_border = pre_defined_mask[0].sum() if pre_defined_mask is not None else key.shape[0]
|
||||
output_video = sageattn(
|
||||
query[:mask_map.video_token_num, :, :].unsqueeze(0),
|
||||
key[:kv_border, :, :].unsqueeze(0),
|
||||
value[:kv_border, :, :].unsqueeze(0),
|
||||
tensor_layout="NHD",
|
||||
)[0]
|
||||
|
||||
if pre_defined_mask is not None:
|
||||
output_text = flashinfer.single_prefill_with_kv_cache(
|
||||
q=query[mask_map.video_token_num:, :, :],
|
||||
k=key[:pre_defined_mask[0].sum(), :, :],
|
||||
v=value[:pre_defined_mask[0].sum(), :, :],
|
||||
causal=False,
|
||||
return_lse=False,
|
||||
)
|
||||
return torch.cat([output_video, output_text], dim=0)
|
||||
else:
|
||||
return output_video
|
||||
|
||||
# sparse-sageattention only supports (b, h, s, d) layout, need rearrange first
|
||||
query_hnd = rearrange(query.unsqueeze(0), "b s h d -> b h s d")
|
||||
key_hnd = rearrange(key.unsqueeze(0), "b s h d -> b h s d")
|
||||
value_hnd = rearrange(value.unsqueeze(0), "b s h d -> b h s d")
|
||||
arch = get_cuda_arch_versions()[query.device.index]
|
||||
converted_mask = repeat(sparge_mask_convert(mask=video_mask, block_size=block_size, arch=arch), "s t -> b h s t", b=query_hnd.shape[0], h=query_hnd.shape[1])
|
||||
|
||||
converted_mask = converted_mask.to(torch.int8)
|
||||
if pre_defined_mask is None:
|
||||
# wan case
|
||||
output = block_sparse_sage2_attn_cuda(
|
||||
query_hnd[:, :, :mask_map.video_token_num, :],
|
||||
key_hnd[:, :, :mask_map.video_token_num, :],
|
||||
value_hnd[:, :, :mask_map.video_token_num, :],
|
||||
mask_id=converted_mask,
|
||||
tensor_layout="HND",
|
||||
)
|
||||
|
||||
# rearrange back to (s, h, d), we know that b = 1
|
||||
output = rearrange(output, "b h s d -> s (b h) d", b=1)
|
||||
return output
|
||||
|
||||
query_video = query_hnd[:, :, :mask_map.video_token_num, :]
|
||||
key_video = key_hnd
|
||||
value_video = value_hnd
|
||||
kv_border = (pre_defined_mask[0].sum() + 63) // 64
|
||||
converted_mask[:, :, :, kv_border:] = False
|
||||
output_video = block_sparse_sage2_attn_cuda(
|
||||
query_video,
|
||||
key_video,
|
||||
value_video,
|
||||
mask_id=converted_mask[:, :, :mask_map.video_token_num // block_size, :].contiguous(),
|
||||
tensor_layout="HND",
|
||||
)
|
||||
|
||||
# rearrange back to (s, h, d), we know that b = 1
|
||||
output_video = rearrange(output_video, "b h s d -> s (b h) d", b=1)
|
||||
|
||||
# gt = sparse_sageattn(
|
||||
# query_video,
|
||||
# key_video,
|
||||
# value_video,
|
||||
# mask_id=None,
|
||||
# is_causal=False,
|
||||
# tensor_layout="HND",
|
||||
# )[0]
|
||||
|
||||
|
||||
|
||||
# import pdb; pdb.set_trace()
|
||||
|
||||
output_text = flashinfer.single_prefill_with_kv_cache(
|
||||
q=query[mask_map.video_token_num:, :, :],
|
||||
k=key[:pre_defined_mask[0].sum(), :, :],
|
||||
v=value[:pre_defined_mask[0].sum(), :, :],
|
||||
causal=False,
|
||||
return_lse=False,
|
||||
)
|
||||
|
||||
return torch.cat([output_video, output_text], dim=0)
|
||||
|
||||
|
||||
def FlashInferBackend(query, key, value, mask_map=None, pre_defined_mask=None, bsr_wrapper=None):
|
||||
if pre_defined_mask is not None:
|
||||
video_video_o, video_video_o_lse = bsr_wrapper.run(
|
||||
query[:mask_map.video_token_num, :, :],
|
||||
key[:mask_map.video_token_num, :, :],
|
||||
value[:mask_map.video_token_num, :, :],
|
||||
return_lse=True
|
||||
)
|
||||
# perform non-causal flashinfer on the text tokens
|
||||
video_text_o, video_text_o_lse = flashinfer.single_prefill_with_kv_cache(
|
||||
q=query[:mask_map.video_token_num, :, :],
|
||||
k=key[mask_map.video_token_num:, :, :],
|
||||
v=value[mask_map.video_token_num:, :, :],
|
||||
causal=False,
|
||||
return_lse=True,
|
||||
custom_mask=pre_defined_mask[:mask_map.video_token_num, mask_map.video_token_num:]
|
||||
)
|
||||
|
||||
# merge the two results
|
||||
o_video, _ = flashinfer.merge_state(v_a=video_video_o, s_a=video_video_o_lse, v_b=video_text_o, s_b=video_text_o_lse)
|
||||
|
||||
o_text = flashinfer.single_prefill_with_kv_cache(
|
||||
q=query[mask_map.video_token_num:, :, :],
|
||||
k=key,
|
||||
v=value,
|
||||
causal=False,
|
||||
return_lse=False,
|
||||
custom_mask=pre_defined_mask[mask_map.video_token_num:, :]
|
||||
)
|
||||
|
||||
return torch.cat([o_video, o_text], dim=0)
|
||||
else:
|
||||
o = bsr_wrapper.run(
|
||||
query[:mask_map.video_token_num, :, :],
|
||||
key[:mask_map.video_token_num, :, :],
|
||||
value[:mask_map.video_token_num, :, :]
|
||||
)
|
||||
return o
|
||||
|
||||
def RadialAttention(query, key, value, mask_map=None, sparsity_type="radial", block_size=128, decay_factor=1, model_type=None, pre_defined_mask=None, use_sage_attention=False):
|
||||
orig_seqlen, num_head, hidden_dim = query.shape
|
||||
|
||||
if sparsity_type == "dense":
|
||||
video_mask = torch.ones((mask_map.video_token_num // block_size, mask_map.video_token_num // block_size), device=query.device, dtype=torch.bool)
|
||||
else:
|
||||
video_mask = mask_map.queryLogMask(query, sparsity_type, block_size=block_size, decay_factor=decay_factor, model_type=model_type) if mask_map else None
|
||||
|
||||
backend = "sparse_sageattn" if use_sage_attention else "flashinfer"
|
||||
|
||||
if backend == "flashinfer":
|
||||
video_mask = video_mask[:mask_map.video_token_num // block_size, :mask_map.video_token_num // block_size]
|
||||
# perform block-sparse attention on the video tokens
|
||||
workspace_buffer = torch.empty(128 * 1024 * 1024, device=query.device, dtype=torch.uint8)
|
||||
bsr_wrapper = flashinfer.BlockSparseAttentionWrapper(
|
||||
workspace_buffer,
|
||||
backend="fa2",
|
||||
)
|
||||
|
||||
indptr = get_indptr_from_mask(video_mask, query)
|
||||
indices = get_indices_from_mask(video_mask, query)
|
||||
|
||||
bsr_wrapper.plan(
|
||||
indptr=indptr,
|
||||
indices=indices,
|
||||
M=mask_map.video_token_num,
|
||||
N=mask_map.video_token_num,
|
||||
R=block_size,
|
||||
C=block_size,
|
||||
num_qo_heads=num_head,
|
||||
num_kv_heads=num_head,
|
||||
head_dim=hidden_dim,
|
||||
q_data_type=query.dtype,
|
||||
kv_data_type=key.dtype,
|
||||
o_data_type=query.dtype,
|
||||
)
|
||||
|
||||
return FlashInferBackend(query, key, value, mask_map, pre_defined_mask, bsr_wrapper)
|
||||
elif backend == "sparse_sageattn":
|
||||
return SpargeSageAttnBackend(query, key, value, mask_map, video_mask, pre_defined_mask, block_size=block_size)
|
||||
|
||||
if __name__ == "__main__":
|
||||
query = torch.randn(1, 2, 4, 64).cuda()
|
||||
# mask = torch.tensor([
|
||||
# [True, False, True, False],
|
||||
# [False, True, False, True],
|
||||
# [True, False, False, True],
|
||||
# [False, True, True, False]
|
||||
# ], dtype=torch.bool)
|
||||
# indices = get_indices_from_mask(mask, query)
|
||||
# indptr = get_indptr_from_mask(mask, query)
|
||||
# print("Indices: ", indices)
|
||||
# print("Indptr: ", indptr)
|
||||
video_token_num = 3840 * 30
|
||||
num_frame = 30
|
||||
token_per_frame = video_token_num / num_frame
|
||||
padded_video_token_num = ((video_token_num + 1) // 128 + 1) * 128
|
||||
print("padded: ", padded_video_token_num)
|
||||
temporal_mask = gen_log_mask_shrinked(query, padded_video_token_num, video_token_num, num_frame, sparse_type="radial", decay_factor=1, model_type="hunyuan")
|
||||
plt.figure(figsize=(10, 8), dpi=500)
|
||||
|
||||
plt.imshow(temporal_mask.cpu().numpy()[:, :], cmap='hot')
|
||||
plt.colorbar()
|
||||
plt.title("Temporal Mask")
|
||||
|
||||
plt.savefig("temporal_mask.png",
|
||||
dpi=300,
|
||||
bbox_inches='tight',
|
||||
pad_inches=0.1)
|
||||
|
||||
plt.close()
|
||||
# save the mask tensor
|
||||
torch.save(temporal_mask, "temporal_mask.pt")
|
||||
41
shared/radial_attention/inference.py
Normal file
41
shared/radial_attention/inference.py
Normal file
@ -0,0 +1,41 @@
|
||||
import torch
|
||||
from diffusers.models.attention_processor import Attention
|
||||
from diffusers.models.attention import AttentionModuleMixin
|
||||
from .attention import WanSparseAttnProcessor
|
||||
from .attn_mask import MaskMap
|
||||
|
||||
def setup_radial_attention(
|
||||
pipe,
|
||||
height,
|
||||
width,
|
||||
num_frames,
|
||||
dense_layers=0,
|
||||
dense_timesteps=0,
|
||||
decay_factor=1.0,
|
||||
sparsity_type="radial",
|
||||
use_sage_attention=False,
|
||||
):
|
||||
|
||||
num_frames = 1 + num_frames // (pipe.vae_scale_factor_temporal * pipe.transformer.config.patch_size[0])
|
||||
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
|
||||
frame_size = int(height // mod_value) * int(width // mod_value)
|
||||
|
||||
AttnModule = WanSparseAttnProcessor
|
||||
AttnModule.dense_block = dense_layers
|
||||
AttnModule.dense_timestep = dense_timesteps
|
||||
AttnModule.mask_map = MaskMap(video_token_num=frame_size * num_frames, num_frame=num_frames)
|
||||
AttnModule.decay_factor = decay_factor
|
||||
AttnModule.sparse_type = sparsity_type
|
||||
AttnModule.use_sage_attention = use_sage_attention
|
||||
|
||||
print(f"Replacing Wan attention with {sparsity_type} attention")
|
||||
print(f"video token num: {AttnModule.mask_map.video_token_num}, num frames: {num_frames}")
|
||||
print(f"dense layers: {dense_layers}, dense timesteps: {dense_timesteps}, decay factor: {decay_factor}")
|
||||
|
||||
for layer_idx, m in enumerate(pipe.transformer.blocks):
|
||||
m.attn1.processor.layer_idx = layer_idx
|
||||
|
||||
for _, m in pipe.transformer.named_modules():
|
||||
if isinstance(m, AttentionModuleMixin) and hasattr(m.processor, 'layer_idx'):
|
||||
layer_idx = m.processor.layer_idx
|
||||
m.set_processor(AttnModule(layer_idx))
|
||||
424
shared/radial_attention/sparse_transformer.py
Normal file
424
shared/radial_attention/sparse_transformer.py
Normal file
@ -0,0 +1,424 @@
|
||||
# borrowed from svg-project/Sparse-VideoGen
|
||||
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
|
||||
from diffusers.models.transformers.transformer_wan import WanTransformerBlock, WanTransformer3DModel
|
||||
from diffusers import WanPipeline
|
||||
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
||||
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
||||
logger = logging.get_logger(__name__)
|
||||
from typing import Any, Callable, Dict, List, Optional, Union
|
||||
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
||||
from diffusers.pipelines.wan.pipeline_output import WanPipelineOutput
|
||||
import torch.distributed as dist
|
||||
|
||||
try:
|
||||
from xfuser.core.distributed import (
|
||||
get_ulysses_parallel_world_size,
|
||||
get_ulysses_parallel_rank,
|
||||
get_sp_group
|
||||
)
|
||||
except:
|
||||
pass
|
||||
|
||||
class WanTransformerBlock_Sparse(WanTransformerBlock):
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
temb: torch.Tensor,
|
||||
rotary_emb: torch.Tensor,
|
||||
numeral_timestep: Optional[int] = None,
|
||||
) -> torch.Tensor:
|
||||
if temb.ndim == 4:
|
||||
# temb: batch_size, seq_len, 6, inner_dim (wan2.2 ti2v)
|
||||
shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = (
|
||||
self.scale_shift_table.unsqueeze(0) + temb.float()
|
||||
).chunk(6, dim=2)
|
||||
# batch_size, seq_len, 1, inner_dim
|
||||
shift_msa = shift_msa.squeeze(2)
|
||||
scale_msa = scale_msa.squeeze(2)
|
||||
gate_msa = gate_msa.squeeze(2)
|
||||
c_shift_msa = c_shift_msa.squeeze(2)
|
||||
c_scale_msa = c_scale_msa.squeeze(2)
|
||||
c_gate_msa = c_gate_msa.squeeze(2)
|
||||
else:
|
||||
# temb: batch_size, 6, inner_dim (wan2.1/wan2.2 14B)
|
||||
shift_msa, scale_msa, gate_msa, c_shift_msa, c_scale_msa, c_gate_msa = (
|
||||
self.scale_shift_table + temb.float()
|
||||
).chunk(6, dim=1)
|
||||
|
||||
# 1. Self-attention
|
||||
norm_hidden_states = (self.norm1(hidden_states.float()) * (1 + scale_msa) + shift_msa).type_as(hidden_states)
|
||||
attn_output = self.attn1(hidden_states=norm_hidden_states, rotary_emb=rotary_emb, numerical_timestep=numeral_timestep)
|
||||
hidden_states = (hidden_states.float() + attn_output * gate_msa).type_as(hidden_states).contiguous()
|
||||
|
||||
# 2. Cross-attention
|
||||
norm_hidden_states = self.norm2(hidden_states.float()).type_as(hidden_states)
|
||||
attn_output = self.attn2(hidden_states=norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
|
||||
hidden_states = hidden_states + attn_output
|
||||
|
||||
# 3. Feed-forward
|
||||
norm_hidden_states = (self.norm3(hidden_states.float()) * (1 + c_scale_msa) + c_shift_msa).type_as(
|
||||
hidden_states
|
||||
)
|
||||
ff_output = self.ffn(norm_hidden_states)
|
||||
hidden_states = (hidden_states.float() + ff_output.float() * c_gate_msa).type_as(hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
class WanTransformer3DModel_Sparse(WanTransformer3DModel):
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
timestep: torch.LongTensor,
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
numeral_timestep: Optional[int] = None,
|
||||
encoder_hidden_states_image: Optional[torch.Tensor] = None,
|
||||
return_dict: bool = True,
|
||||
attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
|
||||
if attention_kwargs is not None:
|
||||
attention_kwargs = attention_kwargs.copy()
|
||||
lora_scale = attention_kwargs.pop("scale", 1.0)
|
||||
else:
|
||||
lora_scale = 1.0
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
||||
scale_lora_layers(self, lora_scale)
|
||||
else:
|
||||
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
||||
logger.warning(
|
||||
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
||||
)
|
||||
|
||||
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
||||
p_t, p_h, p_w = self.config.patch_size
|
||||
post_patch_num_frames = num_frames // p_t
|
||||
post_patch_height = height // p_h
|
||||
post_patch_width = width // p_w
|
||||
|
||||
rotary_emb = self.rope(hidden_states)
|
||||
|
||||
hidden_states = self.patch_embedding(hidden_states)
|
||||
hidden_states = hidden_states.flatten(2).transpose(1, 2)
|
||||
|
||||
# timestep shape: batch_size, or batch_size, seq_len (wan 2.2 ti2v)
|
||||
if timestep.ndim == 2:
|
||||
ts_seq_len = timestep.shape[1]
|
||||
timestep = timestep.flatten() # batch_size * seq_len
|
||||
else:
|
||||
ts_seq_len = None
|
||||
|
||||
temb, timestep_proj, encoder_hidden_states, encoder_hidden_states_image = self.condition_embedder(
|
||||
timestep, encoder_hidden_states, encoder_hidden_states_image, timestep_seq_len=ts_seq_len
|
||||
)
|
||||
|
||||
if ts_seq_len is not None:
|
||||
# batch_size, seq_len, 6, inner_dim
|
||||
timestep_proj = timestep_proj.unflatten(2, (6, -1))
|
||||
else:
|
||||
# batch_size, 6, inner_dim
|
||||
timestep_proj = timestep_proj.unflatten(1, (6, -1))
|
||||
|
||||
if encoder_hidden_states_image is not None:
|
||||
encoder_hidden_states = torch.concat([encoder_hidden_states_image, encoder_hidden_states], dim=1)
|
||||
|
||||
if dist.is_initialized() and get_ulysses_parallel_world_size() > 1:
|
||||
# split video latents on dim TS
|
||||
hidden_states = torch.chunk(hidden_states, get_ulysses_parallel_world_size(), dim=-2)[get_ulysses_parallel_rank()]
|
||||
rotary_emb = (
|
||||
torch.chunk(rotary_emb[0], get_ulysses_parallel_world_size(), dim=1)[get_ulysses_parallel_rank()],
|
||||
torch.chunk(rotary_emb[1], get_ulysses_parallel_world_size(), dim=1)[get_ulysses_parallel_rank()],
|
||||
)
|
||||
|
||||
# 4. Transformer blocks
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
for block in self.blocks:
|
||||
hidden_states = self._gradient_checkpointing_func(
|
||||
block, hidden_states, encoder_hidden_states, timestep_proj, rotary_emb, numeral_timestep=numeral_timestep
|
||||
)
|
||||
else:
|
||||
for block in self.blocks:
|
||||
hidden_states = block(
|
||||
hidden_states,
|
||||
encoder_hidden_states,
|
||||
timestep_proj,
|
||||
rotary_emb,
|
||||
numeral_timestep=numeral_timestep,
|
||||
)
|
||||
|
||||
# 5. Output norm, projection & unpatchify
|
||||
if temb.ndim == 3:
|
||||
# batch_size, seq_len, inner_dim (wan 2.2 ti2v)
|
||||
shift, scale = (self.scale_shift_table.unsqueeze(0) + temb.unsqueeze(2)).chunk(2, dim=2)
|
||||
shift = shift.squeeze(2)
|
||||
scale = scale.squeeze(2)
|
||||
else:
|
||||
# batch_size, inner_dim
|
||||
shift, scale = (self.scale_shift_table + temb.unsqueeze(1)).chunk(2, dim=1)
|
||||
|
||||
# Move the shift and scale tensors to the same device as hidden_states.
|
||||
# When using multi-GPU inference via accelerate these will be on the
|
||||
# first device rather than the last device, which hidden_states ends up
|
||||
# on.
|
||||
shift = shift.to(hidden_states.device)
|
||||
scale = scale.to(hidden_states.device)
|
||||
|
||||
hidden_states = (self.norm_out(hidden_states.float()) * (1 + scale) + shift).type_as(hidden_states)
|
||||
hidden_states = self.proj_out(hidden_states)
|
||||
|
||||
if dist.is_initialized() and get_ulysses_parallel_world_size() > 1:
|
||||
hidden_states = get_sp_group().all_gather(hidden_states, dim=-2)
|
||||
|
||||
hidden_states = hidden_states.reshape(
|
||||
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p_h, p_w, -1
|
||||
)
|
||||
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
|
||||
output = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# remove `lora_scale` from each PEFT layer
|
||||
unscale_lora_layers(self, lora_scale)
|
||||
|
||||
if not return_dict:
|
||||
return (output,)
|
||||
|
||||
return Transformer2DModelOutput(sample=output)
|
||||
|
||||
class WanPipeline_Sparse(WanPipeline):
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
negative_prompt: Union[str, List[str]] = None,
|
||||
height: int = 480,
|
||||
width: int = 832,
|
||||
num_frames: int = 81,
|
||||
num_inference_steps: int = 50,
|
||||
guidance_scale: float = 5.0,
|
||||
num_videos_per_prompt: Optional[int] = 1,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.Tensor] = None,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||||
output_type: Optional[str] = "np",
|
||||
return_dict: bool = True,
|
||||
attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
callback_on_step_end: Optional[
|
||||
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
||||
] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
max_sequence_length: int = 512,
|
||||
):
|
||||
r"""
|
||||
The call function to the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
height (`int`, defaults to `480`):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, defaults to `832`):
|
||||
The width in pixels of the generated image.
|
||||
num_frames (`int`, defaults to `81`):
|
||||
The number of frames in the generated video.
|
||||
num_inference_steps (`int`, defaults to `50`):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
guidance_scale (`float`, defaults to `5.0`):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
||||
generation deterministic.
|
||||
latents (`torch.Tensor`, *optional*):
|
||||
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor is generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`torch.Tensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
||||
provided, text embeddings are generated from the `prompt` input argument.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`WanPipelineOutput`] instead of a plain tuple.
|
||||
attention_kwargs (`dict`, *optional*):
|
||||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||||
`self.processor` in
|
||||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||||
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
||||
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
||||
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
||||
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
||||
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
||||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||||
autocast_dtype (`torch.dtype`, *optional*, defaults to `torch.bfloat16`):
|
||||
The dtype to use for the torch.amp.autocast.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~WanPipelineOutput`] or `tuple`:
|
||||
If `return_dict` is `True`, [`WanPipelineOutput`] is returned, otherwise a `tuple` is returned where
|
||||
the first element is a list with the generated images and the second element is a list of `bool`s
|
||||
indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
|
||||
"""
|
||||
|
||||
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
||||
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
negative_prompt,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
callback_on_step_end_tensor_inputs,
|
||||
)
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
self._attention_kwargs = attention_kwargs
|
||||
self._current_timestep = None
|
||||
self._interrupt = False
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
# 3. Encode input prompt
|
||||
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
||||
num_videos_per_prompt=num_videos_per_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
max_sequence_length=max_sequence_length,
|
||||
device=device,
|
||||
)
|
||||
|
||||
transformer_dtype = self.transformer.dtype
|
||||
prompt_embeds = prompt_embeds.to(transformer_dtype)
|
||||
if negative_prompt_embeds is not None:
|
||||
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
|
||||
|
||||
# 4. Prepare timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||||
timesteps = self.scheduler.timesteps
|
||||
|
||||
# 5. Prepare latent variables
|
||||
num_channels_latents = self.transformer.config.in_channels
|
||||
latents = self.prepare_latents(
|
||||
batch_size * num_videos_per_prompt,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
num_frames,
|
||||
torch.float32,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
# 6. Denoising loop
|
||||
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
self._num_timesteps = len(timesteps)
|
||||
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
self._current_timestep = t
|
||||
latent_model_input = latents.to(transformer_dtype)
|
||||
timestep = t.expand(latents.shape[0])
|
||||
|
||||
noise_pred = self.transformer(
|
||||
hidden_states=latent_model_input,
|
||||
timestep=timestep,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
attention_kwargs=attention_kwargs,
|
||||
return_dict=False,
|
||||
numeral_timestep=i,
|
||||
)[0]
|
||||
|
||||
if self.do_classifier_free_guidance:
|
||||
noise_uncond = self.transformer(
|
||||
hidden_states=latent_model_input,
|
||||
timestep=timestep,
|
||||
encoder_hidden_states=negative_prompt_embeds,
|
||||
attention_kwargs=attention_kwargs,
|
||||
return_dict=False,
|
||||
numeral_timestep=i,
|
||||
)[0]
|
||||
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
||||
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
|
||||
self._current_timestep = None
|
||||
|
||||
if not output_type == "latent":
|
||||
latents = latents.to(self.vae.dtype)
|
||||
latents_mean = (
|
||||
torch.tensor(self.vae.config.latents_mean)
|
||||
.view(1, self.vae.config.z_dim, 1, 1, 1)
|
||||
.to(latents.device, latents.dtype)
|
||||
)
|
||||
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
|
||||
latents.device, latents.dtype
|
||||
)
|
||||
latents = latents / latents_std + latents_mean
|
||||
video = self.vae.decode(latents, return_dict=False)[0]
|
||||
video = self.video_processor.postprocess_video(video, output_type=output_type)
|
||||
else:
|
||||
video = latents
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (video,)
|
||||
|
||||
return WanPipelineOutput(frames=video)
|
||||
|
||||
def replace_sparse_forward():
|
||||
WanTransformerBlock.forward = WanTransformerBlock_Sparse.forward
|
||||
WanTransformer3DModel.forward = WanTransformer3DModel_Sparse.forward
|
||||
WanPipeline.__call__ = WanPipeline_Sparse.__call__
|
||||
16
shared/radial_attention/utils.py
Normal file
16
shared/radial_attention/utils.py
Normal file
@ -0,0 +1,16 @@
|
||||
import os
|
||||
import random
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
def set_seed(seed):
|
||||
"""
|
||||
Set the random seed for reproducibility.
|
||||
"""
|
||||
random.seed(seed)
|
||||
os.environ['PYTHONHASHSEED'] = str(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed(seed)
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
Loading…
Reference in New Issue
Block a user