mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-06-02 05:17:25 +00:00
* isort the code * format the code * Add yapf config file * Remove torch cuda memory profiler
588 lines
22 KiB
Python
588 lines
22 KiB
Python
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||
import argparse
|
||
import logging
|
||
import os
|
||
import sys
|
||
import warnings
|
||
from datetime import datetime
|
||
|
||
warnings.filterwarnings('ignore')
|
||
|
||
import random
|
||
|
||
import torch
|
||
import torch.distributed as dist
|
||
from PIL import Image
|
||
|
||
import wan
|
||
from wan.configs import MAX_AREA_CONFIGS, SIZE_CONFIGS, SUPPORTED_SIZES, WAN_CONFIGS
|
||
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
|
||
from wan.utils.utils import cache_image, cache_video, str2bool
|
||
|
||
|
||
EXAMPLE_PROMPT = {
|
||
"t2v-1.3B": {
|
||
"prompt":
|
||
"Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
|
||
},
|
||
"t2v-14B": {
|
||
"prompt":
|
||
"Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
|
||
},
|
||
"t2i-14B": {
|
||
"prompt": "一个朴素端庄的美人",
|
||
},
|
||
"i2v-14B": {
|
||
"prompt":
|
||
"Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
|
||
"image":
|
||
"examples/i2v_input.JPG",
|
||
},
|
||
"flf2v-14B": {
|
||
"prompt":
|
||
"CG动画风格,一只蓝色的小鸟从地面起飞,煽动翅膀。小鸟羽毛细腻,胸前有独特的花纹,背景是蓝天白云,阳光明媚。镜跟随小鸟向上移动,展现出小鸟飞翔的姿态和天空的广阔。近景,仰视视角。",
|
||
"first_frame":
|
||
"examples/flf2v_input_first_frame.png",
|
||
"last_frame":
|
||
"examples/flf2v_input_last_frame.png",
|
||
},
|
||
"vace-1.3B": {
|
||
"src_ref_images":
|
||
'examples/girl.png,examples/snake.png',
|
||
"prompt":
|
||
"在一个欢乐而充满节日气氛的场景中,穿着鲜艳红色春服的小女孩正与她的可爱卡通蛇嬉戏。她的春服上绣着金色吉祥图案,散发着喜庆的气息,脸上洋溢着灿烂的笑容。蛇身呈现出亮眼的绿色,形状圆润,宽大的眼睛让它显得既友善又幽默。小女孩欢快地用手轻轻抚摸着蛇的头部,共同享受着这温馨的时刻。周围五彩斑斓的灯笼和彩带装饰着环境,阳光透过洒在她们身上,营造出一个充满友爱与幸福的新年氛围。"
|
||
},
|
||
"vace-14B": {
|
||
"src_ref_images":
|
||
'examples/girl.png,examples/snake.png',
|
||
"prompt":
|
||
"在一个欢乐而充满节日气氛的场景中,穿着鲜艳红色春服的小女孩正与她的可爱卡通蛇嬉戏。她的春服上绣着金色吉祥图案,散发着喜庆的气息,脸上洋溢着灿烂的笑容。蛇身呈现出亮眼的绿色,形状圆润,宽大的眼睛让它显得既友善又幽默。小女孩欢快地用手轻轻抚摸着蛇的头部,共同享受着这温馨的时刻。周围五彩斑斓的灯笼和彩带装饰着环境,阳光透过洒在她们身上,营造出一个充满友爱与幸福的新年氛围。"
|
||
}
|
||
}
|
||
|
||
|
||
def _validate_args(args):
|
||
# Basic check
|
||
assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
|
||
assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}"
|
||
assert args.task in EXAMPLE_PROMPT, f"Unsupport task: {args.task}"
|
||
|
||
# The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
|
||
if args.sample_steps is None:
|
||
args.sample_steps = 50
|
||
if "i2v" in args.task:
|
||
args.sample_steps = 40
|
||
|
||
if args.sample_shift is None:
|
||
args.sample_shift = 5.0
|
||
if "i2v" in args.task and args.size in ["832*480", "480*832"]:
|
||
args.sample_shift = 3.0
|
||
elif "flf2v" in args.task or "vace" in args.task:
|
||
args.sample_shift = 16
|
||
|
||
# The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
|
||
if args.frame_num is None:
|
||
args.frame_num = 1 if "t2i" in args.task else 81
|
||
|
||
# T2I frame_num check
|
||
if "t2i" in args.task:
|
||
assert args.frame_num == 1, f"Unsupport frame_num {args.frame_num} for task {args.task}"
|
||
|
||
args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
|
||
0, sys.maxsize)
|
||
# Size check
|
||
assert args.size in SUPPORTED_SIZES[
|
||
args.
|
||
task], f"Unsupport size {args.size} for task {args.task}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.task])}"
|
||
|
||
|
||
def _parse_args():
|
||
parser = argparse.ArgumentParser(
|
||
description="Generate a image or video from a text prompt or image using Wan"
|
||
)
|
||
parser.add_argument(
|
||
"--task",
|
||
type=str,
|
||
default="t2v-14B",
|
||
choices=list(WAN_CONFIGS.keys()),
|
||
help="The task to run.")
|
||
parser.add_argument(
|
||
"--size",
|
||
type=str,
|
||
default="1280*720",
|
||
choices=list(SIZE_CONFIGS.keys()),
|
||
help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image."
|
||
)
|
||
parser.add_argument(
|
||
"--frame_num",
|
||
type=int,
|
||
default=None,
|
||
help="How many frames to sample from a image or video. The number should be 4n+1"
|
||
)
|
||
parser.add_argument(
|
||
"--ckpt_dir",
|
||
type=str,
|
||
default=None,
|
||
help="The path to the checkpoint directory.")
|
||
parser.add_argument(
|
||
"--offload_model",
|
||
type=str2bool,
|
||
default=None,
|
||
help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
|
||
)
|
||
parser.add_argument(
|
||
"--ulysses_size",
|
||
type=int,
|
||
default=1,
|
||
help="The size of the ulysses parallelism in DiT.")
|
||
parser.add_argument(
|
||
"--ring_size",
|
||
type=int,
|
||
default=1,
|
||
help="The size of the ring attention parallelism in DiT.")
|
||
parser.add_argument(
|
||
"--t5_fsdp",
|
||
action="store_true",
|
||
default=False,
|
||
help="Whether to use FSDP for T5.")
|
||
parser.add_argument(
|
||
"--t5_cpu",
|
||
action="store_true",
|
||
default=False,
|
||
help="Whether to place T5 model on CPU.")
|
||
parser.add_argument(
|
||
"--dit_fsdp",
|
||
action="store_true",
|
||
default=False,
|
||
help="Whether to use FSDP for DiT.")
|
||
parser.add_argument(
|
||
"--save_file",
|
||
type=str,
|
||
default=None,
|
||
help="The file to save the generated image or video to.")
|
||
parser.add_argument(
|
||
"--src_video",
|
||
type=str,
|
||
default=None,
|
||
help="The file of the source video. Default None.")
|
||
parser.add_argument(
|
||
"--src_mask",
|
||
type=str,
|
||
default=None,
|
||
help="The file of the source mask. Default None.")
|
||
parser.add_argument(
|
||
"--src_ref_images",
|
||
type=str,
|
||
default=None,
|
||
help="The file list of the source reference images. Separated by ','. Default None."
|
||
)
|
||
parser.add_argument(
|
||
"--prompt",
|
||
type=str,
|
||
default=None,
|
||
help="The prompt to generate the image or video from.")
|
||
parser.add_argument(
|
||
"--use_prompt_extend",
|
||
action="store_true",
|
||
default=False,
|
||
help="Whether to use prompt extend.")
|
||
parser.add_argument(
|
||
"--prompt_extend_method",
|
||
type=str,
|
||
default="local_qwen",
|
||
choices=["dashscope", "local_qwen"],
|
||
help="The prompt extend method to use.")
|
||
parser.add_argument(
|
||
"--prompt_extend_model",
|
||
type=str,
|
||
default=None,
|
||
help="The prompt extend model to use.")
|
||
parser.add_argument(
|
||
"--prompt_extend_target_lang",
|
||
type=str,
|
||
default="zh",
|
||
choices=["zh", "en"],
|
||
help="The target language of prompt extend.")
|
||
parser.add_argument(
|
||
"--base_seed",
|
||
type=int,
|
||
default=-1,
|
||
help="The seed to use for generating the image or video.")
|
||
parser.add_argument(
|
||
"--image",
|
||
type=str,
|
||
default=None,
|
||
help="[image to video] The image to generate the video from.")
|
||
parser.add_argument(
|
||
"--first_frame",
|
||
type=str,
|
||
default=None,
|
||
help="[first-last frame to video] The image (first frame) to generate the video from."
|
||
)
|
||
parser.add_argument(
|
||
"--last_frame",
|
||
type=str,
|
||
default=None,
|
||
help="[first-last frame to video] The image (last frame) to generate the video from."
|
||
)
|
||
parser.add_argument(
|
||
"--sample_solver",
|
||
type=str,
|
||
default='unipc',
|
||
choices=['unipc', 'dpm++'],
|
||
help="The solver used to sample.")
|
||
parser.add_argument(
|
||
"--sample_steps", type=int, default=None, help="The sampling steps.")
|
||
parser.add_argument(
|
||
"--sample_shift",
|
||
type=float,
|
||
default=None,
|
||
help="Sampling shift factor for flow matching schedulers.")
|
||
parser.add_argument(
|
||
"--sample_guide_scale",
|
||
type=float,
|
||
default=5.0,
|
||
help="Classifier free guidance scale.")
|
||
|
||
args = parser.parse_args()
|
||
|
||
_validate_args(args)
|
||
|
||
return args
|
||
|
||
|
||
def _init_logging(rank):
|
||
# logging
|
||
if rank == 0:
|
||
# set format
|
||
logging.basicConfig(
|
||
level=logging.INFO,
|
||
format="[%(asctime)s] %(levelname)s: %(message)s",
|
||
handlers=[logging.StreamHandler(stream=sys.stdout)])
|
||
else:
|
||
logging.basicConfig(level=logging.ERROR)
|
||
|
||
|
||
def generate(args):
|
||
rank = int(os.getenv("RANK", 0))
|
||
world_size = int(os.getenv("WORLD_SIZE", 1))
|
||
local_rank = int(os.getenv("LOCAL_RANK", 0))
|
||
device = local_rank
|
||
_init_logging(rank)
|
||
|
||
if args.offload_model is None:
|
||
args.offload_model = False if world_size > 1 else True
|
||
logging.info(
|
||
f"offload_model is not specified, set to {args.offload_model}.")
|
||
if world_size > 1:
|
||
torch.cuda.set_device(local_rank)
|
||
dist.init_process_group(
|
||
backend="nccl",
|
||
init_method="env://",
|
||
rank=rank,
|
||
world_size=world_size)
|
||
else:
|
||
assert not (
|
||
args.t5_fsdp or args.dit_fsdp
|
||
), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."
|
||
assert not (
|
||
args.ulysses_size > 1 or args.ring_size > 1
|
||
), f"context parallel are not supported in non-distributed environments."
|
||
|
||
if args.ulysses_size > 1 or args.ring_size > 1:
|
||
assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
|
||
from xfuser.core.distributed import (
|
||
init_distributed_environment,
|
||
initialize_model_parallel,
|
||
)
|
||
init_distributed_environment(
|
||
rank=dist.get_rank(), world_size=dist.get_world_size())
|
||
|
||
initialize_model_parallel(
|
||
sequence_parallel_degree=dist.get_world_size(),
|
||
ring_degree=args.ring_size,
|
||
ulysses_degree=args.ulysses_size,
|
||
)
|
||
|
||
if args.use_prompt_extend:
|
||
if args.prompt_extend_method == "dashscope":
|
||
prompt_expander = DashScopePromptExpander(
|
||
model_name=args.prompt_extend_model,
|
||
is_vl="i2v" in args.task or "flf2v" in args.task)
|
||
elif args.prompt_extend_method == "local_qwen":
|
||
prompt_expander = QwenPromptExpander(
|
||
model_name=args.prompt_extend_model,
|
||
is_vl="i2v" in args.task,
|
||
device=rank)
|
||
else:
|
||
raise NotImplementedError(
|
||
f"Unsupport prompt_extend_method: {args.prompt_extend_method}")
|
||
|
||
cfg = WAN_CONFIGS[args.task]
|
||
if args.ulysses_size > 1:
|
||
assert cfg.num_heads % args.ulysses_size == 0, f"`{cfg.num_heads=}` cannot be divided evenly by `{args.ulysses_size=}`."
|
||
|
||
logging.info(f"Generation job args: {args}")
|
||
logging.info(f"Generation model config: {cfg}")
|
||
|
||
if dist.is_initialized():
|
||
base_seed = [args.base_seed] if rank == 0 else [None]
|
||
dist.broadcast_object_list(base_seed, src=0)
|
||
args.base_seed = base_seed[0]
|
||
|
||
if "t2v" in args.task or "t2i" in args.task:
|
||
if args.prompt is None:
|
||
args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
|
||
logging.info(f"Input prompt: {args.prompt}")
|
||
if args.use_prompt_extend:
|
||
logging.info("Extending prompt ...")
|
||
if rank == 0:
|
||
prompt_output = prompt_expander(
|
||
args.prompt,
|
||
tar_lang=args.prompt_extend_target_lang,
|
||
seed=args.base_seed)
|
||
if prompt_output.status == False:
|
||
logging.info(
|
||
f"Extending prompt failed: {prompt_output.message}")
|
||
logging.info("Falling back to original prompt.")
|
||
input_prompt = args.prompt
|
||
else:
|
||
input_prompt = prompt_output.prompt
|
||
input_prompt = [input_prompt]
|
||
else:
|
||
input_prompt = [None]
|
||
if dist.is_initialized():
|
||
dist.broadcast_object_list(input_prompt, src=0)
|
||
args.prompt = input_prompt[0]
|
||
logging.info(f"Extended prompt: {args.prompt}")
|
||
|
||
logging.info("Creating WanT2V pipeline.")
|
||
wan_t2v = wan.WanT2V(
|
||
config=cfg,
|
||
checkpoint_dir=args.ckpt_dir,
|
||
device_id=device,
|
||
rank=rank,
|
||
t5_fsdp=args.t5_fsdp,
|
||
dit_fsdp=args.dit_fsdp,
|
||
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
|
||
t5_cpu=args.t5_cpu,
|
||
)
|
||
|
||
logging.info(
|
||
f"Generating {'image' if 't2i' in args.task else 'video'} ...")
|
||
video = wan_t2v.generate(
|
||
args.prompt,
|
||
size=SIZE_CONFIGS[args.size],
|
||
frame_num=args.frame_num,
|
||
shift=args.sample_shift,
|
||
sample_solver=args.sample_solver,
|
||
sampling_steps=args.sample_steps,
|
||
guide_scale=args.sample_guide_scale,
|
||
seed=args.base_seed,
|
||
offload_model=args.offload_model)
|
||
|
||
elif "i2v" in args.task:
|
||
if args.prompt is None:
|
||
args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
|
||
if args.image is None:
|
||
args.image = EXAMPLE_PROMPT[args.task]["image"]
|
||
logging.info(f"Input prompt: {args.prompt}")
|
||
logging.info(f"Input image: {args.image}")
|
||
|
||
img = Image.open(args.image).convert("RGB")
|
||
if args.use_prompt_extend:
|
||
logging.info("Extending prompt ...")
|
||
if rank == 0:
|
||
prompt_output = prompt_expander(
|
||
args.prompt,
|
||
tar_lang=args.prompt_extend_target_lang,
|
||
image=img,
|
||
seed=args.base_seed)
|
||
if prompt_output.status == False:
|
||
logging.info(
|
||
f"Extending prompt failed: {prompt_output.message}")
|
||
logging.info("Falling back to original prompt.")
|
||
input_prompt = args.prompt
|
||
else:
|
||
input_prompt = prompt_output.prompt
|
||
input_prompt = [input_prompt]
|
||
else:
|
||
input_prompt = [None]
|
||
if dist.is_initialized():
|
||
dist.broadcast_object_list(input_prompt, src=0)
|
||
args.prompt = input_prompt[0]
|
||
logging.info(f"Extended prompt: {args.prompt}")
|
||
|
||
logging.info("Creating WanI2V pipeline.")
|
||
wan_i2v = wan.WanI2V(
|
||
config=cfg,
|
||
checkpoint_dir=args.ckpt_dir,
|
||
device_id=device,
|
||
rank=rank,
|
||
t5_fsdp=args.t5_fsdp,
|
||
dit_fsdp=args.dit_fsdp,
|
||
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
|
||
t5_cpu=args.t5_cpu,
|
||
)
|
||
|
||
logging.info("Generating video ...")
|
||
video = wan_i2v.generate(
|
||
args.prompt,
|
||
img,
|
||
max_area=MAX_AREA_CONFIGS[args.size],
|
||
frame_num=args.frame_num,
|
||
shift=args.sample_shift,
|
||
sample_solver=args.sample_solver,
|
||
sampling_steps=args.sample_steps,
|
||
guide_scale=args.sample_guide_scale,
|
||
seed=args.base_seed,
|
||
offload_model=args.offload_model)
|
||
elif "flf2v" in args.task:
|
||
if args.prompt is None:
|
||
args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
|
||
if args.first_frame is None or args.last_frame is None:
|
||
args.first_frame = EXAMPLE_PROMPT[args.task]["first_frame"]
|
||
args.last_frame = EXAMPLE_PROMPT[args.task]["last_frame"]
|
||
logging.info(f"Input prompt: {args.prompt}")
|
||
logging.info(f"Input first frame: {args.first_frame}")
|
||
logging.info(f"Input last frame: {args.last_frame}")
|
||
first_frame = Image.open(args.first_frame).convert("RGB")
|
||
last_frame = Image.open(args.last_frame).convert("RGB")
|
||
if args.use_prompt_extend:
|
||
logging.info("Extending prompt ...")
|
||
if rank == 0:
|
||
prompt_output = prompt_expander(
|
||
args.prompt,
|
||
tar_lang=args.prompt_extend_target_lang,
|
||
image=[first_frame, last_frame],
|
||
seed=args.base_seed)
|
||
if prompt_output.status == False:
|
||
logging.info(
|
||
f"Extending prompt failed: {prompt_output.message}")
|
||
logging.info("Falling back to original prompt.")
|
||
input_prompt = args.prompt
|
||
else:
|
||
input_prompt = prompt_output.prompt
|
||
input_prompt = [input_prompt]
|
||
else:
|
||
input_prompt = [None]
|
||
if dist.is_initialized():
|
||
dist.broadcast_object_list(input_prompt, src=0)
|
||
args.prompt = input_prompt[0]
|
||
logging.info(f"Extended prompt: {args.prompt}")
|
||
|
||
logging.info("Creating WanFLF2V pipeline.")
|
||
wan_flf2v = wan.WanFLF2V(
|
||
config=cfg,
|
||
checkpoint_dir=args.ckpt_dir,
|
||
device_id=device,
|
||
rank=rank,
|
||
t5_fsdp=args.t5_fsdp,
|
||
dit_fsdp=args.dit_fsdp,
|
||
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
|
||
t5_cpu=args.t5_cpu,
|
||
)
|
||
|
||
logging.info("Generating video ...")
|
||
video = wan_flf2v.generate(
|
||
args.prompt,
|
||
first_frame,
|
||
last_frame,
|
||
max_area=MAX_AREA_CONFIGS[args.size],
|
||
frame_num=args.frame_num,
|
||
shift=args.sample_shift,
|
||
sample_solver=args.sample_solver,
|
||
sampling_steps=args.sample_steps,
|
||
guide_scale=args.sample_guide_scale,
|
||
seed=args.base_seed,
|
||
offload_model=args.offload_model)
|
||
elif "vace" in args.task:
|
||
if args.prompt is None:
|
||
args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
|
||
args.src_video = EXAMPLE_PROMPT[args.task].get("src_video", None)
|
||
args.src_mask = EXAMPLE_PROMPT[args.task].get("src_mask", None)
|
||
args.src_ref_images = EXAMPLE_PROMPT[args.task].get(
|
||
"src_ref_images", None)
|
||
|
||
logging.info(f"Input prompt: {args.prompt}")
|
||
if args.use_prompt_extend and args.use_prompt_extend != 'plain':
|
||
logging.info("Extending prompt ...")
|
||
if rank == 0:
|
||
prompt = prompt_expander.forward(args.prompt)
|
||
logging.info(
|
||
f"Prompt extended from '{args.prompt}' to '{prompt}'")
|
||
input_prompt = [prompt]
|
||
else:
|
||
input_prompt = [None]
|
||
if dist.is_initialized():
|
||
dist.broadcast_object_list(input_prompt, src=0)
|
||
args.prompt = input_prompt[0]
|
||
logging.info(f"Extended prompt: {args.prompt}")
|
||
|
||
logging.info("Creating VACE pipeline.")
|
||
wan_vace = wan.WanVace(
|
||
config=cfg,
|
||
checkpoint_dir=args.ckpt_dir,
|
||
device_id=device,
|
||
rank=rank,
|
||
t5_fsdp=args.t5_fsdp,
|
||
dit_fsdp=args.dit_fsdp,
|
||
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
|
||
t5_cpu=args.t5_cpu,
|
||
)
|
||
|
||
src_video, src_mask, src_ref_images = wan_vace.prepare_source(
|
||
[args.src_video], [args.src_mask], [
|
||
None if args.src_ref_images is None else
|
||
args.src_ref_images.split(',')
|
||
], args.frame_num, SIZE_CONFIGS[args.size], device)
|
||
|
||
logging.info(f"Generating video...")
|
||
video = wan_vace.generate(
|
||
args.prompt,
|
||
src_video,
|
||
src_mask,
|
||
src_ref_images,
|
||
size=SIZE_CONFIGS[args.size],
|
||
frame_num=args.frame_num,
|
||
shift=args.sample_shift,
|
||
sample_solver=args.sample_solver,
|
||
sampling_steps=args.sample_steps,
|
||
guide_scale=args.sample_guide_scale,
|
||
seed=args.base_seed,
|
||
offload_model=args.offload_model)
|
||
else:
|
||
raise ValueError(f"Unkown task type: {args.task}")
|
||
|
||
if rank == 0:
|
||
if args.save_file is None:
|
||
formatted_time = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||
formatted_prompt = args.prompt.replace(" ", "_").replace("/",
|
||
"_")[:50]
|
||
suffix = '.png' if "t2i" in args.task else '.mp4'
|
||
args.save_file = f"{args.task}_{args.size.replace('*','x') if sys.platform=='win32' else args.size}_{args.ulysses_size}_{args.ring_size}_{formatted_prompt}_{formatted_time}" + suffix
|
||
|
||
if "t2i" in args.task:
|
||
logging.info(f"Saving generated image to {args.save_file}")
|
||
cache_image(
|
||
tensor=video.squeeze(1)[None],
|
||
save_file=args.save_file,
|
||
nrow=1,
|
||
normalize=True,
|
||
value_range=(-1, 1))
|
||
else:
|
||
logging.info(f"Saving generated video to {args.save_file}")
|
||
cache_video(
|
||
tensor=video[None],
|
||
save_file=args.save_file,
|
||
fps=cfg.sample_fps,
|
||
nrow=1,
|
||
normalize=True,
|
||
value_range=(-1, 1))
|
||
logging.info("Finished.")
|
||
|
||
|
||
if __name__ == "__main__":
|
||
args = _parse_args()
|
||
generate(args)
|