mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-06-03 22:04:53 +00:00
* isort the code * format the code * Add yapf config file * Remove torch cuda memory profiler
798 lines
31 KiB
Python
798 lines
31 KiB
Python
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
|
import gc
|
|
import logging
|
|
import math
|
|
import os
|
|
import random
|
|
import sys
|
|
import time
|
|
import traceback
|
|
import types
|
|
from contextlib import contextmanager
|
|
from functools import partial
|
|
|
|
import torch
|
|
import torch.cuda.amp as amp
|
|
import torch.distributed as dist
|
|
import torch.multiprocessing as mp
|
|
import torch.nn.functional as F
|
|
import torchvision.transforms.functional as TF
|
|
from PIL import Image
|
|
from tqdm import tqdm
|
|
|
|
from .modules.vace_model import VaceWanModel
|
|
from .text2video import (
|
|
FlowDPMSolverMultistepScheduler,
|
|
FlowUniPCMultistepScheduler,
|
|
T5EncoderModel,
|
|
WanT2V,
|
|
WanVAE,
|
|
get_sampling_sigmas,
|
|
retrieve_timesteps,
|
|
shard_model,
|
|
)
|
|
from .utils.vace_processor import VaceVideoProcessor
|
|
|
|
|
|
class WanVace(WanT2V):
|
|
|
|
def __init__(
|
|
self,
|
|
config,
|
|
checkpoint_dir,
|
|
device_id=0,
|
|
rank=0,
|
|
t5_fsdp=False,
|
|
dit_fsdp=False,
|
|
use_usp=False,
|
|
t5_cpu=False,
|
|
):
|
|
r"""
|
|
Initializes the Wan text-to-video generation model components.
|
|
|
|
Args:
|
|
config (EasyDict):
|
|
Object containing model parameters initialized from config.py
|
|
checkpoint_dir (`str`):
|
|
Path to directory containing model checkpoints
|
|
device_id (`int`, *optional*, defaults to 0):
|
|
Id of target GPU device
|
|
rank (`int`, *optional*, defaults to 0):
|
|
Process rank for distributed training
|
|
t5_fsdp (`bool`, *optional*, defaults to False):
|
|
Enable FSDP sharding for T5 model
|
|
dit_fsdp (`bool`, *optional*, defaults to False):
|
|
Enable FSDP sharding for DiT model
|
|
use_usp (`bool`, *optional*, defaults to False):
|
|
Enable distribution strategy of USP.
|
|
t5_cpu (`bool`, *optional*, defaults to False):
|
|
Whether to place T5 model on CPU. Only works without t5_fsdp.
|
|
"""
|
|
self.device = torch.device(f"cuda:{device_id}")
|
|
self.config = config
|
|
self.rank = rank
|
|
self.t5_cpu = t5_cpu
|
|
|
|
self.num_train_timesteps = config.num_train_timesteps
|
|
self.param_dtype = config.param_dtype
|
|
|
|
shard_fn = partial(shard_model, device_id=device_id)
|
|
self.text_encoder = T5EncoderModel(
|
|
text_len=config.text_len,
|
|
dtype=config.t5_dtype,
|
|
device=torch.device('cpu'),
|
|
checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
|
|
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
|
|
shard_fn=shard_fn if t5_fsdp else None)
|
|
|
|
self.vae_stride = config.vae_stride
|
|
self.patch_size = config.patch_size
|
|
self.vae = WanVAE(
|
|
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
|
|
device=self.device)
|
|
|
|
logging.info(f"Creating VaceWanModel from {checkpoint_dir}")
|
|
self.model = VaceWanModel.from_pretrained(checkpoint_dir)
|
|
self.model.eval().requires_grad_(False)
|
|
|
|
if use_usp:
|
|
from xfuser.core.distributed import get_sequence_parallel_world_size
|
|
|
|
from .distributed.xdit_context_parallel import (
|
|
usp_attn_forward,
|
|
usp_dit_forward,
|
|
usp_dit_forward_vace,
|
|
)
|
|
for block in self.model.blocks:
|
|
block.self_attn.forward = types.MethodType(
|
|
usp_attn_forward, block.self_attn)
|
|
for block in self.model.vace_blocks:
|
|
block.self_attn.forward = types.MethodType(
|
|
usp_attn_forward, block.self_attn)
|
|
self.model.forward = types.MethodType(usp_dit_forward, self.model)
|
|
self.model.forward_vace = types.MethodType(usp_dit_forward_vace,
|
|
self.model)
|
|
self.sp_size = get_sequence_parallel_world_size()
|
|
else:
|
|
self.sp_size = 1
|
|
|
|
if dist.is_initialized():
|
|
dist.barrier()
|
|
if dit_fsdp:
|
|
self.model = shard_fn(self.model)
|
|
else:
|
|
self.model.to(self.device)
|
|
|
|
self.sample_neg_prompt = config.sample_neg_prompt
|
|
|
|
self.vid_proc = VaceVideoProcessor(
|
|
downsample=tuple(
|
|
[x * y for x, y in zip(config.vae_stride, self.patch_size)]),
|
|
min_area=720 * 1280,
|
|
max_area=720 * 1280,
|
|
min_fps=config.sample_fps,
|
|
max_fps=config.sample_fps,
|
|
zero_start=True,
|
|
seq_len=75600,
|
|
keep_last=True)
|
|
|
|
def vace_encode_frames(self, frames, ref_images, masks=None, vae=None):
|
|
vae = self.vae if vae is None else vae
|
|
if ref_images is None:
|
|
ref_images = [None] * len(frames)
|
|
else:
|
|
assert len(frames) == len(ref_images)
|
|
|
|
if masks is None:
|
|
latents = vae.encode(frames)
|
|
else:
|
|
masks = [torch.where(m > 0.5, 1.0, 0.0) for m in masks]
|
|
inactive = [i * (1 - m) + 0 * m for i, m in zip(frames, masks)]
|
|
reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)]
|
|
inactive = vae.encode(inactive)
|
|
reactive = vae.encode(reactive)
|
|
latents = [
|
|
torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)
|
|
]
|
|
|
|
cat_latents = []
|
|
for latent, refs in zip(latents, ref_images):
|
|
if refs is not None:
|
|
if masks is None:
|
|
ref_latent = vae.encode(refs)
|
|
else:
|
|
ref_latent = vae.encode(refs)
|
|
ref_latent = [
|
|
torch.cat((u, torch.zeros_like(u)), dim=0)
|
|
for u in ref_latent
|
|
]
|
|
assert all([x.shape[1] == 1 for x in ref_latent])
|
|
latent = torch.cat([*ref_latent, latent], dim=1)
|
|
cat_latents.append(latent)
|
|
return cat_latents
|
|
|
|
def vace_encode_masks(self, masks, ref_images=None, vae_stride=None):
|
|
vae_stride = self.vae_stride if vae_stride is None else vae_stride
|
|
if ref_images is None:
|
|
ref_images = [None] * len(masks)
|
|
else:
|
|
assert len(masks) == len(ref_images)
|
|
|
|
result_masks = []
|
|
for mask, refs in zip(masks, ref_images):
|
|
c, depth, height, width = mask.shape
|
|
new_depth = int((depth + 3) // vae_stride[0])
|
|
height = 2 * (int(height) // (vae_stride[1] * 2))
|
|
width = 2 * (int(width) // (vae_stride[2] * 2))
|
|
|
|
# reshape
|
|
mask = mask[0, :, :, :]
|
|
mask = mask.view(depth, height, vae_stride[1], width,
|
|
vae_stride[1]) # depth, height, 8, width, 8
|
|
mask = mask.permute(2, 4, 0, 1, 3) # 8, 8, depth, height, width
|
|
mask = mask.reshape(vae_stride[1] * vae_stride[2], depth, height,
|
|
width) # 8*8, depth, height, width
|
|
|
|
# interpolation
|
|
mask = F.interpolate(
|
|
mask.unsqueeze(0),
|
|
size=(new_depth, height, width),
|
|
mode='nearest-exact').squeeze(0)
|
|
|
|
if refs is not None:
|
|
length = len(refs)
|
|
mask_pad = torch.zeros_like(mask[:, :length, :, :])
|
|
mask = torch.cat((mask_pad, mask), dim=1)
|
|
result_masks.append(mask)
|
|
return result_masks
|
|
|
|
def vace_latent(self, z, m):
|
|
return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)]
|
|
|
|
def prepare_source(self, src_video, src_mask, src_ref_images, num_frames,
|
|
image_size, device):
|
|
area = image_size[0] * image_size[1]
|
|
self.vid_proc.set_area(area)
|
|
if area == 720 * 1280:
|
|
self.vid_proc.set_seq_len(75600)
|
|
elif area == 480 * 832:
|
|
self.vid_proc.set_seq_len(32760)
|
|
else:
|
|
raise NotImplementedError(
|
|
f'image_size {image_size} is not supported')
|
|
|
|
image_size = (image_size[1], image_size[0])
|
|
image_sizes = []
|
|
for i, (sub_src_video,
|
|
sub_src_mask) in enumerate(zip(src_video, src_mask)):
|
|
if sub_src_mask is not None and sub_src_video is not None:
|
|
src_video[i], src_mask[
|
|
i], _, _, _ = self.vid_proc.load_video_pair(
|
|
sub_src_video, sub_src_mask)
|
|
src_video[i] = src_video[i].to(device)
|
|
src_mask[i] = src_mask[i].to(device)
|
|
src_mask[i] = torch.clamp(
|
|
(src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1)
|
|
image_sizes.append(src_video[i].shape[2:])
|
|
elif sub_src_video is None:
|
|
src_video[i] = torch.zeros(
|
|
(3, num_frames, image_size[0], image_size[1]),
|
|
device=device)
|
|
src_mask[i] = torch.ones_like(src_video[i], device=device)
|
|
image_sizes.append(image_size)
|
|
else:
|
|
src_video[i], _, _, _ = self.vid_proc.load_video(sub_src_video)
|
|
src_video[i] = src_video[i].to(device)
|
|
src_mask[i] = torch.ones_like(src_video[i], device=device)
|
|
image_sizes.append(src_video[i].shape[2:])
|
|
|
|
for i, ref_images in enumerate(src_ref_images):
|
|
if ref_images is not None:
|
|
image_size = image_sizes[i]
|
|
for j, ref_img in enumerate(ref_images):
|
|
if ref_img is not None:
|
|
ref_img = Image.open(ref_img).convert("RGB")
|
|
ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(
|
|
0.5).unsqueeze(1)
|
|
if ref_img.shape[-2:] != image_size:
|
|
canvas_height, canvas_width = image_size
|
|
ref_height, ref_width = ref_img.shape[-2:]
|
|
white_canvas = torch.ones(
|
|
(3, 1, canvas_height, canvas_width),
|
|
device=device) # [-1, 1]
|
|
scale = min(canvas_height / ref_height,
|
|
canvas_width / ref_width)
|
|
new_height = int(ref_height * scale)
|
|
new_width = int(ref_width * scale)
|
|
resized_image = F.interpolate(
|
|
ref_img.squeeze(1).unsqueeze(0),
|
|
size=(new_height, new_width),
|
|
mode='bilinear',
|
|
align_corners=False).squeeze(0).unsqueeze(1)
|
|
top = (canvas_height - new_height) // 2
|
|
left = (canvas_width - new_width) // 2
|
|
white_canvas[:, :, top:top + new_height,
|
|
left:left + new_width] = resized_image
|
|
ref_img = white_canvas
|
|
src_ref_images[i][j] = ref_img.to(device)
|
|
return src_video, src_mask, src_ref_images
|
|
|
|
def decode_latent(self, zs, ref_images=None, vae=None):
|
|
vae = self.vae if vae is None else vae
|
|
if ref_images is None:
|
|
ref_images = [None] * len(zs)
|
|
else:
|
|
assert len(zs) == len(ref_images)
|
|
|
|
trimed_zs = []
|
|
for z, refs in zip(zs, ref_images):
|
|
if refs is not None:
|
|
z = z[:, len(refs):, :, :]
|
|
trimed_zs.append(z)
|
|
|
|
return vae.decode(trimed_zs)
|
|
|
|
def generate(self,
|
|
input_prompt,
|
|
input_frames,
|
|
input_masks,
|
|
input_ref_images,
|
|
size=(1280, 720),
|
|
frame_num=81,
|
|
context_scale=1.0,
|
|
shift=5.0,
|
|
sample_solver='unipc',
|
|
sampling_steps=50,
|
|
guide_scale=5.0,
|
|
n_prompt="",
|
|
seed=-1,
|
|
offload_model=True):
|
|
r"""
|
|
Generates video frames from text prompt using diffusion process.
|
|
|
|
Args:
|
|
input_prompt (`str`):
|
|
Text prompt for content generation
|
|
size (tupele[`int`], *optional*, defaults to (1280,720)):
|
|
Controls video resolution, (width,height).
|
|
frame_num (`int`, *optional*, defaults to 81):
|
|
How many frames to sample from a video. The number should be 4n+1
|
|
shift (`float`, *optional*, defaults to 5.0):
|
|
Noise schedule shift parameter. Affects temporal dynamics
|
|
sample_solver (`str`, *optional*, defaults to 'unipc'):
|
|
Solver used to sample the video.
|
|
sampling_steps (`int`, *optional*, defaults to 40):
|
|
Number of diffusion sampling steps. Higher values improve quality but slow generation
|
|
guide_scale (`float`, *optional*, defaults 5.0):
|
|
Classifier-free guidance scale. Controls prompt adherence vs. creativity
|
|
n_prompt (`str`, *optional*, defaults to ""):
|
|
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
|
|
seed (`int`, *optional*, defaults to -1):
|
|
Random seed for noise generation. If -1, use random seed.
|
|
offload_model (`bool`, *optional*, defaults to True):
|
|
If True, offloads models to CPU during generation to save VRAM
|
|
|
|
Returns:
|
|
torch.Tensor:
|
|
Generated video frames tensor. Dimensions: (C, N H, W) where:
|
|
- C: Color channels (3 for RGB)
|
|
- N: Number of frames (81)
|
|
- H: Frame height (from size)
|
|
- W: Frame width from size)
|
|
"""
|
|
# preprocess
|
|
# F = frame_num
|
|
# target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
|
|
# size[1] // self.vae_stride[1],
|
|
# size[0] // self.vae_stride[2])
|
|
#
|
|
# seq_len = math.ceil((target_shape[2] * target_shape[3]) /
|
|
# (self.patch_size[1] * self.patch_size[2]) *
|
|
# target_shape[1] / self.sp_size) * self.sp_size
|
|
|
|
if n_prompt == "":
|
|
n_prompt = self.sample_neg_prompt
|
|
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
|
|
seed_g = torch.Generator(device=self.device)
|
|
seed_g.manual_seed(seed)
|
|
|
|
if not self.t5_cpu:
|
|
self.text_encoder.model.to(self.device)
|
|
context = self.text_encoder([input_prompt], self.device)
|
|
context_null = self.text_encoder([n_prompt], self.device)
|
|
if offload_model:
|
|
self.text_encoder.model.cpu()
|
|
else:
|
|
context = self.text_encoder([input_prompt], torch.device('cpu'))
|
|
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
|
|
context = [t.to(self.device) for t in context]
|
|
context_null = [t.to(self.device) for t in context_null]
|
|
|
|
# vace context encode
|
|
z0 = self.vace_encode_frames(
|
|
input_frames, input_ref_images, masks=input_masks)
|
|
m0 = self.vace_encode_masks(input_masks, input_ref_images)
|
|
z = self.vace_latent(z0, m0)
|
|
|
|
target_shape = list(z0[0].shape)
|
|
target_shape[0] = int(target_shape[0] / 2)
|
|
noise = [
|
|
torch.randn(
|
|
target_shape[0],
|
|
target_shape[1],
|
|
target_shape[2],
|
|
target_shape[3],
|
|
dtype=torch.float32,
|
|
device=self.device,
|
|
generator=seed_g)
|
|
]
|
|
seq_len = math.ceil((target_shape[2] * target_shape[3]) /
|
|
(self.patch_size[1] * self.patch_size[2]) *
|
|
target_shape[1] / self.sp_size) * self.sp_size
|
|
|
|
@contextmanager
|
|
def noop_no_sync():
|
|
yield
|
|
|
|
no_sync = getattr(self.model, 'no_sync', noop_no_sync)
|
|
|
|
# evaluation mode
|
|
with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():
|
|
|
|
if sample_solver == 'unipc':
|
|
sample_scheduler = FlowUniPCMultistepScheduler(
|
|
num_train_timesteps=self.num_train_timesteps,
|
|
shift=1,
|
|
use_dynamic_shifting=False)
|
|
sample_scheduler.set_timesteps(
|
|
sampling_steps, device=self.device, shift=shift)
|
|
timesteps = sample_scheduler.timesteps
|
|
elif sample_solver == 'dpm++':
|
|
sample_scheduler = FlowDPMSolverMultistepScheduler(
|
|
num_train_timesteps=self.num_train_timesteps,
|
|
shift=1,
|
|
use_dynamic_shifting=False)
|
|
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
|
|
timesteps, _ = retrieve_timesteps(
|
|
sample_scheduler,
|
|
device=self.device,
|
|
sigmas=sampling_sigmas)
|
|
else:
|
|
raise NotImplementedError("Unsupported solver.")
|
|
|
|
# sample videos
|
|
latents = noise
|
|
|
|
arg_c = {'context': context, 'seq_len': seq_len}
|
|
arg_null = {'context': context_null, 'seq_len': seq_len}
|
|
|
|
for _, t in enumerate(tqdm(timesteps)):
|
|
latent_model_input = latents
|
|
timestep = [t]
|
|
|
|
timestep = torch.stack(timestep)
|
|
|
|
self.model.to(self.device)
|
|
noise_pred_cond = self.model(
|
|
latent_model_input,
|
|
t=timestep,
|
|
vace_context=z,
|
|
vace_context_scale=context_scale,
|
|
**arg_c)[0]
|
|
noise_pred_uncond = self.model(
|
|
latent_model_input,
|
|
t=timestep,
|
|
vace_context=z,
|
|
vace_context_scale=context_scale,
|
|
**arg_null)[0]
|
|
|
|
noise_pred = noise_pred_uncond + guide_scale * (
|
|
noise_pred_cond - noise_pred_uncond)
|
|
|
|
temp_x0 = sample_scheduler.step(
|
|
noise_pred.unsqueeze(0),
|
|
t,
|
|
latents[0].unsqueeze(0),
|
|
return_dict=False,
|
|
generator=seed_g)[0]
|
|
latents = [temp_x0.squeeze(0)]
|
|
|
|
x0 = latents
|
|
if offload_model:
|
|
self.model.cpu()
|
|
torch.cuda.empty_cache()
|
|
if self.rank == 0:
|
|
videos = self.decode_latent(x0, input_ref_images)
|
|
|
|
del noise, latents
|
|
del sample_scheduler
|
|
if offload_model:
|
|
gc.collect()
|
|
torch.cuda.synchronize()
|
|
if dist.is_initialized():
|
|
dist.barrier()
|
|
|
|
return videos[0] if self.rank == 0 else None
|
|
|
|
|
|
class WanVaceMP(WanVace):
|
|
|
|
def __init__(self,
|
|
config,
|
|
checkpoint_dir,
|
|
use_usp=False,
|
|
ulysses_size=None,
|
|
ring_size=None):
|
|
self.config = config
|
|
self.checkpoint_dir = checkpoint_dir
|
|
self.use_usp = use_usp
|
|
os.environ['MASTER_ADDR'] = 'localhost'
|
|
os.environ['MASTER_PORT'] = '12345'
|
|
os.environ['RANK'] = '0'
|
|
os.environ['WORLD_SIZE'] = '1'
|
|
self.in_q_list = None
|
|
self.out_q = None
|
|
self.inference_pids = None
|
|
self.ulysses_size = ulysses_size
|
|
self.ring_size = ring_size
|
|
self.dynamic_load()
|
|
|
|
self.device = 'cpu' if torch.cuda.is_available() else 'cpu'
|
|
self.vid_proc = VaceVideoProcessor(
|
|
downsample=tuple(
|
|
[x * y for x, y in zip(config.vae_stride, config.patch_size)]),
|
|
min_area=480 * 832,
|
|
max_area=480 * 832,
|
|
min_fps=self.config.sample_fps,
|
|
max_fps=self.config.sample_fps,
|
|
zero_start=True,
|
|
seq_len=32760,
|
|
keep_last=True)
|
|
|
|
def dynamic_load(self):
|
|
if hasattr(self, 'inference_pids') and self.inference_pids is not None:
|
|
return
|
|
gpu_infer = os.environ.get(
|
|
'LOCAL_WORLD_SIZE') or torch.cuda.device_count()
|
|
pmi_rank = int(os.environ['RANK'])
|
|
pmi_world_size = int(os.environ['WORLD_SIZE'])
|
|
in_q_list = [
|
|
torch.multiprocessing.Manager().Queue() for _ in range(gpu_infer)
|
|
]
|
|
out_q = torch.multiprocessing.Manager().Queue()
|
|
initialized_events = [
|
|
torch.multiprocessing.Manager().Event() for _ in range(gpu_infer)
|
|
]
|
|
context = mp.spawn(
|
|
self.mp_worker,
|
|
nprocs=gpu_infer,
|
|
args=(gpu_infer, pmi_rank, pmi_world_size, in_q_list, out_q,
|
|
initialized_events, self),
|
|
join=False)
|
|
all_initialized = False
|
|
while not all_initialized:
|
|
all_initialized = all(
|
|
event.is_set() for event in initialized_events)
|
|
if not all_initialized:
|
|
time.sleep(0.1)
|
|
print('Inference model is initialized', flush=True)
|
|
self.in_q_list = in_q_list
|
|
self.out_q = out_q
|
|
self.inference_pids = context.pids()
|
|
self.initialized_events = initialized_events
|
|
|
|
def transfer_data_to_cuda(self, data, device):
|
|
if data is None:
|
|
return None
|
|
else:
|
|
if isinstance(data, torch.Tensor):
|
|
data = data.to(device)
|
|
elif isinstance(data, list):
|
|
data = [
|
|
self.transfer_data_to_cuda(subdata, device)
|
|
for subdata in data
|
|
]
|
|
elif isinstance(data, dict):
|
|
data = {
|
|
key: self.transfer_data_to_cuda(val, device)
|
|
for key, val in data.items()
|
|
}
|
|
return data
|
|
|
|
def mp_worker(self, gpu, gpu_infer, pmi_rank, pmi_world_size, in_q_list,
|
|
out_q, initialized_events, work_env):
|
|
try:
|
|
world_size = pmi_world_size * gpu_infer
|
|
rank = pmi_rank * gpu_infer + gpu
|
|
print("world_size", world_size, "rank", rank, flush=True)
|
|
|
|
torch.cuda.set_device(gpu)
|
|
dist.init_process_group(
|
|
backend='nccl',
|
|
init_method='env://',
|
|
rank=rank,
|
|
world_size=world_size)
|
|
|
|
from xfuser.core.distributed import (
|
|
init_distributed_environment,
|
|
initialize_model_parallel,
|
|
)
|
|
init_distributed_environment(
|
|
rank=dist.get_rank(), world_size=dist.get_world_size())
|
|
|
|
initialize_model_parallel(
|
|
sequence_parallel_degree=dist.get_world_size(),
|
|
ring_degree=self.ring_size or 1,
|
|
ulysses_degree=self.ulysses_size or 1)
|
|
|
|
num_train_timesteps = self.config.num_train_timesteps
|
|
param_dtype = self.config.param_dtype
|
|
shard_fn = partial(shard_model, device_id=gpu)
|
|
text_encoder = T5EncoderModel(
|
|
text_len=self.config.text_len,
|
|
dtype=self.config.t5_dtype,
|
|
device=torch.device('cpu'),
|
|
checkpoint_path=os.path.join(self.checkpoint_dir,
|
|
self.config.t5_checkpoint),
|
|
tokenizer_path=os.path.join(self.checkpoint_dir,
|
|
self.config.t5_tokenizer),
|
|
shard_fn=shard_fn if True else None)
|
|
text_encoder.model.to(gpu)
|
|
vae_stride = self.config.vae_stride
|
|
patch_size = self.config.patch_size
|
|
vae = WanVAE(
|
|
vae_pth=os.path.join(self.checkpoint_dir,
|
|
self.config.vae_checkpoint),
|
|
device=gpu)
|
|
logging.info(f"Creating VaceWanModel from {self.checkpoint_dir}")
|
|
model = VaceWanModel.from_pretrained(self.checkpoint_dir)
|
|
model.eval().requires_grad_(False)
|
|
|
|
if self.use_usp:
|
|
from xfuser.core.distributed import get_sequence_parallel_world_size
|
|
|
|
from .distributed.xdit_context_parallel import (
|
|
usp_attn_forward,
|
|
usp_dit_forward,
|
|
usp_dit_forward_vace,
|
|
)
|
|
for block in model.blocks:
|
|
block.self_attn.forward = types.MethodType(
|
|
usp_attn_forward, block.self_attn)
|
|
for block in model.vace_blocks:
|
|
block.self_attn.forward = types.MethodType(
|
|
usp_attn_forward, block.self_attn)
|
|
model.forward = types.MethodType(usp_dit_forward, model)
|
|
model.forward_vace = types.MethodType(usp_dit_forward_vace,
|
|
model)
|
|
sp_size = get_sequence_parallel_world_size()
|
|
else:
|
|
sp_size = 1
|
|
|
|
dist.barrier()
|
|
model = shard_fn(model)
|
|
sample_neg_prompt = self.config.sample_neg_prompt
|
|
|
|
torch.cuda.empty_cache()
|
|
event = initialized_events[gpu]
|
|
in_q = in_q_list[gpu]
|
|
event.set()
|
|
|
|
while True:
|
|
item = in_q.get()
|
|
input_prompt, input_frames, input_masks, input_ref_images, size, frame_num, context_scale, \
|
|
shift, sample_solver, sampling_steps, guide_scale, n_prompt, seed, offload_model = item
|
|
input_frames = self.transfer_data_to_cuda(input_frames, gpu)
|
|
input_masks = self.transfer_data_to_cuda(input_masks, gpu)
|
|
input_ref_images = self.transfer_data_to_cuda(
|
|
input_ref_images, gpu)
|
|
|
|
if n_prompt == "":
|
|
n_prompt = sample_neg_prompt
|
|
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
|
|
seed_g = torch.Generator(device=gpu)
|
|
seed_g.manual_seed(seed)
|
|
|
|
context = text_encoder([input_prompt], gpu)
|
|
context_null = text_encoder([n_prompt], gpu)
|
|
|
|
# vace context encode
|
|
z0 = self.vace_encode_frames(
|
|
input_frames, input_ref_images, masks=input_masks, vae=vae)
|
|
m0 = self.vace_encode_masks(
|
|
input_masks, input_ref_images, vae_stride=vae_stride)
|
|
z = self.vace_latent(z0, m0)
|
|
|
|
target_shape = list(z0[0].shape)
|
|
target_shape[0] = int(target_shape[0] / 2)
|
|
noise = [
|
|
torch.randn(
|
|
target_shape[0],
|
|
target_shape[1],
|
|
target_shape[2],
|
|
target_shape[3],
|
|
dtype=torch.float32,
|
|
device=gpu,
|
|
generator=seed_g)
|
|
]
|
|
seq_len = math.ceil((target_shape[2] * target_shape[3]) /
|
|
(patch_size[1] * patch_size[2]) *
|
|
target_shape[1] / sp_size) * sp_size
|
|
|
|
@contextmanager
|
|
def noop_no_sync():
|
|
yield
|
|
|
|
no_sync = getattr(model, 'no_sync', noop_no_sync)
|
|
|
|
# evaluation mode
|
|
with amp.autocast(
|
|
dtype=param_dtype), torch.no_grad(), no_sync():
|
|
|
|
if sample_solver == 'unipc':
|
|
sample_scheduler = FlowUniPCMultistepScheduler(
|
|
num_train_timesteps=num_train_timesteps,
|
|
shift=1,
|
|
use_dynamic_shifting=False)
|
|
sample_scheduler.set_timesteps(
|
|
sampling_steps, device=gpu, shift=shift)
|
|
timesteps = sample_scheduler.timesteps
|
|
elif sample_solver == 'dpm++':
|
|
sample_scheduler = FlowDPMSolverMultistepScheduler(
|
|
num_train_timesteps=num_train_timesteps,
|
|
shift=1,
|
|
use_dynamic_shifting=False)
|
|
sampling_sigmas = get_sampling_sigmas(
|
|
sampling_steps, shift)
|
|
timesteps, _ = retrieve_timesteps(
|
|
sample_scheduler,
|
|
device=gpu,
|
|
sigmas=sampling_sigmas)
|
|
else:
|
|
raise NotImplementedError("Unsupported solver.")
|
|
|
|
# sample videos
|
|
latents = noise
|
|
|
|
arg_c = {'context': context, 'seq_len': seq_len}
|
|
arg_null = {'context': context_null, 'seq_len': seq_len}
|
|
|
|
for _, t in enumerate(tqdm(timesteps)):
|
|
latent_model_input = latents
|
|
timestep = [t]
|
|
|
|
timestep = torch.stack(timestep)
|
|
|
|
model.to(gpu)
|
|
noise_pred_cond = model(
|
|
latent_model_input,
|
|
t=timestep,
|
|
vace_context=z,
|
|
vace_context_scale=context_scale,
|
|
**arg_c)[0]
|
|
noise_pred_uncond = model(
|
|
latent_model_input,
|
|
t=timestep,
|
|
vace_context=z,
|
|
vace_context_scale=context_scale,
|
|
**arg_null)[0]
|
|
|
|
noise_pred = noise_pred_uncond + guide_scale * (
|
|
noise_pred_cond - noise_pred_uncond)
|
|
|
|
temp_x0 = sample_scheduler.step(
|
|
noise_pred.unsqueeze(0),
|
|
t,
|
|
latents[0].unsqueeze(0),
|
|
return_dict=False,
|
|
generator=seed_g)[0]
|
|
latents = [temp_x0.squeeze(0)]
|
|
|
|
torch.cuda.empty_cache()
|
|
x0 = latents
|
|
if rank == 0:
|
|
videos = self.decode_latent(
|
|
x0, input_ref_images, vae=vae)
|
|
|
|
del noise, latents
|
|
del sample_scheduler
|
|
if offload_model:
|
|
gc.collect()
|
|
torch.cuda.synchronize()
|
|
if dist.is_initialized():
|
|
dist.barrier()
|
|
|
|
if rank == 0:
|
|
out_q.put(videos[0].cpu())
|
|
|
|
except Exception as e:
|
|
trace_info = traceback.format_exc()
|
|
print(trace_info, flush=True)
|
|
print(e, flush=True)
|
|
|
|
def generate(self,
|
|
input_prompt,
|
|
input_frames,
|
|
input_masks,
|
|
input_ref_images,
|
|
size=(1280, 720),
|
|
frame_num=81,
|
|
context_scale=1.0,
|
|
shift=5.0,
|
|
sample_solver='unipc',
|
|
sampling_steps=50,
|
|
guide_scale=5.0,
|
|
n_prompt="",
|
|
seed=-1,
|
|
offload_model=True):
|
|
|
|
input_data = (input_prompt, input_frames, input_masks, input_ref_images,
|
|
size, frame_num, context_scale, shift, sample_solver,
|
|
sampling_steps, guide_scale, n_prompt, seed,
|
|
offload_model)
|
|
for in_q in self.in_q_list:
|
|
in_q.put(input_data)
|
|
value_output = self.out_q.get()
|
|
|
|
return value_output
|