7.8 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	Troubleshooting Guide
This guide covers common issues and their solutions when using WanGP.
Installation Issues
PyTorch Installation Problems
CUDA Version Mismatch
Problem: PyTorch can't detect GPU or CUDA errors Solution:
# Check your CUDA version
nvidia-smi
# Install matching PyTorch version
# For CUDA 12.4 (RTX 10XX-40XX)
pip install torch==2.6.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/test/cu124
# For CUDA 12.8 (RTX 50XX)
pip install torch==2.7.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/test/cu128
Python Version Issues
Problem: Package compatibility errors Solution: Ensure you're using Python 3.10.9
python --version  # Should show 3.10.9
conda create -n wan2gp python=3.10.9
Dependency Installation Failures
Triton Installation (Windows)
Problem: pip install triton-windows fails
Solution:
- Update pip: 
pip install --upgrade pip - Try pre-compiled wheel
 - Fallback to SDPA attention: 
python wgp.py --attention sdpa 
SageAttention Compilation Issues
Problem: SageAttention installation fails Solution:
- Install Visual Studio Build Tools (Windows)
 - Use pre-compiled wheels when available
 - Fallback to basic attention modes
 
Memory Issues
CUDA Out of Memory
During Model Loading
Problem: "CUDA out of memory" when loading model Solutions:
# Use smaller model
python wgp.py --t2v-1-3B
# Enable quantization (usually default)
python wgp.py --quantize-transformer True
# Use memory-efficient profile
python wgp.py --profile 4
# Reduce preloaded model size
python wgp.py --preload 0
During Video Generation
Problem: Memory error during generation Solutions:
- Reduce frame count (shorter videos)
 - Lower resolution in advanced settings
 - Use lower batch size
 - Clear GPU cache between generations
 
System RAM Issues
High RAM Usage
Problem: System runs out of RAM Solutions:
# Limit reserved memory
python wgp.py --perc-reserved-mem-max 0.3
# Use minimal RAM profile
python wgp.py --profile 5
# Enable swap file (OS level)
Performance Issues
Slow Generation Speed
General Optimization
# Enable compilation (requires Triton)
python wgp.py --compile
# Use faster attention
python wgp.py --attention sage2
# Enable TeaCache
python wgp.py --teacache 2.0
# Use high-performance profile
python wgp.py --profile 3
GPU-Specific Optimizations
RTX 10XX/20XX Series:
python wgp.py --attention sdpa --profile 4 --teacache 1.5
RTX 30XX/40XX Series:
python wgp.py --compile --attention sage --profile 3 --teacache 2.0
RTX 50XX Series:
python wgp.py --attention sage --profile 4 --fp16
Attention Mechanism Issues
Sage Attention Not Working
Problem: Sage attention fails to compile or work Diagnostic Steps:
- Check Triton installation:
import triton print(triton.__version__) - Clear Triton cache:
# Windows rmdir /s %USERPROFILE%\.triton # Linux rm -rf ~/.triton - Fallback solution:
python wgp.py --attention sdpa 
Flash Attention Issues
Problem: Flash attention compilation fails Solution:
- Windows: Often requires manual CUDA kernel compilation
 - Linux: Usually works with 
pip install flash-attn - Fallback: Use Sage or SDPA attention
 
Model-Specific Issues
Lora Problems
Loras Not Loading
Problem: Loras don't appear in the interface Solutions:
- Check file format (should be .safetensors, .pt, or .pth)
 - Verify correct directory:
loras/ # For t2v models loras_i2v/ # For i2v models loras_hunyuan/ # For Hunyuan models - Click "Refresh" button in interface
 - Use 
--check-lorasto filter incompatible files 
Lora Compatibility Issues
Problem: Lora causes errors or poor results Solutions:
- Check model size compatibility (1.3B vs 14B)
 - Verify lora was trained for your model type
 - Try different multiplier values
 - Use 
--check-lorasflag to auto-filter 
VACE-Specific Issues
Poor VACE Results
Problem: VACE generates poor quality or unexpected results Solutions:
- Enable Skip Layer Guidance
 - Use detailed prompts describing all elements
 - Ensure proper mask creation with Matanyone
 - Check reference image quality
 - Use at least 15 steps, preferably 30+
 
Matanyone Tool Issues
Problem: Mask creation difficulties Solutions:
- Use negative point prompts to refine selection
 - Create multiple sub-masks and combine them
 - Try different background removal options
 - Ensure sufficient contrast in source video
 
Network and Server Issues
Gradio Interface Problems
Port Already in Use
Problem: "Port 7860 is already in use" Solution:
# Use different port
python wgp.py --server-port 7861
# Or kill existing process
# Windows
netstat -ano | findstr :7860
taskkill /PID <PID> /F
# Linux
lsof -i :7860
kill <PID>
Interface Not Loading
Problem: Browser shows "connection refused" Solutions:
- Check if server started successfully
 - Try 
http://127.0.0.1:7860instead oflocalhost:7860 - Disable firewall temporarily
 - Use 
--listenflag for network access 
Remote Access Issues
Sharing Not Working
Problem: --share flag doesn't create public URL
Solutions:
- Check internet connection
 - Try different network
 - Use 
--listenwith port forwarding - Check firewall settings
 
Quality Issues
Poor Video Quality
General Quality Improvements
- Increase number of steps (25-30+)
 - Use larger models (14B instead of 1.3B)
 - Enable Skip Layer Guidance
 - Improve prompt descriptions
 - Use higher resolution settings
 
Specific Quality Issues
Blurry Videos:
- Increase steps
 - Check source image quality (i2v)
 - Reduce TeaCache multiplier
 - Use higher guidance scale
 
Inconsistent Motion:
- Use longer overlap in sliding windows
 - Reduce window size
 - Improve prompt consistency
 - Check control video quality (VACE)
 
Color Issues:
- Check model compatibility
 - Adjust guidance scale
 - Verify input image color space
 - Try different VAE settings
 
Advanced Debugging
Enable Verbose Output
# Maximum verbosity
python wgp.py --verbose 2
# Check lora compatibility
python wgp.py --check-loras --verbose 2
Memory Debugging
# Monitor GPU memory
nvidia-smi -l 1
# Reduce memory usage
python wgp.py --profile 4 --perc-reserved-mem-max 0.2
Performance Profiling
# Test different configurations
python wgp.py --attention sdpa --profile 4  # Baseline
python wgp.py --attention sage --profile 3  # Performance
python wgp.py --compile --teacache 2.0      # Maximum speed
Getting Help
Before Asking for Help
- Check this troubleshooting guide
 - Read the relevant documentation:
 - Try basic fallback configuration:
python wgp.py --attention sdpa --profile 4 
Community Support
- Discord Server: https://discord.gg/g7efUW9jGV
 - Provide relevant information:
- GPU model and VRAM amount
 - Python and PyTorch versions
 - Complete error messages
 - Command used to launch WanGP
 - Operating system
 
 
Reporting Bugs
When reporting issues:
- Include system specifications
 - Provide complete error logs
 - List the exact steps to reproduce
 - Mention any modifications to default settings
 - Include command line arguments used
 
Emergency Fallback
If nothing works, try this minimal configuration:
# Absolute minimum setup
python wgp.py --t2v-1-3B --attention sdpa --profile 4 --teacache 0 --fp16
# If that fails, check basic PyTorch installation
python -c "import torch; print(torch.cuda.is_available())"