mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			55 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			55 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import torch
 | 
						|
from einops import rearrange
 | 
						|
from torch import Tensor
 | 
						|
from wan.modules.attention import pay_attention
 | 
						|
 | 
						|
 | 
						|
def attention(qkv_list, pe: Tensor) -> Tensor:
 | 
						|
    q, k, v = qkv_list
 | 
						|
    qkv_list.clear()
 | 
						|
    q_list = [q] 
 | 
						|
    q = None
 | 
						|
    q = apply_rope_(q_list, pe)
 | 
						|
    k_list = [k] 
 | 
						|
    k = None
 | 
						|
    k = apply_rope_(k_list, pe)
 | 
						|
    qkv_list = [q.transpose(1,2), k.transpose(1,2) ,v.transpose(1,2)]
 | 
						|
    del q,k, v
 | 
						|
    x = pay_attention(qkv_list).transpose(1,2)
 | 
						|
    # x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
 | 
						|
    x = rearrange(x, "B H L D -> B L (H D)")
 | 
						|
 | 
						|
    return x
 | 
						|
 | 
						|
 | 
						|
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
 | 
						|
    assert dim % 2 == 0
 | 
						|
    scale = torch.arange(0, dim, 2, dtype=pos.dtype, device=pos.device) / dim
 | 
						|
    omega = 1.0 / (theta**scale)
 | 
						|
    out = torch.einsum("...n,d->...nd", pos, omega)
 | 
						|
    out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
 | 
						|
    out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
 | 
						|
    return out.float()
 | 
						|
 | 
						|
 | 
						|
def apply_rope_(q_list, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
 | 
						|
    xq= q_list[0]
 | 
						|
    xqshape = xq.shape
 | 
						|
    xqdtype= xq.dtype
 | 
						|
    q_list.clear()
 | 
						|
    xq = xq.float().reshape(*xqshape[:-1], -1, 1, 2)
 | 
						|
    xq_out = freqs_cis[..., 0] * xq[..., 0]
 | 
						|
    xq = freqs_cis[..., 1] * xq[..., 1]
 | 
						|
 | 
						|
    xq_out.add_(xq)
 | 
						|
    # xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
 | 
						|
 | 
						|
    return xq_out.reshape(*xqshape).to(xqdtype)
 | 
						|
 | 
						|
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
 | 
						|
    xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
 | 
						|
    xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
 | 
						|
    xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
 | 
						|
    xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
 | 
						|
    return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
 |