flux kontext

This commit is contained in:
DeepBeepMeep 2025-07-13 04:24:55 +02:00
parent 597d26b7e0
commit eb92f0c11c
61 changed files with 5226 additions and 339 deletions

13
defaults/ReadMe.txt Normal file
View File

@ -0,0 +1,13 @@
Please dot not modify any file in this Folder.
If you want to change a property of a default model, copy the corrresponding model file in the ./finetunes folder and modify the properties you want to change in the new file.
If a property is not in the new file, it will be inherited automatically from the default file that matches the same name file.
For instance to hide a model:
{
"model":
{
"visible": false
}
}

View File

@ -1,14 +1,14 @@
{
"model":
{
"name": "First Last Frame to Video 720p (FLF2V)14B",
"name": "First Last Frame to Video 720p (FLF2V) 14B",
"architecture" : "flf2v_720p",
"visible" : false,
"visible" : true,
"description": "The First Last Frame 2 Video model is the official model Image 2 Video model that supports Start and End frames.",
"URLs": [
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_FLF2V_720p_14B_bf16.safetensors",
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_FLF2V_720p_14B_quanto_int8.safetensors",
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_FLF2V_720p_14B_quanto_fp16_int8.safetensors"
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_FLF2V_720p_14B_mbf16.safetensors",
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_FLF2V_720p_14B_quanto_mbf16_int8.safetensors",
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_FLF2V_720p_14B_quanto_mfp16_int8.safetensors"
],
"auto_quantize": true
},

View File

@ -0,0 +1,19 @@
{
"model": {
"name": "Flux Dev Kontext 12B",
"architecture": "flux_dev_kontext",
"description": "FLUX.1 Kontext is a 12 billion parameter rectified flow transformer capable of editing images based on instructions stored in the Prompt. Please be aware that the output resolution is modified by Flux Kontext and may not be what you requested.",
"URLs": [
"c:/temp/kontext/flux1_kontext_dev_bf16.safetensors",
"c:/temp/kontext/flux1_kontext_dev_quanto_bf16_int8.safetensors"
],
"URLs2": [
"https://huggingface.co/DeepBeepMeep/Flux/resolve/main/flux1_kontext_dev_bf16.safetensors",
"https://huggingface.co/DeepBeepMeep/Flux/resolve/main/flux1_kontext_dev_quanto_bf16_int8.safetensors"
]
},
"resolution": "1280x720",
"video_length": "1"
}

13
defaults/fun_inp.json Normal file
View File

@ -0,0 +1,13 @@
{
"model":
{
"name": "Fun InP image2video 14B",
"architecture" : "fun_inp",
"description": "The Fun model is an alternative image 2 video that supports out the box End Image fixing (contrary to the original Wan image 2 video model).",
"URLs": [
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_Fun_InP_14B_bf16.safetensors",
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_Fun_InP_14B_quanto_int8.safetensors",
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_Fun_InP_14B_quanto_fp16_int8.safetensors"
]
}
}

View File

@ -0,0 +1,11 @@
{
"model":
{
"name": "Fun InP image2video 1.3B",
"architecture" : "fun_inp_1.3B",
"description": "The Fun model is an alternative image 2 video that supports out the box End Image fixing (contrary to the original Wan image 2 video model). The 1.3B adds also image 2 to video capability to the 1.3B model.",
"URLs": [
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_Fun_InP_1.3B_bf16.safetensors"
]
}
}

12
defaults/hunyuan.json Normal file
View File

@ -0,0 +1,12 @@
{
"model":
{
"name": "Hunyuan Video text2video 720p 13B",
"architecture" : "hunyuan",
"description": "Probably the best text 2 video model available.",
"URLs": [
"https://huggingface.co/DeepBeepMeep/HunyuanVideo/resolve/main/hunyuan_video_720_bf16.safetensors.safetensors",
"https://huggingface.co/DeepBeepMeep/HunyuanVideo/resolve/main/hunyuan_video_720_quanto_int8.safetensors"
]
}
}

View File

@ -0,0 +1,12 @@
{
"model":
{
"name": "Hunyuan Video Avatar 720p 13B",
"architecture" : "hunyuan_avatar",
"description": "With the Hunyuan Video Avatar model you can animate a person based on the content of an audio input. Please note that the video generator works by processing 128 frames segment at a time (even if you ask less). The good news is that it will concatenate multiple segments for long video generation (max 3 segments recommended as the quality will get worse).",
"URLs": [
"https://huggingface.co/DeepBeepMeep/HunyuanVideo/resolve/main/hunyuan_video_avatar_720_bf16.safetensors",
"https://huggingface.co/DeepBeepMeep/HunyuanVideo/resolve/main/hunyuan_video_avatar_720_quanto_bf16_int8.safetensors"
]
}
}

View File

@ -0,0 +1,12 @@
{
"model":
{
"name": "Hunyuan Video Custom 720p 13B",
"architecture" : "hunyuan_custom",
"description": "The Hunyuan Video Custom model is probably the best model to transfer people (only people for the moment) as it is quite good to keep their identity. However it is slow as to get good results, you need to generate 720p videos with 30 steps.",
"URLs": [
"https://huggingface.co/DeepBeepMeep/HunyuanVideo/resolve/main/hunyuan_video_custom_720_bf16.safetensors",
"https://huggingface.co/DeepBeepMeep/HunyuanVideo/resolve/main/hunyuan_video_custom_720_quanto_bf16_int8.safetensors"
]
}
}

View File

@ -0,0 +1,12 @@
{
"model":
{
"name": "Hunyuan Video Custom Audio 720p 13B",
"architecture" : "hunyuan_custom_audio",
"description": "The Hunyuan Video Custom Audio model can be used to generate scenes of a person speaking given a Reference Image and a Recorded Voice or Song. The reference image is not a start image and therefore one can represent the person in a different context.The video length can be anything up to 10s. It is also quite good to generate no sound Video based on a person.",
"URLs": [
"https://huggingface.co/DeepBeepMeep/HunyuanVideo/resolve/main/hunyuan_video_custom_audio_720_bf16.safetensors",
"https://huggingface.co/DeepBeepMeep/HunyuanVideo/resolve/main/hunyuan_video_custom_audio_720_quanto_bf16_int8.safetensors"
]
}
}

View File

@ -0,0 +1,12 @@
{
"model":
{
"name": "Hunyuan Video Custom Edit 720p 13B",
"architecture" : "hunyuan_custom_edit",
"description": "The Hunyuan Video Custom Edit model can be used to do Video inpainting on a person (add accessories or completely replace the person). You will need in any case to define a Video Mask which will indicate which area of the Video should be edited.",
"URLs": [
"https://huggingface.co/DeepBeepMeep/HunyuanVideo/resolve/main/hunyuan_video_custom_edit_720_bf16.safetensors",
"https://huggingface.co/DeepBeepMeep/HunyuanVideo/resolve/main/hunyuan_video_custom_edit_720_quanto_bf16_int8.safetensors"
]
}
}

12
defaults/hunyuan_i2v.json Normal file
View File

@ -0,0 +1,12 @@
{
"model":
{
"name": "Hunyuan Video image2video 720p 13B",
"architecture" : "hunyuan_i2v",
"description": "A good looking image 2 video model, but not so good in prompt adherence.",
"URLs": [
"https://huggingface.co/DeepBeepMeep/HunyuanVideo/resolve/main/hunyuan_video_i2v_720_bf16v2.safetensors",
"https://huggingface.co/DeepBeepMeep/HunyuanVideo/resolve/main/hunyuan_video_i2v_720_quanto_int8v2.safetensors"
]
}
}

13
defaults/i2v.json Normal file
View File

@ -0,0 +1,13 @@
{
"model":
{
"name": "Wan2.1 image2video 480p 14B",
"architecture" : "i2v",
"description": "The standard Wan Image 2 Video specialized to generate 480p images. It also offers Start and End Image support (End Image is not supported in the original model but seems to work well)",
"URLs": [
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_image2video_480p_14B_mbf16.safetensors",
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_image2video_480p_14B_quanto_mbf16_int8.safetensors",
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_image2video_480p_14B_quanto_mfp16_int8.safetensors"
]
}
}

14
defaults/i2v_720p.json Normal file
View File

@ -0,0 +1,14 @@
{
"model":
{
"name": "Wan2.1 image2video 720p 14B",
"architecture" : "i2v",
"description": "The standard Wan Image 2 Video specialized to generate 720p images. It also offers Start and End Image support (End Image is not supported in the original model but seems to work well).",
"URLs": [
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_image2video_720p_14B_mbf16.safetensors",
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_image2video_720p_14B_quanto_mbf16_int8.safetensors",
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_image2video_720p_14B_quanto_mfp16_int8.safetensors"
]
},
"resolution": "1280x720"
}

View File

@ -0,0 +1,10 @@
{
"model":
{
"name": "Wan2.1 image2video 480p FusioniX 14B",
"architecture" : "i2v",
"description": "A powerful merged image-to-video model based on the original WAN 2.1 I2V model, enhanced using multiple open-source components and LoRAs to boost motion realism, temporal consistency, and expressive detail.",
"URLs": "i2v",
"loras": ["https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/loras_accelerators/Wan2.1_I2V_14B_FusionX_LoRA.safetensors"]
}
}

14
defaults/ltxv_13B.json Normal file
View File

@ -0,0 +1,14 @@
{
"model":
{
"name": "LTX Video 0.9.7 13B",
"architecture" : "ltxv_13B",
"description": "LTX Video is a fast model that can be used to generate long videos (up to 260 frames).It is recommended to keep the number of steps to 30 or you will need to update the file 'ltxv_video/configs/ltxv-13b-0.9.7-dev.yaml'.The LTX Video model expects very long prompts, so don't hesitate to use the Prompt Enhancer.",
"URLs": [
"https://huggingface.co/DeepBeepMeep/LTX_Video/resolve/main/ltxv_0.9.7_13B_dev_bf16.safetensors",
"https://huggingface.co/DeepBeepMeep/LTX_Video/resolve/main/ltxv_0.9.7_13B_dev_quanto_bf16_int8.safetensors"
],
"LTXV_config": "ltx_video/configs/ltxv-13b-0.9.7-dev.yaml"
},
"num_inference_steps": 30
}

View File

@ -0,0 +1,14 @@
{
"model":
{
"name": "LTX Video 0.9.7 Distilled 13B",
"architecture" : "ltxv_13B",
"description": "LTX Video is a fast model that can be used to generate long videos (up to 260 frames).This distilled version is a very fast version and retains a high level of quality. The LTX Video model expects very long prompts, so don't hesitate to use the Prompt Enhancer.",
"URLs": "ltxv_13B",
"loras": ["https://huggingface.co/DeepBeepMeep/LTX_Video/resolve/main/ltxv_0.9.7_13B_distilled_lora128_bf16.safetensors"],
"loras_multipliers": [ 1 ],
"lock_inference_steps": true,
"LTXV_config": "ltx_video/configs/ltxv-13b-0.9.7-distilled.yaml"
},
"num_inference_steps": 6
}

View File

@ -0,0 +1,11 @@
{
"model":
{
"name": "Phantom 1.3B",
"architecture" : "phantom_1.3B",
"description": "The Phantom model is specialized in transferring people or objects of your choice into a generated Video. It produces very nice results when used at 720p.",
"URLs": [
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2_1_phantom_1.3B_mbf16.safetensors"
]
}
}

13
defaults/phantom_14B.json Normal file
View File

@ -0,0 +1,13 @@
{
"model":
{
"name": "Phantom 14B",
"architecture" : "phantom_14B",
"description": "The Phantom model is specialized in transferring people or objects of your choice into a generated Video. It produces very nice results when used at 720p.",
"URLs": [
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_phantom_14B_mbf16.safetensors",
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_phantom_14B_quanto_mbf16_int8.safetensors",
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_phantom_14B_quanto_mfp16_int8.safetensors"
]
}
}

11
defaults/recam_1.3B.json Normal file
View File

@ -0,0 +1,11 @@
{
"model":
{
"name": "ReCamMaster 1.3B",
"architecture" : "recam_1.3B",
"description": "The Recam Master in theory should allow you to replay a video by applying a different camera movement. The model supports only video that are at least 81 frames long (any frame beyond will be ignored)",
"URLs": [
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_recammaster_1.3B_bf16.safetensors"
]
}
}

11
defaults/sky_df_1.3B.json Normal file
View File

@ -0,0 +1,11 @@
{
"model":
{
"name": "SkyReels2 Diffusion Forcing 1.3B",
"architecture" : "sky_df_1.3B",
"description": "The SkyReels 2 Diffusion Forcing model has been designed to generate very long videos that exceeds the usual 5s limit. You can also use this model to extend any existing video.",
"URLs": [
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/sky_reels2_diffusion_forcing_1.3B_mbf16.safetensors"
]
}
}

13
defaults/sky_df_14B.json Normal file
View File

@ -0,0 +1,13 @@
{
"model":
{
"name": "SkyReels2 Diffusion Forcing 540p 14B",
"architecture" : "sky_df_14B",
"description": "The SkyReels 2 Diffusion Forcing model has been designed to generate very long videos that exceeds the usual 5s limit. You can also use this model to extend any existing video.",
"URLs": [
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/sky_reels2_diffusion_forcing_14B_bf16.safetensors",
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/sky_reels2_diffusion_forcing_14B_quanto_int8.safetensors",
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/sky_reels2_diffusion_forcing_14B_quanto_fp16_int8.safetensors"
]
}
}

View File

@ -0,0 +1,14 @@
{
"model":
{
"name": "SkyReels2 Diffusion Forcing 720p 14B",
"architecture" : "sky_df_14B",
"description": "The SkyReels 2 Diffusion Forcing model has been designed to generate very long videos that exceeds the usual 5s limit. You can also use this model to extend any existing video.",
"URLs": [
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/sky_reels2_diffusion_forcing_720p_14B_mbf16.safetensors",
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/sky_reels2_diffusion_forcing_720p_14B_quanto_mbf16_int8.safetensors",
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/sky_reels2_diffusion_forcing_720p_14B_quanto_mfp16_int8.safetensors"
]
},
"resolution": "1280x720"
}

13
defaults/t2v.json Normal file
View File

@ -0,0 +1,13 @@
{
"model":
{
"name": "Wan2.1 text2video 14B",
"architecture" : "t2v",
"description": "The original Wan Text 2 Video model. Most other models have been built on top of it",
"URLs": [
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_text2video_14B_mbf16.safetensors",
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_text2video_14B_quanto_mbf16_int8.safetensors",
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_text2video_14B_quanto_mfp16_int8.safetensors"
]
}
}

11
defaults/t2v_1.3B.json Normal file
View File

@ -0,0 +1,11 @@
{
"model":
{
"name": "Wan2.1 text2video 1.3B",
"architecture" : "t2v_1.3B",
"description": "The light version of the original Wan Text 2 Video model. Most other models have been built on top of it",
"URLs": [
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_text2video_1.3B_bf16.safetensors"
]
}
}

11
defaults/vace_1.3B.json Normal file
View File

@ -0,0 +1,11 @@
{
"model":
{
"name": "Vace ControlNet 1.3B",
"architecture" : "vace_1.3B",
"description": "The Vace ControlNet model is a powerful model that allows you to control the content of the generated video based of additional custom data : pose or depth video, images or objects you want to see in the video.",
"URLs": [
"https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/wan2.1_Vace_1.3B_mbf16.safetensors"
]
}
}

13
flux/__init__.py Normal file
View File

@ -0,0 +1,13 @@
try:
from ._version import (
version as __version__, # type: ignore
version_tuple,
)
except ImportError:
__version__ = "unknown (no version information available)"
version_tuple = (0, 0, "unknown", "noinfo")
from pathlib import Path
PACKAGE = __package__.replace("_", "-")
PACKAGE_ROOT = Path(__file__).parent

18
flux/__main__.py Normal file
View File

@ -0,0 +1,18 @@
from fire import Fire
from .cli import main as cli_main
from .cli_control import main as control_main
from .cli_fill import main as fill_main
from .cli_kontext import main as kontext_main
from .cli_redux import main as redux_main
if __name__ == "__main__":
Fire(
{
"t2i": cli_main,
"control": control_main,
"fill": fill_main,
"kontext": kontext_main,
"redux": redux_main,
}
)

21
flux/_version.py Normal file
View File

@ -0,0 +1,21 @@
# file generated by setuptools-scm
# don't change, don't track in version control
__all__ = ["__version__", "__version_tuple__", "version", "version_tuple"]
TYPE_CHECKING = False
if TYPE_CHECKING:
from typing import Tuple
from typing import Union
VERSION_TUPLE = Tuple[Union[int, str], ...]
else:
VERSION_TUPLE = object
version: str
__version__: str
__version_tuple__: VERSION_TUPLE
version_tuple: VERSION_TUPLE
__version__ = version = '0.0.post58+g1371b2b'
__version_tuple__ = version_tuple = (0, 0, 'post58', 'g1371b2b')

112
flux/flux_main.py Normal file
View File

@ -0,0 +1,112 @@
import os
import re
import time
from dataclasses import dataclass
from glob import iglob
from mmgp import offload as offload
import torch
from wan.utils.utils import calculate_new_dimensions
from flux.sampling import denoise, get_schedule, prepare_kontext, unpack
from flux.modules.layers import get_linear_split_map
from flux.util import (
aspect_ratio_to_height_width,
load_ae,
load_clip,
load_flow_model,
load_t5,
save_image,
)
class model_factory:
def __init__(
self,
checkpoint_dir,
model_filename = None,
model_type = None,
base_model_type = None,
text_encoder_filename = None,
quantizeTransformer = False,
save_quantized = False,
dtype = torch.bfloat16,
VAE_dtype = torch.float32,
mixed_precision_transformer = False
):
self.device = torch.device(f"cuda")
self.VAE_dtype = VAE_dtype
self.dtype = dtype
torch_device = "cpu"
self.t5 = load_t5(torch_device, text_encoder_filename, max_length=512)
self.clip = load_clip(torch_device)
self.name= "flux-dev-kontext"
self.model = load_flow_model(self.name, model_filename[0], torch_device)
self.vae = load_ae(self.name, device=torch_device)
# offload.change_dtype(self.model, dtype, True)
if save_quantized:
from wgp import save_quantized_model
save_quantized_model(self.model, model_type, model_filename[0], dtype, None)
split_linear_modules_map = get_linear_split_map()
self.model.split_linear_modules_map = split_linear_modules_map
offload.split_linear_modules(self.model, split_linear_modules_map )
def generate(
self,
seed: int | None = None,
input_prompt: str = "replace the logo with the text 'Black Forest Labs'",
sampling_steps: int = 20,
input_ref_images = None,
width= 832,
height=480,
guide_scale: float = 2.5,
fit_into_canvas = None,
callback = None,
loras_slists = None,
frame_num = 1,
**bbargs
):
if self._interrupt:
return None
rng = torch.Generator(device="cuda")
if seed is None:
seed = rng.seed()
if input_ref_images != None and len(input_ref_images) > 0:
image_ref = input_ref_images[0]
w, h = image_ref.size
height, width = calculate_new_dimensions(height, width, h, w, fit_into_canvas)
inp, height, width = prepare_kontext(
t5=self.t5,
clip=self.clip,
prompt=input_prompt,
ae=self.vae,
img_cond=image_ref,
target_width=width,
target_height=height,
bs=frame_num,
seed=seed,
device="cuda",
)
inp.pop("img_cond_orig")
timesteps = get_schedule(sampling_steps, inp["img"].shape[1], shift=(self.name != "flux-schnell"))
def unpack_latent(x):
return unpack(x.float(), height, width)
# denoise initial noise
x = denoise(self.model, **inp, timesteps=timesteps, guidance=guide_scale, callback=callback, pipeline=self, loras_slists= loras_slists, unpack_latent = unpack_latent)
if x==None: return None
# decode latents to pixel space
x = unpack_latent(x)
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
x = self.vae.decode(x)
x = x.clamp(-1, 1)
x = x.transpose(0, 1)
return x

54
flux/math.py Normal file
View File

@ -0,0 +1,54 @@
import torch
from einops import rearrange
from torch import Tensor
from wan.modules.attention import pay_attention
def attention(qkv_list, pe: Tensor) -> Tensor:
q, k, v = qkv_list
qkv_list.clear()
q_list = [q]
q = None
q = apply_rope_(q_list, pe)
k_list = [k]
k = None
k = apply_rope_(k_list, pe)
qkv_list = [q.transpose(1,2), k.transpose(1,2) ,v.transpose(1,2)]
del q,k, v
x = pay_attention(qkv_list).transpose(1,2)
# x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = rearrange(x, "B H L D -> B L (H D)")
return x
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
assert dim % 2 == 0
scale = torch.arange(0, dim, 2, dtype=pos.dtype, device=pos.device) / dim
omega = 1.0 / (theta**scale)
out = torch.einsum("...n,d->...nd", pos, omega)
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.float()
def apply_rope_(q_list, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
xq= q_list[0]
xqshape = xq.shape
xqdtype= xq.dtype
q_list.clear()
xq = xq.float().reshape(*xqshape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq[..., 0]
xq = freqs_cis[..., 1] * xq[..., 1]
xq_out.add_(xq)
# xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
return xq_out.reshape(*xqshape).to(xqdtype)
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)

168
flux/model.py Normal file
View File

@ -0,0 +1,168 @@
from dataclasses import dataclass
import torch
from torch import Tensor, nn
from flux.modules.layers import (
DoubleStreamBlock,
EmbedND,
LastLayer,
MLPEmbedder,
SingleStreamBlock,
timestep_embedding,
)
from flux.modules.lora import LinearLora, replace_linear_with_lora
@dataclass
class FluxParams:
in_channels: int
out_channels: int
vec_in_dim: int
context_in_dim: int
hidden_size: int
mlp_ratio: float
num_heads: int
depth: int
depth_single_blocks: int
axes_dim: list[int]
theta: int
qkv_bias: bool
guidance_embed: bool
class Flux(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
def __init__(self, params: FluxParams):
super().__init__()
self.params = params
self.in_channels = params.in_channels
self.out_channels = params.out_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
)
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
)
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
)
for _ in range(params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
for _ in range(params.depth_single_blocks)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
def preprocess_loras(self, model_type, sd):
new_sd = {}
if len(sd) == 0: return sd
first_key= next(iter(sd))
if first_key.startswith("transformer."):
src_list = [".attn.to_q.", ".attn.to_k.", ".attn.to_v."]
tgt_list = [".linear1_attn_q.", ".linear1_attn_k.", ".linear1_attn_v."]
for k,v in sd.items():
k = k.replace("transformer.single_transformer_blocks", "diffusion_model.single_blocks")
k = k.replace("transformer.double_transformer_blocks", "diffusion_model.double_blocks")
for src, tgt in zip(src_list, tgt_list):
k = k.replace(src, tgt)
new_sd[k] = v
return new_sd
def forward(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
y: Tensor,
guidance: Tensor | None = None,
callback= None,
pipeline =None,
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256))
if self.params.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec += self.guidance_in(timestep_embedding(guidance, 256))
vec += self.vector_in(y)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
for block in self.double_blocks:
if callback != None:
callback(-1, None, False, True)
if pipeline._interrupt:
return None
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
img = torch.cat((txt, img), 1)
for block in self.single_blocks:
img = block(img, vec=vec, pe=pe)
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img
class FluxLoraWrapper(Flux):
def __init__(
self,
lora_rank: int = 128,
lora_scale: float = 1.0,
*args,
**kwargs,
) -> None:
super().__init__(*args, **kwargs)
self.lora_rank = lora_rank
replace_linear_with_lora(
self,
max_rank=lora_rank,
scale=lora_scale,
)
def set_lora_scale(self, scale: float) -> None:
for module in self.modules():
if isinstance(module, LinearLora):
module.set_scale(scale=scale)

320
flux/modules/autoencoder.py Normal file
View File

@ -0,0 +1,320 @@
from dataclasses import dataclass
import torch
from einops import rearrange
from torch import Tensor, nn
@dataclass
class AutoEncoderParams:
resolution: int
in_channels: int
ch: int
out_ch: int
ch_mult: list[int]
num_res_blocks: int
z_channels: int
scale_factor: float
shift_factor: float
def swish(x: Tensor) -> Tensor:
return x * torch.sigmoid(x)
class AttnBlock(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.in_channels = in_channels
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
def attention(self, h_: Tensor) -> Tensor:
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
b, c, h, w = q.shape
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
def forward(self, x: Tensor) -> Tensor:
return x + self.proj_out(self.attention(x))
class ResnetBlock(nn.Module):
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
if self.in_channels != self.out_channels:
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x):
h = x
h = self.norm1(h)
h = swish(h)
h = self.conv1(h)
h = self.norm2(h)
h = swish(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
x = self.nin_shortcut(x)
return x + h
class Downsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
# no asymmetric padding in torch conv, must do it ourselves
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
def forward(self, x: Tensor):
pad = (0, 1, 0, 1)
x = nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
return x
class Upsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x: Tensor):
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
x = self.conv(x)
return x
class Encoder(nn.Module):
def __init__(
self,
resolution: int,
in_channels: int,
ch: int,
ch_mult: list[int],
num_res_blocks: int,
z_channels: int,
):
super().__init__()
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
# downsampling
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
curr_res = resolution
in_ch_mult = (1,) + tuple(ch_mult)
self.in_ch_mult = in_ch_mult
self.down = nn.ModuleList()
block_in = self.ch
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks):
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
block_in = block_out
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in)
curr_res = curr_res // 2
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
# end
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x: Tensor) -> Tensor:
# downsampling
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1])
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
h = hs[-1]
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# end
h = self.norm_out(h)
h = swish(h)
h = self.conv_out(h)
return h
class Decoder(nn.Module):
def __init__(
self,
ch: int,
out_ch: int,
ch_mult: list[int],
num_res_blocks: int,
in_channels: int,
resolution: int,
z_channels: int,
):
super().__init__()
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.ffactor = 2 ** (self.num_resolutions - 1)
# compute in_ch_mult, block_in and curr_res at lowest res
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
# z to block_in
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks + 1):
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
block_in = block_out
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
def forward(self, z: Tensor) -> Tensor:
# get dtype for proper tracing
upscale_dtype = next(self.up.parameters()).dtype
# z to block_in
h = self.conv_in(z)
# middle
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# cast to proper dtype
h = h.to(upscale_dtype)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
h = self.norm_out(h)
h = swish(h)
h = self.conv_out(h)
return h
class DiagonalGaussian(nn.Module):
def __init__(self, sample: bool = True, chunk_dim: int = 1):
super().__init__()
self.sample = sample
self.chunk_dim = chunk_dim
def forward(self, z: Tensor) -> Tensor:
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
if self.sample:
std = torch.exp(0.5 * logvar)
return mean + std * torch.randn_like(mean)
else:
return mean
class AutoEncoder(nn.Module):
def __init__(self, params: AutoEncoderParams, sample_z: bool = False):
super().__init__()
self.params = params
self.encoder = Encoder(
resolution=params.resolution,
in_channels=params.in_channels,
ch=params.ch,
ch_mult=params.ch_mult,
num_res_blocks=params.num_res_blocks,
z_channels=params.z_channels,
)
self.decoder = Decoder(
resolution=params.resolution,
in_channels=params.in_channels,
ch=params.ch,
out_ch=params.out_ch,
ch_mult=params.ch_mult,
num_res_blocks=params.num_res_blocks,
z_channels=params.z_channels,
)
self.reg = DiagonalGaussian(sample=sample_z)
self.scale_factor = params.scale_factor
self.shift_factor = params.shift_factor
def get_VAE_tile_size(*args, **kwargs):
return []
def encode(self, x: Tensor) -> Tensor:
z = self.reg(self.encoder(x))
z = self.scale_factor * (z - self.shift_factor)
return z
def decode(self, z: Tensor) -> Tensor:
z = z / self.scale_factor + self.shift_factor
return self.decoder(z)
def forward(self, x: Tensor) -> Tensor:
return self.decode(self.encode(x))

View File

@ -0,0 +1,38 @@
from torch import Tensor, nn
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
import os
class HFEmbedder(nn.Module):
def __init__(self, version: str, text_encoder_filename, max_length: int, is_clip = False, **hf_kwargs):
super().__init__()
self.is_clip = is_clip
self.max_length = max_length
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
if is_clip:
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
else:
from mmgp import offload as offloadobj
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(os.path.dirname(text_encoder_filename), max_length=max_length)
self.hf_module: T5EncoderModel = offloadobj.fast_load_transformers_model(text_encoder_filename)
self.hf_module = self.hf_module.eval().requires_grad_(False)
def forward(self, text: list[str]) -> Tensor:
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=False,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt",
)
outputs = self.hf_module(
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
attention_mask=None,
output_hidden_states=False,
)
return outputs[self.output_key].bfloat16()

View File

@ -0,0 +1,99 @@
import cv2
import numpy as np
import torch
from einops import rearrange, repeat
from PIL import Image
from safetensors.torch import load_file as load_sft
from torch import nn
from transformers import AutoModelForDepthEstimation, AutoProcessor, SiglipImageProcessor, SiglipVisionModel
from flux.util import print_load_warning
class DepthImageEncoder:
depth_model_name = "LiheYoung/depth-anything-large-hf"
def __init__(self, device):
self.device = device
self.depth_model = AutoModelForDepthEstimation.from_pretrained(self.depth_model_name).to(device)
self.processor = AutoProcessor.from_pretrained(self.depth_model_name)
def __call__(self, img: torch.Tensor) -> torch.Tensor:
hw = img.shape[-2:]
img = torch.clamp(img, -1.0, 1.0)
img_byte = ((img + 1.0) * 127.5).byte()
img = self.processor(img_byte, return_tensors="pt")["pixel_values"]
depth = self.depth_model(img.to(self.device)).predicted_depth
depth = repeat(depth, "b h w -> b 3 h w")
depth = torch.nn.functional.interpolate(depth, hw, mode="bicubic", antialias=True)
depth = depth / 127.5 - 1.0
return depth
class CannyImageEncoder:
def __init__(
self,
device,
min_t: int = 50,
max_t: int = 200,
):
self.device = device
self.min_t = min_t
self.max_t = max_t
def __call__(self, img: torch.Tensor) -> torch.Tensor:
assert img.shape[0] == 1, "Only batch size 1 is supported"
img = rearrange(img[0], "c h w -> h w c")
img = torch.clamp(img, -1.0, 1.0)
img_np = ((img + 1.0) * 127.5).numpy().astype(np.uint8)
# Apply Canny edge detection
canny = cv2.Canny(img_np, self.min_t, self.max_t)
# Convert back to torch tensor and reshape
canny = torch.from_numpy(canny).float() / 127.5 - 1.0
canny = rearrange(canny, "h w -> 1 1 h w")
canny = repeat(canny, "b 1 ... -> b 3 ...")
return canny.to(self.device)
class ReduxImageEncoder(nn.Module):
siglip_model_name = "google/siglip-so400m-patch14-384"
def __init__(
self,
device,
redux_path: str,
redux_dim: int = 1152,
txt_in_features: int = 4096,
dtype=torch.bfloat16,
) -> None:
super().__init__()
self.redux_dim = redux_dim
self.device = device if isinstance(device, torch.device) else torch.device(device)
self.dtype = dtype
with self.device:
self.redux_up = nn.Linear(redux_dim, txt_in_features * 3, dtype=dtype)
self.redux_down = nn.Linear(txt_in_features * 3, txt_in_features, dtype=dtype)
sd = load_sft(redux_path, device=str(device))
missing, unexpected = self.load_state_dict(sd, strict=False, assign=True)
print_load_warning(missing, unexpected)
self.siglip = SiglipVisionModel.from_pretrained(self.siglip_model_name).to(dtype=dtype)
self.normalize = SiglipImageProcessor.from_pretrained(self.siglip_model_name)
def __call__(self, x: Image.Image) -> torch.Tensor:
imgs = self.normalize.preprocess(images=[x], do_resize=True, return_tensors="pt", do_convert_rgb=True)
_encoded_x = self.siglip(**imgs.to(device=self.device, dtype=self.dtype)).last_hidden_state
projected_x = self.redux_down(nn.functional.silu(self.redux_up(_encoded_x)))
return projected_x

327
flux/modules/layers copy.py Normal file
View File

@ -0,0 +1,327 @@
import math
from dataclasses import dataclass
import torch
from einops import rearrange
from torch import Tensor, nn
from flux.math import attention, rope
def get_linear_split_map():
hidden_size = 3072
_modules_map = {
"qkv" : {"mapped_modules" : ["q", "k", "v"] , "split_sizes": [hidden_size, hidden_size, hidden_size]},
"linear1" : {"mapped_modules" : ["linear1_attn_q", "linear1_attn_k", "linear1_attn_v", "linear1_mlp"] , "split_sizes": [hidden_size, hidden_size, hidden_size, 7*hidden_size- 3*hidden_size]}
}
return split_linear_modules_map
class EmbedND(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: Tensor) -> Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(1)
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
t = time_factor * t
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
t.device
)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(t)
return embedding
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int):
super().__init__()
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
self.silu = nn.SiLU()
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
def forward(self, x: Tensor) -> Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.scale = nn.Parameter(torch.ones(dim))
def forward(self, x: Tensor):
x_dtype = x.dtype
x = x.float()
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
return (x * rrms).to(dtype=x_dtype) * self.scale
class QKNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.query_norm = RMSNorm(dim)
self.key_norm = RMSNorm(dim)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
q = self.query_norm(q)
k = self.key_norm(k)
return q.to(v), k.to(v)
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.norm = QKNorm(head_dim)
self.proj = nn.Linear(dim, dim)
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
qkv = self.qkv(x)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
x = attention(q, k, v, pe=pe)
x = self.proj(x)
return x
@dataclass
class ModulationOut:
shift: Tensor
scale: Tensor
gate: Tensor
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
return (
ModulationOut(*out[:3]),
ModulationOut(*out[3:]) if self.is_double else None,
)
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(hidden_size, double=True)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.txt_mod = Modulation(hidden_size, double=True)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated.mul_(1 + img_mod1.scale)
img_modulated.add_(img_mod1.shift)
shape = (*img_modulated.shape[:2], self.num_heads, int(img_modulated.shape[-1] / self.num_heads) )
img_q = self.img_attn.q(img_modulated).view(*shape).transpose(1,2)
img_k = self.img_attn.k(img_modulated).view(*shape).transpose(1,2)
img_v = self.img_attn.v(img_modulated).view(*shape).transpose(1,2)
del img_modulated
# img_qkv = self.img_attn.qkv(img_modulated)
# img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated.mul_(1 + txt_mod1.scale)
txt_modulated.add_(txt_mod1.shift)
# txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
shape = (*txt_modulated.shape[:2], self.num_heads, int(txt_modulated.shape[-1] / self.num_heads) )
txt_q = self.txt_attn.q(txt_modulated).view(*shape).transpose(1,2)
txt_k = self.txt_attn.k(txt_modulated).view(*shape).transpose(1,2)
txt_v = self.txt_attn.v(txt_modulated).view(*shape).transpose(1,2)
del txt_modulated
# txt_qkv = self.txt_attn.qkv(txt_modulated)
# txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
q = torch.cat((txt_q, img_q), dim=2)
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
qkv_list = [q, k, v]
del q, k, v
attn = attention(qkv_list, pe=pe)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img blocks
img.addcmul_(self.img_attn.proj(img_attn), img_mod1.gate)
img.addcmul_(self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift), img_mod2.gate)
# img = img + img_mod1.gate * self.img_attn.proj(img_attn)
# img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
# calculate the txt blocks
txt.addcmul_(self.txt_attn.proj(txt_attn), txt_mod1.gate)
txt.addcmul_(self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift), txt_mod2.gate)
# txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
# txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float | None = None,
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
# proj and mlp_out
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
self.norm = QKNorm(head_dim)
self.hidden_size = hidden_size
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False)
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
mod, _ = self.modulation(vec)
x_mod = self.pre_norm(x)
x_mod.mul_(1 + mod.scale)
x_mod.add_(mod.shift)
##### More spagheti VRAM optimizations done by DeepBeepMeep !
# I am sure you are a nice person and as you copy this code, you will give me proper credits:
# Please link to https://github.com/deepbeepmeep/Wan2GP and @deepbeepmeep on twitter
# x_mod = (1 + mod.scale) * x + mod.shift
shape = (*x_mod.shape[:2], self.num_heads, int(x_mod.shape[-1] / self.num_heads) )
q = self.linear1_attn_q(x_mod).view(*shape).transpose(1,2)
k = self.linear1_attn_k(x_mod).view(*shape).transpose(1,2)
v = self.linear1_attn_v(x_mod).view(*shape).transpose(1,2)
# shape = (*txt_mod.shape[:2], self.heads_num, int(txt_mod.shape[-1] / self.heads_num) )
# txt_q = self.linear1_attn_q(txt_mod).view(*shape)
# txt_k = self.linear1_attn_k(txt_mod).view(*shape)
# txt_v = self.linear1_attn_v(txt_mod).view(*shape)
# qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
# q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
# compute attention
qkv_list = [q, k, v]
del q, k, v
attn = attention(qkv_list, pe=pe)
# compute activation in mlp stream, cat again and run second linear layer
x_mod_shape = x_mod.shape
x_mod = x_mod.view(-1, x_mod.shape[-1])
chunk_size = int(x_mod_shape[1]/6)
x_chunks = torch.split(x_mod, chunk_size)
attn = attn.view(-1, attn.shape[-1])
attn_chunks =torch.split(attn, chunk_size)
for x_chunk, attn_chunk in zip(x_chunks, attn_chunks):
mlp_chunk = self.linear1_mlp(x_chunk)
mlp_chunk = self.mlp_act(mlp_chunk)
attn_mlp_chunk = torch.cat((attn_chunk, mlp_chunk), -1)
del attn_chunk, mlp_chunk
x_chunk[...] = self.linear2(attn_mlp_chunk)
del attn_mlp_chunk
x_mod = x_mod.view(x_mod_shape)
x.addcmul_(x_mod, mod.gate)
return x
# output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
# return x + mod.gate * output
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
x = self.linear(x)
return x

328
flux/modules/layers.py Normal file
View File

@ -0,0 +1,328 @@
import math
from dataclasses import dataclass
import torch
from einops import rearrange
from torch import Tensor, nn
from flux.math import attention, rope
def get_linear_split_map():
hidden_size = 3072
split_linear_modules_map = {
"qkv" : {"mapped_modules" : ["q", "k", "v"] , "split_sizes": [hidden_size, hidden_size, hidden_size]},
"linear1" : {"mapped_modules" : ["linear1_attn_q", "linear1_attn_k", "linear1_attn_v", "linear1_mlp"] , "split_sizes": [hidden_size, hidden_size, hidden_size, 7*hidden_size- 3*hidden_size]}
}
return split_linear_modules_map
class EmbedND(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: Tensor) -> Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(1)
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
t = time_factor * t
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
t.device
)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(t)
return embedding
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int):
super().__init__()
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
self.silu = nn.SiLU()
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
def forward(self, x: Tensor) -> Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.scale = nn.Parameter(torch.ones(dim))
def forward(self, x: Tensor):
x_dtype = x.dtype
x = x.float()
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
return (x * rrms).to(dtype=x_dtype) * self.scale
class QKNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.query_norm = RMSNorm(dim)
self.key_norm = RMSNorm(dim)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
if k != None:
return self.key_norm(k).to(v)
else:
return self.query_norm(q).to(v)
# q = self.query_norm(q)
# k = self.key_norm(k)
# return q.to(v), k.to(v)
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.norm = QKNorm(head_dim)
self.proj = nn.Linear(dim, dim)
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
raise Exception("not implemented")
@dataclass
class ModulationOut:
shift: Tensor
scale: Tensor
gate: Tensor
def split_mlp(mlp, x, divide = 4):
x_shape = x.shape
x = x.view(-1, x.shape[-1])
chunk_size = int(x_shape[1]/divide)
x_chunks = torch.split(x, chunk_size)
for i, x_chunk in enumerate(x_chunks):
mlp_chunk = mlp[0](x_chunk)
mlp_chunk = mlp[1](mlp_chunk)
x_chunk[...] = mlp[2](mlp_chunk)
return x.reshape(x_shape)
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
return (
ModulationOut(*out[:3]),
ModulationOut(*out[3:]) if self.is_double else None,
)
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(hidden_size, double=True)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.txt_mod = Modulation(hidden_size, double=True)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated.mul_(1 + img_mod1.scale)
img_modulated.add_(img_mod1.shift)
shape = (*img_modulated.shape[:2], self.num_heads, int(img_modulated.shape[-1] / self.num_heads) )
img_q = self.img_attn.q(img_modulated).view(*shape).transpose(1,2)
img_k = self.img_attn.k(img_modulated).view(*shape).transpose(1,2)
img_v = self.img_attn.v(img_modulated).view(*shape).transpose(1,2)
del img_modulated
img_q= self.img_attn.norm(img_q, None, img_v)
img_k = self.img_attn.norm(None, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated.mul_(1 + txt_mod1.scale)
txt_modulated.add_(txt_mod1.shift)
shape = (*txt_modulated.shape[:2], self.num_heads, int(txt_modulated.shape[-1] / self.num_heads) )
txt_q = self.txt_attn.q(txt_modulated).view(*shape).transpose(1,2)
txt_k = self.txt_attn.k(txt_modulated).view(*shape).transpose(1,2)
txt_v = self.txt_attn.v(txt_modulated).view(*shape).transpose(1,2)
del txt_modulated
txt_q = self.txt_attn.norm(txt_q, None, txt_v)
txt_k = self.txt_attn.norm(None, txt_k, txt_v)
# run actual attention
q = torch.cat((txt_q, img_q), dim=2)
del txt_q, img_q
k = torch.cat((txt_k, img_k), dim=2)
del txt_k, img_k
v = torch.cat((txt_v, img_v), dim=2)
del txt_v, img_v
qkv_list = [q, k, v]
del q, k, v
attn = attention(qkv_list, pe=pe)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img blocks
img.addcmul_(self.img_attn.proj(img_attn), img_mod1.gate)
mod_img = self.img_norm2(img)
mod_img.mul_(1 + img_mod2.scale)
mod_img.add_(img_mod2.shift)
mod_img = split_mlp(self.img_mlp, mod_img)
# mod_img = self.img_mlp(mod_img)
img.addcmul_( mod_img, img_mod2.gate)
mod_img = None
# calculate the txt blocks
txt.addcmul_(self.txt_attn.proj(txt_attn), txt_mod1.gate)
txt.addcmul_(self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift), txt_mod2.gate)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float | None = None,
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
# proj and mlp_out
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
self.norm = QKNorm(head_dim)
self.hidden_size = hidden_size
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False)
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
mod, _ = self.modulation(vec)
x_mod = self.pre_norm(x)
x_mod.mul_(1 + mod.scale)
x_mod.add_(mod.shift)
##### More spagheti VRAM optimizations done by DeepBeepMeep !
# I am sure you are a nice person and as you copy this code, you will give me proper credits:
# Please link to https://github.com/deepbeepmeep/Wan2GP and @deepbeepmeep on twitter
# x_mod = (1 + mod.scale) * x + mod.shift
shape = (*x_mod.shape[:2], self.num_heads, int(x_mod.shape[-1] / self.num_heads) )
q = self.linear1_attn_q(x_mod).view(*shape).transpose(1,2)
k = self.linear1_attn_k(x_mod).view(*shape).transpose(1,2)
v = self.linear1_attn_v(x_mod).view(*shape).transpose(1,2)
q = self.norm(q, None, v)
k = self.norm(None, k, v)
# compute attention
qkv_list = [q, k, v]
del q, k, v
attn = attention(qkv_list, pe=pe)
# compute activation in mlp stream, cat again and run second linear layer
x_mod_shape = x_mod.shape
x_mod = x_mod.view(-1, x_mod.shape[-1])
chunk_size = int(x_mod_shape[1]/6)
x_chunks = torch.split(x_mod, chunk_size)
attn = attn.view(-1, attn.shape[-1])
attn_chunks =torch.split(attn, chunk_size)
for x_chunk, attn_chunk in zip(x_chunks, attn_chunks):
mlp_chunk = self.linear1_mlp(x_chunk)
mlp_chunk = self.mlp_act(mlp_chunk)
attn_mlp_chunk = torch.cat((attn_chunk, mlp_chunk), -1)
del attn_chunk, mlp_chunk
x_chunk[...] = self.linear2(attn_mlp_chunk)
del attn_mlp_chunk
x_mod = x_mod.view(x_mod_shape)
x.addcmul_(x_mod, mod.gate)
return x
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
x = self.linear(x)
return x

94
flux/modules/lora.py Normal file
View File

@ -0,0 +1,94 @@
import torch
from torch import nn
def replace_linear_with_lora(
module: nn.Module,
max_rank: int,
scale: float = 1.0,
) -> None:
for name, child in module.named_children():
if isinstance(child, nn.Linear):
new_lora = LinearLora(
in_features=child.in_features,
out_features=child.out_features,
bias=child.bias,
rank=max_rank,
scale=scale,
dtype=child.weight.dtype,
device=child.weight.device,
)
new_lora.weight = child.weight
new_lora.bias = child.bias if child.bias is not None else None
setattr(module, name, new_lora)
else:
replace_linear_with_lora(
module=child,
max_rank=max_rank,
scale=scale,
)
class LinearLora(nn.Linear):
def __init__(
self,
in_features: int,
out_features: int,
bias: bool,
rank: int,
dtype: torch.dtype,
device: torch.device,
lora_bias: bool = True,
scale: float = 1.0,
*args,
**kwargs,
) -> None:
super().__init__(
in_features=in_features,
out_features=out_features,
bias=bias is not None,
device=device,
dtype=dtype,
*args,
**kwargs,
)
assert isinstance(scale, float), "scale must be a float"
self.scale = scale
self.rank = rank
self.lora_bias = lora_bias
self.dtype = dtype
self.device = device
if rank > (new_rank := min(self.out_features, self.in_features)):
self.rank = new_rank
self.lora_A = nn.Linear(
in_features=in_features,
out_features=self.rank,
bias=False,
dtype=dtype,
device=device,
)
self.lora_B = nn.Linear(
in_features=self.rank,
out_features=out_features,
bias=self.lora_bias,
dtype=dtype,
device=device,
)
def set_scale(self, scale: float) -> None:
assert isinstance(scale, float), "scalar value must be a float"
self.scale = scale
def forward(self, input: torch.Tensor) -> torch.Tensor:
base_out = super().forward(input)
_lora_out_B = self.lora_B(self.lora_A(input))
lora_update = _lora_out_B * self.scale
return base_out + lora_update

392
flux/sampling.py Normal file
View File

@ -0,0 +1,392 @@
import math
from typing import Callable
import numpy as np
import torch
from einops import rearrange, repeat
from PIL import Image
from torch import Tensor
from .model import Flux
from .modules.autoencoder import AutoEncoder
from .modules.conditioner import HFEmbedder
from .modules.image_embedders import CannyImageEncoder, DepthImageEncoder, ReduxImageEncoder
from .util import PREFERED_KONTEXT_RESOLUTIONS
from einops import rearrange, repeat
def get_noise(
num_samples: int,
height: int,
width: int,
device: torch.device,
dtype: torch.dtype,
seed: int,
):
return torch.randn(
num_samples,
16,
# allow for packing
2 * math.ceil(height / 16),
2 * math.ceil(width / 16),
dtype=dtype,
generator=torch.Generator(device="cuda").manual_seed(seed),
).to(device)
def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
bs, c, h, w = img.shape
if bs == 1 and not isinstance(prompt, str):
bs = len(prompt)
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
if isinstance(prompt, str):
prompt = [prompt]
txt = t5(prompt)
if txt.shape[0] == 1 and bs > 1:
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
txt_ids = torch.zeros(bs, txt.shape[1], 3)
vec = clip(prompt)
if vec.shape[0] == 1 and bs > 1:
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
return {
"img": img,
"img_ids": img_ids.to(img.device),
"txt": txt.to(img.device),
"txt_ids": txt_ids.to(img.device),
"vec": vec.to(img.device),
}
def prepare_control(
t5: HFEmbedder,
clip: HFEmbedder,
img: Tensor,
prompt: str | list[str],
ae: AutoEncoder,
encoder: DepthImageEncoder | CannyImageEncoder,
img_cond_path: str,
) -> dict[str, Tensor]:
# load and encode the conditioning image
bs, _, h, w = img.shape
if bs == 1 and not isinstance(prompt, str):
bs = len(prompt)
img_cond = Image.open(img_cond_path).convert("RGB")
width = w * 8
height = h * 8
img_cond = img_cond.resize((width, height), Image.Resampling.LANCZOS)
img_cond = np.array(img_cond)
img_cond = torch.from_numpy(img_cond).float() / 127.5 - 1.0
img_cond = rearrange(img_cond, "h w c -> 1 c h w")
with torch.no_grad():
img_cond = encoder(img_cond)
img_cond = ae.encode(img_cond)
img_cond = img_cond.to(torch.bfloat16)
img_cond = rearrange(img_cond, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img_cond.shape[0] == 1 and bs > 1:
img_cond = repeat(img_cond, "1 ... -> bs ...", bs=bs)
return_dict = prepare(t5, clip, img, prompt)
return_dict["img_cond"] = img_cond
return return_dict
def prepare_fill(
t5: HFEmbedder,
clip: HFEmbedder,
img: Tensor,
prompt: str | list[str],
ae: AutoEncoder,
img_cond_path: str,
mask_path: str,
) -> dict[str, Tensor]:
# load and encode the conditioning image and the mask
bs, _, _, _ = img.shape
if bs == 1 and not isinstance(prompt, str):
bs = len(prompt)
img_cond = Image.open(img_cond_path).convert("RGB")
img_cond = np.array(img_cond)
img_cond = torch.from_numpy(img_cond).float() / 127.5 - 1.0
img_cond = rearrange(img_cond, "h w c -> 1 c h w")
mask = Image.open(mask_path).convert("L")
mask = np.array(mask)
mask = torch.from_numpy(mask).float() / 255.0
mask = rearrange(mask, "h w -> 1 1 h w")
with torch.no_grad():
img_cond = img_cond.to(img.device)
mask = mask.to(img.device)
img_cond = img_cond * (1 - mask)
img_cond = ae.encode(img_cond)
mask = mask[:, 0, :, :]
mask = mask.to(torch.bfloat16)
mask = rearrange(
mask,
"b (h ph) (w pw) -> b (ph pw) h w",
ph=8,
pw=8,
)
mask = rearrange(mask, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if mask.shape[0] == 1 and bs > 1:
mask = repeat(mask, "1 ... -> bs ...", bs=bs)
img_cond = img_cond.to(torch.bfloat16)
img_cond = rearrange(img_cond, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img_cond.shape[0] == 1 and bs > 1:
img_cond = repeat(img_cond, "1 ... -> bs ...", bs=bs)
img_cond = torch.cat((img_cond, mask), dim=-1)
return_dict = prepare(t5, clip, img, prompt)
return_dict["img_cond"] = img_cond.to(img.device)
return return_dict
def prepare_redux(
t5: HFEmbedder,
clip: HFEmbedder,
img: Tensor,
prompt: str | list[str],
encoder: ReduxImageEncoder,
img_cond_path: str,
) -> dict[str, Tensor]:
bs, _, h, w = img.shape
if bs == 1 and not isinstance(prompt, str):
bs = len(prompt)
img_cond = Image.open(img_cond_path).convert("RGB")
with torch.no_grad():
img_cond = encoder(img_cond)
img_cond = img_cond.to(torch.bfloat16)
if img_cond.shape[0] == 1 and bs > 1:
img_cond = repeat(img_cond, "1 ... -> bs ...", bs=bs)
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
if isinstance(prompt, str):
prompt = [prompt]
txt = t5(prompt)
txt = torch.cat((txt, img_cond.to(txt)), dim=-2)
if txt.shape[0] == 1 and bs > 1:
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
txt_ids = torch.zeros(bs, txt.shape[1], 3)
vec = clip(prompt)
if vec.shape[0] == 1 and bs > 1:
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
return {
"img": img,
"img_ids": img_ids.to(img.device),
"txt": txt.to(img.device),
"txt_ids": txt_ids.to(img.device),
"vec": vec.to(img.device),
}
def prepare_kontext(
t5: HFEmbedder,
clip: HFEmbedder,
prompt: str | list[str],
ae: AutoEncoder,
img_cond: str,
seed: int,
device: torch.device,
target_width: int | None = None,
target_height: int | None = None,
bs: int = 1,
) -> tuple[dict[str, Tensor], int, int]:
# load and encode the conditioning image
if bs == 1 and not isinstance(prompt, str):
bs = len(prompt)
width, height = img_cond.size
aspect_ratio = width / height
# Kontext is trained on specific resolutions, using one of them is recommended
_, width, height = min((abs(aspect_ratio - w / h), w, h) for w, h in PREFERED_KONTEXT_RESOLUTIONS)
width = 2 * int(width / 16)
height = 2 * int(height / 16)
img_cond = img_cond.resize((8 * width, 8 * height), Image.Resampling.LANCZOS)
img_cond = np.array(img_cond)
img_cond = torch.from_numpy(img_cond).float() / 127.5 - 1.0
img_cond = rearrange(img_cond, "h w c -> 1 c h w")
img_cond_orig = img_cond.clone()
with torch.no_grad():
img_cond = ae.encode(img_cond.to(device))
img_cond = img_cond.to(torch.bfloat16)
img_cond = rearrange(img_cond, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img_cond.shape[0] == 1 and bs > 1:
img_cond = repeat(img_cond, "1 ... -> bs ...", bs=bs)
# image ids are the same as base image with the first dimension set to 1
# instead of 0
img_cond_ids = torch.zeros(height // 2, width // 2, 3)
img_cond_ids[..., 0] = 1
img_cond_ids[..., 1] = img_cond_ids[..., 1] + torch.arange(height // 2)[:, None]
img_cond_ids[..., 2] = img_cond_ids[..., 2] + torch.arange(width // 2)[None, :]
img_cond_ids = repeat(img_cond_ids, "h w c -> b (h w) c", b=bs)
if target_width is None:
target_width = 8 * width
if target_height is None:
target_height = 8 * height
img = get_noise(
bs,
target_height,
target_width,
device=device,
dtype=torch.bfloat16,
seed=seed,
)
return_dict = prepare(t5, clip, img, prompt)
return_dict["img_cond_seq"] = img_cond
return_dict["img_cond_seq_ids"] = img_cond_ids.to(device)
return_dict["img_cond_orig"] = img_cond_orig
return return_dict, target_height, target_width
def time_shift(mu: float, sigma: float, t: Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def get_lin_function(
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
) -> Callable[[float], float]:
m = (y2 - y1) / (x2 - x1)
b = y1 - m * x1
return lambda x: m * x + b
def get_schedule(
num_steps: int,
image_seq_len: int,
base_shift: float = 0.5,
max_shift: float = 1.15,
shift: bool = True,
) -> list[float]:
# extra step for zero
timesteps = torch.linspace(1, 0, num_steps + 1)
# shifting the schedule to favor high timesteps for higher signal images
if shift:
# estimate mu based on linear estimation between two points
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
timesteps = time_shift(mu, 1.0, timesteps)
return timesteps.tolist()
def denoise(
model: Flux,
# model input
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
vec: Tensor,
# sampling parameters
timesteps: list[float],
guidance: float = 4.0,
# extra img tokens (channel-wise)
img_cond: Tensor | None = None,
# extra img tokens (sequence-wise)
img_cond_seq: Tensor | None = None,
img_cond_seq_ids: Tensor | None = None,
callback=None,
pipeline=None,
loras_slists=None,
unpack_latent = None,
):
kwargs = {'pipeline': pipeline, 'callback': callback}
if callback != None:
callback(-1, None, True)
updated_num_steps= len(timesteps) -1
if callback != None:
from wgp import update_loras_slists
update_loras_slists(model, loras_slists, updated_num_steps)
callback(-1, None, True, override_num_inference_steps = updated_num_steps)
from mmgp import offload
# this is ignored for schnell
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
for i, (t_curr, t_prev) in enumerate(zip(timesteps[:-1], timesteps[1:])):
offload.set_step_no_for_lora(model, i)
if pipeline._interrupt:
return None
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
img_input = img
img_input_ids = img_ids
if img_cond is not None:
img_input = torch.cat((img, img_cond), dim=-1)
if img_cond_seq is not None:
assert (
img_cond_seq_ids is not None
), "You need to provide either both or neither of the sequence conditioning"
img_input = torch.cat((img_input, img_cond_seq), dim=1)
img_input_ids = torch.cat((img_input_ids, img_cond_seq_ids), dim=1)
pred = model(
img=img_input,
img_ids=img_input_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
timesteps=t_vec,
guidance=guidance_vec,
**kwargs
)
if pred == None: return None
if img_input_ids is not None:
pred = pred[:, : img.shape[1]]
img += (t_prev - t_curr) * pred
if callback is not None:
preview = unpack_latent(img).transpose(0,1)
callback(i, preview, False)
return img
def unpack(x: Tensor, height: int, width: int) -> Tensor:
return rearrange(
x,
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=math.ceil(height / 16),
w=math.ceil(width / 16),
ph=2,
pw=2,
)

302
flux/to_remove/cli.py Normal file
View File

@ -0,0 +1,302 @@
import os
import re
import time
from dataclasses import dataclass
from glob import iglob
import torch
from fire import Fire
from transformers import pipeline
from flux.sampling import denoise, get_noise, get_schedule, prepare, unpack
from flux.util import (
check_onnx_access_for_trt,
configs,
load_ae,
load_clip,
load_flow_model,
load_t5,
save_image,
)
NSFW_THRESHOLD = 0.85
@dataclass
class SamplingOptions:
prompt: str
width: int
height: int
num_steps: int
guidance: float
seed: int | None
def parse_prompt(options: SamplingOptions) -> SamplingOptions | None:
user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n"
usage = (
"Usage: Either write your prompt directly, leave this field empty "
"to repeat the prompt or write a command starting with a slash:\n"
"- '/w <width>' will set the width of the generated image\n"
"- '/h <height>' will set the height of the generated image\n"
"- '/s <seed>' sets the next seed\n"
"- '/g <guidance>' sets the guidance (flux-dev only)\n"
"- '/n <steps>' sets the number of steps\n"
"- '/q' to quit"
)
while (prompt := input(user_question)).startswith("/"):
if prompt.startswith("/w"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, width = prompt.split()
options.width = 16 * (int(width) // 16)
print(
f"Setting resolution to {options.width} x {options.height} "
f"({options.height * options.width / 1e6:.2f}MP)"
)
elif prompt.startswith("/h"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, height = prompt.split()
options.height = 16 * (int(height) // 16)
print(
f"Setting resolution to {options.width} x {options.height} "
f"({options.height * options.width / 1e6:.2f}MP)"
)
elif prompt.startswith("/g"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, guidance = prompt.split()
options.guidance = float(guidance)
print(f"Setting guidance to {options.guidance}")
elif prompt.startswith("/s"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, seed = prompt.split()
options.seed = int(seed)
print(f"Setting seed to {options.seed}")
elif prompt.startswith("/n"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, steps = prompt.split()
options.num_steps = int(steps)
print(f"Setting number of steps to {options.num_steps}")
elif prompt.startswith("/q"):
print("Quitting")
return None
else:
if not prompt.startswith("/h"):
print(f"Got invalid command '{prompt}'\n{usage}")
print(usage)
if prompt != "":
options.prompt = prompt
return options
@torch.inference_mode()
def main(
name: str = "flux-schnell",
width: int = 1360,
height: int = 768,
seed: int | None = None,
prompt: str = (
"a photo of a forest with mist swirling around the tree trunks. The word "
'"FLUX" is painted over it in big, red brush strokes with visible texture'
),
device: str = "cuda" if torch.cuda.is_available() else "cpu",
num_steps: int | None = None,
loop: bool = False,
guidance: float = 2.5,
offload: bool = False,
output_dir: str = "output",
add_sampling_metadata: bool = True,
trt: bool = False,
trt_transformer_precision: str = "bf16",
track_usage: bool = False,
):
"""
Sample the flux model. Either interactively (set `--loop`) or run for a
single image.
Args:
name: Name of the model to load
height: height of the sample in pixels (should be a multiple of 16)
width: width of the sample in pixels (should be a multiple of 16)
seed: Set a seed for sampling
output_name: where to save the output image, `{idx}` will be replaced
by the index of the sample
prompt: Prompt used for sampling
device: Pytorch device
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
loop: start an interactive session and sample multiple times
guidance: guidance value used for guidance distillation
add_sampling_metadata: Add the prompt to the image Exif metadata
trt: use TensorRT backend for optimized inference
trt_transformer_precision: specify transformer precision for inference
track_usage: track usage of the model for licensing purposes
"""
prompt = prompt.split("|")
if len(prompt) == 1:
prompt = prompt[0]
additional_prompts = None
else:
additional_prompts = prompt[1:]
prompt = prompt[0]
assert not (
(additional_prompts is not None) and loop
), "Do not provide additional prompts and set loop to True"
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)
if name not in configs:
available = ", ".join(configs.keys())
raise ValueError(f"Got unknown model name: {name}, chose from {available}")
torch_device = torch.device(device)
if num_steps is None:
num_steps = 4 if name == "flux-schnell" else 50
# allow for packing and conversion to latent space
height = 16 * (height // 16)
width = 16 * (width // 16)
output_name = os.path.join(output_dir, "img_{idx}.jpg")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
idx = 0
else:
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
if len(fns) > 0:
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
else:
idx = 0
if not trt:
t5 = load_t5(torch_device, max_length=256 if name == "flux-schnell" else 512)
clip = load_clip(torch_device)
model = load_flow_model(name, device="cpu" if offload else torch_device)
ae = load_ae(name, device="cpu" if offload else torch_device)
else:
# lazy import to make install optional
from flux.trt.trt_manager import ModuleName, TRTManager
# Check if we need ONNX model access (which requires authentication for FLUX models)
onnx_dir = check_onnx_access_for_trt(name, trt_transformer_precision)
trt_ctx_manager = TRTManager(
trt_transformer_precision=trt_transformer_precision,
trt_t5_precision=os.getenv("TRT_T5_PRECISION", "bf16"),
)
engines = trt_ctx_manager.load_engines(
model_name=name,
module_names={
ModuleName.CLIP,
ModuleName.TRANSFORMER,
ModuleName.T5,
ModuleName.VAE,
},
engine_dir=os.environ.get("TRT_ENGINE_DIR", "./engines"),
custom_onnx_paths=onnx_dir or os.environ.get("CUSTOM_ONNX_PATHS", ""),
trt_image_height=height,
trt_image_width=width,
trt_batch_size=1,
trt_timing_cache=os.getenv("TRT_TIMING_CACHE_FILE", None),
trt_static_batch=False,
trt_static_shape=False,
)
ae = engines[ModuleName.VAE].to(device="cpu" if offload else torch_device)
model = engines[ModuleName.TRANSFORMER].to(device="cpu" if offload else torch_device)
clip = engines[ModuleName.CLIP].to(torch_device)
t5 = engines[ModuleName.T5].to(device="cpu" if offload else torch_device)
rng = torch.Generator(device="cpu")
opts = SamplingOptions(
prompt=prompt,
width=width,
height=height,
num_steps=num_steps,
guidance=guidance,
seed=seed,
)
if loop:
opts = parse_prompt(opts)
while opts is not None:
if opts.seed is None:
opts.seed = rng.seed()
print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
t0 = time.perf_counter()
# prepare input
x = get_noise(
1,
opts.height,
opts.width,
device=torch_device,
dtype=torch.bfloat16,
seed=opts.seed,
)
opts.seed = None
if offload:
ae = ae.cpu()
torch.cuda.empty_cache()
t5, clip = t5.to(torch_device), clip.to(torch_device)
inp = prepare(t5, clip, x, prompt=opts.prompt)
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
# offload TEs to CPU, load model to gpu
if offload:
t5, clip = t5.cpu(), clip.cpu()
torch.cuda.empty_cache()
model = model.to(torch_device)
# denoise initial noise
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
# offload model, load autoencoder to gpu
if offload:
model.cpu()
torch.cuda.empty_cache()
ae.decoder.to(x.device)
# decode latents to pixel space
x = unpack(x.float(), opts.height, opts.width)
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
x = ae.decode(x)
if torch.cuda.is_available():
torch.cuda.synchronize()
t1 = time.perf_counter()
fn = output_name.format(idx=idx)
print(f"Done in {t1 - t0:.1f}s. Saving {fn}")
idx = save_image(
nsfw_classifier, name, output_name, idx, x, add_sampling_metadata, prompt, track_usage=track_usage
)
if loop:
print("-" * 80)
opts = parse_prompt(opts)
elif additional_prompts:
next_prompt = additional_prompts.pop(0)
opts.prompt = next_prompt
else:
opts = None
if trt:
trt_ctx_manager.stop_runtime()
if __name__ == "__main__":
Fire(main)

View File

@ -0,0 +1,390 @@
import os
import re
import time
from dataclasses import dataclass
from glob import iglob
import torch
from fire import Fire
from transformers import pipeline
from flux.modules.image_embedders import CannyImageEncoder, DepthImageEncoder
from flux.sampling import denoise, get_noise, get_schedule, prepare_control, unpack
from flux.util import configs, load_ae, load_clip, load_flow_model, load_t5, save_image
@dataclass
class SamplingOptions:
prompt: str
width: int
height: int
num_steps: int
guidance: float
seed: int | None
img_cond_path: str
lora_scale: float | None
def parse_prompt(options: SamplingOptions) -> SamplingOptions | None:
user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n"
usage = (
"Usage: Either write your prompt directly, leave this field empty "
"to repeat the prompt or write a command starting with a slash:\n"
"- '/w <width>' will set the width of the generated image\n"
"- '/h <height>' will set the height of the generated image\n"
"- '/s <seed>' sets the next seed\n"
"- '/g <guidance>' sets the guidance (flux-dev only)\n"
"- '/n <steps>' sets the number of steps\n"
"- '/q' to quit"
)
while (prompt := input(user_question)).startswith("/"):
if prompt.startswith("/w"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, width = prompt.split()
options.width = 16 * (int(width) // 16)
print(
f"Setting resolution to {options.width} x {options.height} "
f"({options.height * options.width / 1e6:.2f}MP)"
)
elif prompt.startswith("/h"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, height = prompt.split()
options.height = 16 * (int(height) // 16)
print(
f"Setting resolution to {options.width} x {options.height} "
f"({options.height * options.width / 1e6:.2f}MP)"
)
elif prompt.startswith("/g"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, guidance = prompt.split()
options.guidance = float(guidance)
print(f"Setting guidance to {options.guidance}")
elif prompt.startswith("/s"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, seed = prompt.split()
options.seed = int(seed)
print(f"Setting seed to {options.seed}")
elif prompt.startswith("/n"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, steps = prompt.split()
options.num_steps = int(steps)
print(f"Setting number of steps to {options.num_steps}")
elif prompt.startswith("/q"):
print("Quitting")
return None
else:
if not prompt.startswith("/h"):
print(f"Got invalid command '{prompt}'\n{usage}")
print(usage)
if prompt != "":
options.prompt = prompt
return options
def parse_img_cond_path(options: SamplingOptions | None) -> SamplingOptions | None:
if options is None:
return None
user_question = "Next conditioning image (write /h for help, /q to quit and leave empty to repeat):\n"
usage = (
"Usage: Either write your prompt directly, leave this field empty "
"to repeat the conditioning image or write a command starting with a slash:\n"
"- '/q' to quit"
)
while True:
img_cond_path = input(user_question)
if img_cond_path.startswith("/"):
if img_cond_path.startswith("/q"):
print("Quitting")
return None
else:
if not img_cond_path.startswith("/h"):
print(f"Got invalid command '{img_cond_path}'\n{usage}")
print(usage)
continue
if img_cond_path == "":
break
if not os.path.isfile(img_cond_path) or not img_cond_path.lower().endswith(
(".jpg", ".jpeg", ".png", ".webp")
):
print(f"File '{img_cond_path}' does not exist or is not a valid image file")
continue
options.img_cond_path = img_cond_path
break
return options
def parse_lora_scale(options: SamplingOptions | None) -> tuple[SamplingOptions | None, bool]:
changed = False
if options is None:
return None, changed
user_question = "Next lora scale (write /h for help, /q to quit and leave empty to repeat):\n"
usage = (
"Usage: Either write your prompt directly, leave this field empty "
"to repeat the lora scale or write a command starting with a slash:\n"
"- '/q' to quit"
)
while (prompt := input(user_question)).startswith("/"):
if prompt.startswith("/q"):
print("Quitting")
return None, changed
else:
if not prompt.startswith("/h"):
print(f"Got invalid command '{prompt}'\n{usage}")
print(usage)
if prompt != "":
options.lora_scale = float(prompt)
changed = True
return options, changed
@torch.inference_mode()
def main(
name: str,
width: int = 1024,
height: int = 1024,
seed: int | None = None,
prompt: str = "a robot made out of gold",
device: str = "cuda" if torch.cuda.is_available() else "cpu",
num_steps: int = 50,
loop: bool = False,
guidance: float | None = None,
offload: bool = False,
output_dir: str = "output",
add_sampling_metadata: bool = True,
img_cond_path: str = "assets/robot.webp",
lora_scale: float | None = 0.85,
trt: bool = False,
trt_transformer_precision: str = "bf16",
track_usage: bool = False,
**kwargs: dict | None,
):
"""
Sample the flux model. Either interactively (set `--loop`) or run for a
single image.
Args:
height: height of the sample in pixels (should be a multiple of 16)
width: width of the sample in pixels (should be a multiple of 16)
seed: Set a seed for sampling
output_name: where to save the output image, `{idx}` will be replaced
by the index of the sample
prompt: Prompt used for sampling
device: Pytorch device
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
loop: start an interactive session and sample multiple times
guidance: guidance value used for guidance distillation
add_sampling_metadata: Add the prompt to the image Exif metadata
img_cond_path: path to conditioning image (jpeg/png/webp)
trt: use TensorRT backend for optimized inference
trt_transformer_precision: specify transformer precision for inference
track_usage: track usage of the model for licensing purposes
"""
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)
if "lora" in name:
assert not trt, "TRT does not support LORA"
assert name in [
"flux-dev-canny",
"flux-dev-depth",
"flux-dev-canny-lora",
"flux-dev-depth-lora",
], f"Got unknown model name: {name}"
if guidance is None:
if name in ["flux-dev-canny", "flux-dev-canny-lora"]:
guidance = 30.0
elif name in ["flux-dev-depth", "flux-dev-depth-lora"]:
guidance = 10.0
else:
raise NotImplementedError()
if name not in configs:
available = ", ".join(configs.keys())
raise ValueError(f"Got unknown model name: {name}, chose from {available}")
torch_device = torch.device(device)
output_name = os.path.join(output_dir, "img_{idx}.jpg")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
idx = 0
else:
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
if len(fns) > 0:
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
else:
idx = 0
if name in ["flux-dev-depth", "flux-dev-depth-lora"]:
img_embedder = DepthImageEncoder(torch_device)
elif name in ["flux-dev-canny", "flux-dev-canny-lora"]:
img_embedder = CannyImageEncoder(torch_device)
else:
raise NotImplementedError()
if not trt:
# init all components
t5 = load_t5(torch_device, max_length=512)
clip = load_clip(torch_device)
model = load_flow_model(name, device="cpu" if offload else torch_device)
ae = load_ae(name, device="cpu" if offload else torch_device)
else:
# lazy import to make install optional
from flux.trt.trt_manager import ModuleName, TRTManager
trt_ctx_manager = TRTManager(
trt_transformer_precision=trt_transformer_precision,
trt_t5_precision=os.environ.get("TRT_T5_PRECISION", "bf16"),
)
engines = trt_ctx_manager.load_engines(
model_name=name,
module_names={
ModuleName.CLIP,
ModuleName.TRANSFORMER,
ModuleName.T5,
ModuleName.VAE,
ModuleName.VAE_ENCODER,
},
engine_dir=os.environ.get("TRT_ENGINE_DIR", "./engines"),
custom_onnx_paths=os.environ.get("CUSTOM_ONNX_PATHS", ""),
trt_image_height=height,
trt_image_width=width,
trt_batch_size=1,
trt_static_batch=kwargs.get("static_batch", True),
trt_static_shape=kwargs.get("static_shape", True),
)
ae = engines[ModuleName.VAE].to(device="cpu" if offload else torch_device)
model = engines[ModuleName.TRANSFORMER].to(device="cpu" if offload else torch_device)
clip = engines[ModuleName.CLIP].to(torch_device)
t5 = engines[ModuleName.T5].to(device="cpu" if offload else torch_device)
# set lora scale
if "lora" in name and lora_scale is not None:
for _, module in model.named_modules():
if hasattr(module, "set_scale"):
module.set_scale(lora_scale)
rng = torch.Generator(device="cpu")
opts = SamplingOptions(
prompt=prompt,
width=width,
height=height,
num_steps=num_steps,
guidance=guidance,
seed=seed,
img_cond_path=img_cond_path,
lora_scale=lora_scale,
)
if loop:
opts = parse_prompt(opts)
opts = parse_img_cond_path(opts)
if "lora" in name:
opts, changed = parse_lora_scale(opts)
if changed:
# update the lora scale:
for _, module in model.named_modules():
if hasattr(module, "set_scale"):
module.set_scale(opts.lora_scale)
while opts is not None:
if opts.seed is None:
opts.seed = rng.seed()
print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
t0 = time.perf_counter()
# prepare input
x = get_noise(
1,
opts.height,
opts.width,
device=torch_device,
dtype=torch.bfloat16,
seed=opts.seed,
)
opts.seed = None
if offload:
t5, clip, ae = t5.to(torch_device), clip.to(torch_device), ae.to(torch_device)
inp = prepare_control(
t5,
clip,
x,
prompt=opts.prompt,
ae=ae,
encoder=img_embedder,
img_cond_path=opts.img_cond_path,
)
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
# offload TEs and AE to CPU, load model to gpu
if offload:
t5, clip, ae = t5.cpu(), clip.cpu(), ae.cpu()
torch.cuda.empty_cache()
model = model.to(torch_device)
# denoise initial noise
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
# offload model, load autoencoder to gpu
if offload:
model.cpu()
torch.cuda.empty_cache()
ae.decoder.to(x.device)
# decode latents to pixel space
x = unpack(x.float(), opts.height, opts.width)
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
x = ae.decode(x)
if torch.cuda.is_available():
torch.cuda.synchronize()
t1 = time.perf_counter()
print(f"Done in {t1 - t0:.1f}s")
idx = save_image(
nsfw_classifier, name, output_name, idx, x, add_sampling_metadata, prompt, track_usage=track_usage
)
if loop:
print("-" * 80)
opts = parse_prompt(opts)
opts = parse_img_cond_path(opts)
if "lora" in name:
opts, changed = parse_lora_scale(opts)
if changed:
# update the lora scale:
for _, module in model.named_modules():
if hasattr(module, "set_scale"):
module.set_scale(opts.lora_scale)
else:
opts = None
if trt:
trt_ctx_manager.stop_runtime()
if __name__ == "__main__":
Fire(main)

334
flux/to_remove/cli_fill.py Normal file
View File

@ -0,0 +1,334 @@
import os
import re
import time
from dataclasses import dataclass
from glob import iglob
import torch
from fire import Fire
from PIL import Image
from transformers import pipeline
from flux.sampling import denoise, get_noise, get_schedule, prepare_fill, unpack
from flux.util import configs, load_ae, load_clip, load_flow_model, load_t5, save_image
@dataclass
class SamplingOptions:
prompt: str
width: int
height: int
num_steps: int
guidance: float
seed: int | None
img_cond_path: str
img_mask_path: str
def parse_prompt(options: SamplingOptions) -> SamplingOptions | None:
user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n"
usage = (
"Usage: Either write your prompt directly, leave this field empty "
"to repeat the prompt or write a command starting with a slash:\n"
"- '/s <seed>' sets the next seed\n"
"- '/g <guidance>' sets the guidance (flux-dev only)\n"
"- '/n <steps>' sets the number of steps\n"
"- '/q' to quit"
)
while (prompt := input(user_question)).startswith("/"):
if prompt.startswith("/g"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, guidance = prompt.split()
options.guidance = float(guidance)
print(f"Setting guidance to {options.guidance}")
elif prompt.startswith("/s"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, seed = prompt.split()
options.seed = int(seed)
print(f"Setting seed to {options.seed}")
elif prompt.startswith("/n"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, steps = prompt.split()
options.num_steps = int(steps)
print(f"Setting number of steps to {options.num_steps}")
elif prompt.startswith("/q"):
print("Quitting")
return None
else:
if not prompt.startswith("/h"):
print(f"Got invalid command '{prompt}'\n{usage}")
print(usage)
if prompt != "":
options.prompt = prompt
return options
def parse_img_cond_path(options: SamplingOptions | None) -> SamplingOptions | None:
if options is None:
return None
user_question = "Next conditioning image (write /h for help, /q to quit and leave empty to repeat):\n"
usage = (
"Usage: Either write your prompt directly, leave this field empty "
"to repeat the conditioning image or write a command starting with a slash:\n"
"- '/q' to quit"
)
while True:
img_cond_path = input(user_question)
if img_cond_path.startswith("/"):
if img_cond_path.startswith("/q"):
print("Quitting")
return None
else:
if not img_cond_path.startswith("/h"):
print(f"Got invalid command '{img_cond_path}'\n{usage}")
print(usage)
continue
if img_cond_path == "":
break
if not os.path.isfile(img_cond_path) or not img_cond_path.lower().endswith(
(".jpg", ".jpeg", ".png", ".webp")
):
print(f"File '{img_cond_path}' does not exist or is not a valid image file")
continue
else:
with Image.open(img_cond_path) as img:
width, height = img.size
if width % 32 != 0 or height % 32 != 0:
print(f"Image dimensions must be divisible by 32, got {width}x{height}")
continue
options.img_cond_path = img_cond_path
break
return options
def parse_img_mask_path(options: SamplingOptions | None) -> SamplingOptions | None:
if options is None:
return None
user_question = "Next conditioning mask (write /h for help, /q to quit and leave empty to repeat):\n"
usage = (
"Usage: Either write your prompt directly, leave this field empty "
"to repeat the conditioning mask or write a command starting with a slash:\n"
"- '/q' to quit"
)
while True:
img_mask_path = input(user_question)
if img_mask_path.startswith("/"):
if img_mask_path.startswith("/q"):
print("Quitting")
return None
else:
if not img_mask_path.startswith("/h"):
print(f"Got invalid command '{img_mask_path}'\n{usage}")
print(usage)
continue
if img_mask_path == "":
break
if not os.path.isfile(img_mask_path) or not img_mask_path.lower().endswith(
(".jpg", ".jpeg", ".png", ".webp")
):
print(f"File '{img_mask_path}' does not exist or is not a valid image file")
continue
else:
with Image.open(img_mask_path) as img:
width, height = img.size
if width % 32 != 0 or height % 32 != 0:
print(f"Image dimensions must be divisible by 32, got {width}x{height}")
continue
else:
with Image.open(options.img_cond_path) as img_cond:
img_cond_width, img_cond_height = img_cond.size
if width != img_cond_width or height != img_cond_height:
print(
f"Mask dimensions must match conditioning image, got {width}x{height} and {img_cond_width}x{img_cond_height}"
)
continue
options.img_mask_path = img_mask_path
break
return options
@torch.inference_mode()
def main(
seed: int | None = None,
prompt: str = "a white paper cup",
device: str = "cuda" if torch.cuda.is_available() else "cpu",
num_steps: int = 50,
loop: bool = False,
guidance: float = 30.0,
offload: bool = False,
output_dir: str = "output",
add_sampling_metadata: bool = True,
img_cond_path: str = "assets/cup.png",
img_mask_path: str = "assets/cup_mask.png",
track_usage: bool = False,
):
"""
Sample the flux model. Either interactively (set `--loop`) or run for a
single image. This demo assumes that the conditioning image and mask have
the same shape and that height and width are divisible by 32.
Args:
seed: Set a seed for sampling
output_name: where to save the output image, `{idx}` will be replaced
by the index of the sample
prompt: Prompt used for sampling
device: Pytorch device
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
loop: start an interactive session and sample multiple times
guidance: guidance value used for guidance distillation
add_sampling_metadata: Add the prompt to the image Exif metadata
img_cond_path: path to conditioning image (jpeg/png/webp)
img_mask_path: path to conditioning mask (jpeg/png/webp)
track_usage: track usage of the model for licensing purposes
"""
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)
name = "flux-dev-fill"
if name not in configs:
available = ", ".join(configs.keys())
raise ValueError(f"Got unknown model name: {name}, chose from {available}")
torch_device = torch.device(device)
output_name = os.path.join(output_dir, "img_{idx}.jpg")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
idx = 0
else:
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
if len(fns) > 0:
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
else:
idx = 0
# init all components
t5 = load_t5(torch_device, max_length=128)
clip = load_clip(torch_device)
model = load_flow_model(name, device="cpu" if offload else torch_device)
ae = load_ae(name, device="cpu" if offload else torch_device)
rng = torch.Generator(device="cpu")
with Image.open(img_cond_path) as img:
width, height = img.size
opts = SamplingOptions(
prompt=prompt,
width=width,
height=height,
num_steps=num_steps,
guidance=guidance,
seed=seed,
img_cond_path=img_cond_path,
img_mask_path=img_mask_path,
)
if loop:
opts = parse_prompt(opts)
opts = parse_img_cond_path(opts)
with Image.open(opts.img_cond_path) as img:
width, height = img.size
opts.height = height
opts.width = width
opts = parse_img_mask_path(opts)
while opts is not None:
if opts.seed is None:
opts.seed = rng.seed()
print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
t0 = time.perf_counter()
# prepare input
x = get_noise(
1,
opts.height,
opts.width,
device=torch_device,
dtype=torch.bfloat16,
seed=opts.seed,
)
opts.seed = None
if offload:
t5, clip, ae = t5.to(torch_device), clip.to(torch_device), ae.to(torch_device)
inp = prepare_fill(
t5,
clip,
x,
prompt=opts.prompt,
ae=ae,
img_cond_path=opts.img_cond_path,
mask_path=opts.img_mask_path,
)
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
# offload TEs and AE to CPU, load model to gpu
if offload:
t5, clip, ae = t5.cpu(), clip.cpu(), ae.cpu()
torch.cuda.empty_cache()
model = model.to(torch_device)
# denoise initial noise
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
# offload model, load autoencoder to gpu
if offload:
model.cpu()
torch.cuda.empty_cache()
ae.decoder.to(x.device)
# decode latents to pixel space
x = unpack(x.float(), opts.height, opts.width)
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
x = ae.decode(x)
if torch.cuda.is_available():
torch.cuda.synchronize()
t1 = time.perf_counter()
print(f"Done in {t1 - t0:.1f}s")
idx = save_image(
nsfw_classifier, name, output_name, idx, x, add_sampling_metadata, prompt, track_usage=track_usage
)
if loop:
print("-" * 80)
opts = parse_prompt(opts)
opts = parse_img_cond_path(opts)
with Image.open(opts.img_cond_path) as img:
width, height = img.size
opts.height = height
opts.width = width
opts = parse_img_mask_path(opts)
else:
opts = None
if __name__ == "__main__":
Fire(main)

View File

@ -0,0 +1,368 @@
import os
import re
import time
from dataclasses import dataclass
from glob import iglob
import torch
from fire import Fire
from flux.content_filters import PixtralContentFilter
from flux.sampling import denoise, get_schedule, prepare_kontext, unpack
from flux.util import (
aspect_ratio_to_height_width,
check_onnx_access_for_trt,
load_ae,
load_clip,
load_flow_model,
load_t5,
save_image,
)
@dataclass
class SamplingOptions:
prompt: str
width: int | None
height: int | None
num_steps: int
guidance: float
seed: int | None
img_cond_path: str
def parse_prompt(options: SamplingOptions) -> SamplingOptions | None:
user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n"
usage = (
"Usage: Either write your prompt directly, leave this field empty "
"to repeat the prompt or write a command starting with a slash:\n"
"- '/ar <width>:<height>' will set the aspect ratio of the generated image\n"
"- '/s <seed>' sets the next seed\n"
"- '/g <guidance>' sets the guidance (flux-dev only)\n"
"- '/n <steps>' sets the number of steps\n"
"- '/q' to quit"
)
while (prompt := input(user_question)).startswith("/"):
if prompt.startswith("/ar"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, ratio_prompt = prompt.split()
if ratio_prompt == "auto":
options.width = None
options.height = None
print("Setting resolution to input image resolution.")
else:
options.width, options.height = aspect_ratio_to_height_width(ratio_prompt)
print(f"Setting resolution to {options.width} x {options.height}.")
elif prompt.startswith("/h"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, height = prompt.split()
if height == "auto":
options.height = None
else:
options.height = 16 * (int(height) // 16)
if options.height is not None and options.width is not None:
print(
f"Setting resolution to {options.width} x {options.height} "
f"({options.height * options.width / 1e6:.2f}MP)"
)
else:
print(f"Setting resolution to {options.width} x {options.height}.")
elif prompt.startswith("/g"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, guidance = prompt.split()
options.guidance = float(guidance)
print(f"Setting guidance to {options.guidance}")
elif prompt.startswith("/s"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, seed = prompt.split()
options.seed = int(seed)
print(f"Setting seed to {options.seed}")
elif prompt.startswith("/n"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, steps = prompt.split()
options.num_steps = int(steps)
print(f"Setting number of steps to {options.num_steps}")
elif prompt.startswith("/q"):
print("Quitting")
return None
else:
if not prompt.startswith("/h"):
print(f"Got invalid command '{prompt}'\n{usage}")
print(usage)
if prompt != "":
options.prompt = prompt
return options
def parse_img_cond_path(options: SamplingOptions | None) -> SamplingOptions | None:
if options is None:
return None
user_question = "Next input image (write /h for help, /q to quit and leave empty to repeat):\n"
usage = (
"Usage: Either write a path to an image directly, leave this field empty "
"to repeat the last input image or write a command starting with a slash:\n"
"- '/q' to quit\n\n"
"The input image will be edited by FLUX.1 Kontext creating a new image based"
"on your instruction prompt."
)
while True:
img_cond_path = input(user_question)
if img_cond_path.startswith("/"):
if img_cond_path.startswith("/q"):
print("Quitting")
return None
else:
if not img_cond_path.startswith("/h"):
print(f"Got invalid command '{img_cond_path}'\n{usage}")
print(usage)
continue
if img_cond_path == "":
break
if not os.path.isfile(img_cond_path) or not img_cond_path.lower().endswith(
(".jpg", ".jpeg", ".png", ".webp")
):
print(f"File '{img_cond_path}' does not exist or is not a valid image file")
continue
options.img_cond_path = img_cond_path
break
return options
@torch.inference_mode()
def main(
name: str = "flux-dev-kontext",
aspect_ratio: str | None = None,
seed: int | None = None,
prompt: str = "replace the logo with the text 'Black Forest Labs'",
device: str = "cuda" if torch.cuda.is_available() else "cpu",
num_steps: int = 30,
loop: bool = False,
guidance: float = 2.5,
offload: bool = False,
output_dir: str = "output",
add_sampling_metadata: bool = True,
img_cond_path: str = "assets/cup.png",
trt: bool = False,
trt_transformer_precision: str = "bf16",
track_usage: bool = False,
):
"""
Sample the flux model. Either interactively (set `--loop`) or run for a
single image.
Args:
height: height of the sample in pixels (should be a multiple of 16), None
defaults to the size of the conditioning
width: width of the sample in pixels (should be a multiple of 16), None
defaults to the size of the conditioning
seed: Set a seed for sampling
output_name: where to save the output image, `{idx}` will be replaced
by the index of the sample
prompt: Prompt used for sampling
device: Pytorch device
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
loop: start an interactive session and sample multiple times
guidance: guidance value used for guidance distillation
add_sampling_metadata: Add the prompt to the image Exif metadata
img_cond_path: path to conditioning image (jpeg/png/webp)
trt: use TensorRT backend for optimized inference
track_usage: track usage of the model for licensing purposes
"""
assert name == "flux-dev-kontext", f"Got unknown model name: {name}"
torch_device = torch.device(device)
output_name = os.path.join(output_dir, "img_{idx}.jpg")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
idx = 0
else:
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
if len(fns) > 0:
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
else:
idx = 0
if aspect_ratio is None:
width = None
height = None
else:
width, height = aspect_ratio_to_height_width(aspect_ratio)
if not trt:
t5 = load_t5(torch_device, max_length=512)
clip = load_clip(torch_device)
model = load_flow_model(name, device="cpu" if offload else torch_device)
else:
# lazy import to make install optional
from flux.trt.trt_manager import ModuleName, TRTManager
# Check if we need ONNX model access (which requires authentication for FLUX models)
onnx_dir = check_onnx_access_for_trt(name, trt_transformer_precision)
trt_ctx_manager = TRTManager(
trt_transformer_precision=trt_transformer_precision,
trt_t5_precision=os.environ.get("TRT_T5_PRECISION", "bf16"),
)
engines = trt_ctx_manager.load_engines(
model_name=name,
module_names={
ModuleName.CLIP,
ModuleName.TRANSFORMER,
ModuleName.T5,
},
engine_dir=os.environ.get("TRT_ENGINE_DIR", "./engines"),
custom_onnx_paths=onnx_dir or os.environ.get("CUSTOM_ONNX_PATHS", ""),
trt_image_height=height,
trt_image_width=width,
trt_batch_size=1,
trt_timing_cache=os.getenv("TRT_TIMING_CACHE_FILE", None),
trt_static_batch=False,
trt_static_shape=False,
)
model = engines[ModuleName.TRANSFORMER].to(device="cpu" if offload else torch_device)
clip = engines[ModuleName.CLIP].to(torch_device)
t5 = engines[ModuleName.T5].to(device="cpu" if offload else torch_device)
ae = load_ae(name, device="cpu" if offload else torch_device)
content_filter = PixtralContentFilter(torch.device("cpu"))
rng = torch.Generator(device="cpu")
opts = SamplingOptions(
prompt=prompt,
width=width,
height=height,
num_steps=num_steps,
guidance=guidance,
seed=seed,
img_cond_path=img_cond_path,
)
if loop:
opts = parse_prompt(opts)
opts = parse_img_cond_path(opts)
while opts is not None:
if opts.seed is None:
opts.seed = rng.seed()
print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
t0 = time.perf_counter()
if content_filter.test_txt(opts.prompt):
print("Your prompt has been automatically flagged. Please choose another prompt.")
if loop:
print("-" * 80)
opts = parse_prompt(opts)
opts = parse_img_cond_path(opts)
else:
opts = None
continue
if content_filter.test_image(opts.img_cond_path):
print("Your input image has been automatically flagged. Please choose another image.")
if loop:
print("-" * 80)
opts = parse_prompt(opts)
opts = parse_img_cond_path(opts)
else:
opts = None
continue
if offload:
t5, clip, ae = t5.to(torch_device), clip.to(torch_device), ae.to(torch_device)
inp, height, width = prepare_kontext(
t5=t5,
clip=clip,
prompt=opts.prompt,
ae=ae,
img_cond_path=opts.img_cond_path,
target_width=opts.width,
target_height=opts.height,
bs=1,
seed=opts.seed,
device=torch_device,
)
from safetensors.torch import save_file
save_file({k: v.cpu().contiguous() for k, v in inp.items()}, "output/noise.sft")
inp.pop("img_cond_orig")
opts.seed = None
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
# offload TEs and AE to CPU, load model to gpu
if offload:
t5, clip, ae = t5.cpu(), clip.cpu(), ae.cpu()
torch.cuda.empty_cache()
model = model.to(torch_device)
# denoise initial noise
t00 = time.time()
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
torch.cuda.synchronize()
t01 = time.time()
print(f"Denoising took {t01 - t00:.3f}s")
# offload model, load autoencoder to gpu
if offload:
model.cpu()
torch.cuda.empty_cache()
ae.decoder.to(x.device)
# decode latents to pixel space
x = unpack(x.float(), height, width)
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
ae_dev_t0 = time.perf_counter()
x = ae.decode(x)
torch.cuda.synchronize()
ae_dev_t1 = time.perf_counter()
print(f"AE decode took {ae_dev_t1 - ae_dev_t0:.3f}s")
if content_filter.test_image(x.cpu()):
print(
"Your output image has been automatically flagged. Choose another prompt/image or try again."
)
if loop:
print("-" * 80)
opts = parse_prompt(opts)
opts = parse_img_cond_path(opts)
else:
opts = None
continue
if torch.cuda.is_available():
torch.cuda.synchronize()
t1 = time.perf_counter()
print(f"Done in {t1 - t0:.1f}s")
idx = save_image(
None, name, output_name, idx, x, add_sampling_metadata, prompt, track_usage=track_usage
)
if loop:
print("-" * 80)
opts = parse_prompt(opts)
opts = parse_img_cond_path(opts)
else:
opts = None
if __name__ == "__main__":
Fire(main)

290
flux/to_remove/cli_redux.py Normal file
View File

@ -0,0 +1,290 @@
import os
import re
import time
from dataclasses import dataclass
from glob import iglob
import torch
from fire import Fire
from transformers import pipeline
from flux.modules.image_embedders import ReduxImageEncoder
from flux.sampling import denoise, get_noise, get_schedule, prepare_redux, unpack
from flux.util import (
get_checkpoint_path,
load_ae,
load_clip,
load_flow_model,
load_t5,
save_image,
)
@dataclass
class SamplingOptions:
prompt: str
width: int
height: int
num_steps: int
guidance: float
seed: int | None
img_cond_path: str
def parse_prompt(options: SamplingOptions) -> SamplingOptions | None:
user_question = "Write /h for help, /q to quit and leave empty to repeat):\n"
usage = (
"Usage: Leave this field empty to do nothing "
"or write a command starting with a slash:\n"
"- '/w <width>' will set the width of the generated image\n"
"- '/h <height>' will set the height of the generated image\n"
"- '/s <seed>' sets the next seed\n"
"- '/g <guidance>' sets the guidance (flux-dev only)\n"
"- '/n <steps>' sets the number of steps\n"
"- '/q' to quit"
)
while (prompt := input(user_question)).startswith("/"):
if prompt.startswith("/w"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, width = prompt.split()
options.width = 16 * (int(width) // 16)
print(
f"Setting resolution to {options.width} x {options.height} "
f"({options.height * options.width / 1e6:.2f}MP)"
)
elif prompt.startswith("/h"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, height = prompt.split()
options.height = 16 * (int(height) // 16)
print(
f"Setting resolution to {options.width} x {options.height} "
f"({options.height * options.width / 1e6:.2f}MP)"
)
elif prompt.startswith("/g"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, guidance = prompt.split()
options.guidance = float(guidance)
print(f"Setting guidance to {options.guidance}")
elif prompt.startswith("/s"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, seed = prompt.split()
options.seed = int(seed)
print(f"Setting seed to {options.seed}")
elif prompt.startswith("/n"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, steps = prompt.split()
options.num_steps = int(steps)
print(f"Setting number of steps to {options.num_steps}")
elif prompt.startswith("/q"):
print("Quitting")
return None
else:
if not prompt.startswith("/h"):
print(f"Got invalid command '{prompt}'\n{usage}")
print(usage)
return options
def parse_img_cond_path(options: SamplingOptions | None) -> SamplingOptions | None:
if options is None:
return None
user_question = "Next conditioning image (write /h for help, /q to quit and leave empty to repeat):\n"
usage = (
"Usage: Either write your prompt directly, leave this field empty "
"to repeat the conditioning image or write a command starting with a slash:\n"
"- '/q' to quit"
)
while True:
img_cond_path = input(user_question)
if img_cond_path.startswith("/"):
if img_cond_path.startswith("/q"):
print("Quitting")
return None
else:
if not img_cond_path.startswith("/h"):
print(f"Got invalid command '{img_cond_path}'\n{usage}")
print(usage)
continue
if img_cond_path == "":
break
if not os.path.isfile(img_cond_path) or not img_cond_path.lower().endswith(
(".jpg", ".jpeg", ".png", ".webp")
):
print(f"File '{img_cond_path}' does not exist or is not a valid image file")
continue
options.img_cond_path = img_cond_path
break
return options
@torch.inference_mode()
def main(
name: str = "flux-dev",
width: int = 1360,
height: int = 768,
seed: int | None = None,
device: str = "cuda" if torch.cuda.is_available() else "cpu",
num_steps: int | None = None,
loop: bool = False,
guidance: float = 2.5,
offload: bool = False,
output_dir: str = "output",
add_sampling_metadata: bool = True,
img_cond_path: str = "assets/robot.webp",
track_usage: bool = False,
):
"""
Sample the flux model. Either interactively (set `--loop`) or run for a
single image.
Args:
name: Name of the base model to use (either 'flux-dev' or 'flux-schnell')
height: height of the sample in pixels (should be a multiple of 16)
width: width of the sample in pixels (should be a multiple of 16)
seed: Set a seed for sampling
device: Pytorch device
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
loop: start an interactive session and sample multiple times
guidance: guidance value used for guidance distillation
offload: offload models to CPU when not in use
output_dir: where to save the output images
add_sampling_metadata: Add the prompt to the image Exif metadata
img_cond_path: path to conditioning image (jpeg/png/webp)
track_usage: track usage of the model for licensing purposes
"""
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)
if name not in (available := ["flux-dev", "flux-schnell"]):
raise ValueError(f"Got unknown model name: {name}, chose from {available}")
torch_device = torch.device(device)
if num_steps is None:
num_steps = 4 if name == "flux-schnell" else 50
output_name = os.path.join(output_dir, "img_{idx}.jpg")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
idx = 0
else:
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
if len(fns) > 0:
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
else:
idx = 0
# init all components
t5 = load_t5(torch_device, max_length=256 if name == "flux-schnell" else 512)
clip = load_clip(torch_device)
model = load_flow_model(name, device="cpu" if offload else torch_device)
ae = load_ae(name, device="cpu" if offload else torch_device)
# Download and initialize the Redux adapter
redux_path = str(
get_checkpoint_path("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors", "FLUX_REDUX")
)
img_embedder = ReduxImageEncoder(torch_device, redux_path=redux_path)
rng = torch.Generator(device="cpu")
prompt = ""
opts = SamplingOptions(
prompt=prompt,
width=width,
height=height,
num_steps=num_steps,
guidance=guidance,
seed=seed,
img_cond_path=img_cond_path,
)
if loop:
opts = parse_prompt(opts)
opts = parse_img_cond_path(opts)
while opts is not None:
if opts.seed is None:
opts.seed = rng.seed()
print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
t0 = time.perf_counter()
# prepare input
x = get_noise(
1,
opts.height,
opts.width,
device=torch_device,
dtype=torch.bfloat16,
seed=opts.seed,
)
opts.seed = None
if offload:
ae = ae.cpu()
torch.cuda.empty_cache()
t5, clip = t5.to(torch_device), clip.to(torch_device)
inp = prepare_redux(
t5,
clip,
x,
prompt=opts.prompt,
encoder=img_embedder,
img_cond_path=opts.img_cond_path,
)
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
# offload TEs to CPU, load model to gpu
if offload:
t5, clip = t5.cpu(), clip.cpu()
torch.cuda.empty_cache()
model = model.to(torch_device)
# denoise initial noise
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
# offload model, load autoencoder to gpu
if offload:
model.cpu()
torch.cuda.empty_cache()
ae.decoder.to(x.device)
# decode latents to pixel space
x = unpack(x.float(), opts.height, opts.width)
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
x = ae.decode(x)
if torch.cuda.is_available():
torch.cuda.synchronize()
t1 = time.perf_counter()
print(f"Done in {t1 - t0:.1f}s")
idx = save_image(
nsfw_classifier, name, output_name, idx, x, add_sampling_metadata, prompt, track_usage=track_usage
)
if loop:
print("-" * 80)
opts = parse_prompt(opts)
opts = parse_img_cond_path(opts)
else:
opts = None
if __name__ == "__main__":
Fire(main)

View File

@ -0,0 +1,171 @@
import torch
from einops import rearrange
from PIL import Image
from transformers import AutoProcessor, LlavaForConditionalGeneration, pipeline
PROMPT_IMAGE_INTEGRITY = """
Task: Analyze an image to identify potential copyright concerns or depictions of public figures.
Output: Respond with only "yes" or "no"
Criteria for "yes":
- The image contains a recognizable character from copyrighted media (movies, TV, comics, games, etc.)
- The image displays a trademarked logo or brand
- The image depicts a recognizable public figure (celebrities, politicians, athletes, influencers, historical figures, etc.)
Criteria for "no":
- All other cases
- When you cannot identify the specific copyrighted work or named individual
Critical Requirements:
1. You must be able to name the exact copyrighted work or specific person depicted
2. General references to demographics or characteristics are not sufficient
3. Base your decision solely on visual content, not interpretation
4. Provide only the one-word answer: "yes" or "no"
""".strip()
PROMPT_IMAGE_INTEGRITY_FOLLOW_UP = "Does this image have copyright concerns or includes public figures?"
PROMPT_TEXT_INTEGRITY = """
Task: Analyze a text prompt to identify potential copyright concerns or requests to depict living public figures.
Output: Respond with only "yes" or "no"
Criteria for "Yes":
- The prompt explicitly names a character from copyrighted media (movies, TV, comics, games, etc.)
- The prompt explicitly mentions a trademarked logo or brand
- The prompt names or describes a specific living public figure (celebrities, politicians, athletes, influencers, etc.)
Criteria for "No":
- All other cases
- When you cannot identify the specific copyrighted work or named individual
Critical Requirements:
1. You must be able to name the exact copyrighted work or specific person referenced
2. General demographic descriptions or characteristics are not sufficient
3. Analyze only the prompt text, not potential image outcomes
4. Provide only the one-word answer: "yes" or "no"
The prompt to check is:
-----
{prompt}
-----
Does this prompt have copyright concerns or includes public figures?
""".strip()
class PixtralContentFilter(torch.nn.Module):
def __init__(
self,
device: torch.device = torch.device("cpu"),
nsfw_threshold: float = 0.85,
):
super().__init__()
model_id = "mistral-community/pixtral-12b"
self.processor = AutoProcessor.from_pretrained(model_id)
self.model = LlavaForConditionalGeneration.from_pretrained(model_id, device_map=device)
self.yes_token, self.no_token = self.processor.tokenizer.encode(["yes", "no"])
self.nsfw_classifier = pipeline(
"image-classification", model="Falconsai/nsfw_image_detection", device=device
)
self.nsfw_threshold = nsfw_threshold
def yes_no_logit_processor(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
) -> torch.FloatTensor:
"""
Sets all tokens but yes/no to the minimum.
"""
scores_yes_token = scores[:, self.yes_token].clone()
scores_no_token = scores[:, self.no_token].clone()
scores_min = scores.min()
scores[:, :] = scores_min - 1
scores[:, self.yes_token] = scores_yes_token
scores[:, self.no_token] = scores_no_token
return scores
def test_image(self, image: Image.Image | str | torch.Tensor) -> bool:
if isinstance(image, torch.Tensor):
image = rearrange(image[0].clamp(-1.0, 1.0), "c h w -> h w c")
image = Image.fromarray((127.5 * (image + 1.0)).cpu().byte().numpy())
elif isinstance(image, str):
image = Image.open(image)
classification = next(c for c in self.nsfw_classifier(image) if c["label"] == "nsfw")
if classification["score"] > self.nsfw_threshold:
return True
# 512^2 pixels are enough for checking
w, h = image.size
f = (512**2 / (w * h)) ** 0.5
image = image.resize((int(f * w), int(f * h)))
chat = [
{
"role": "user",
"content": [
{
"type": "text",
"content": PROMPT_IMAGE_INTEGRITY,
},
{
"type": "image",
"image": image,
},
{
"type": "text",
"content": PROMPT_IMAGE_INTEGRITY_FOLLOW_UP,
},
],
}
]
inputs = self.processor.apply_chat_template(
chat,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(self.model.device)
generate_ids = self.model.generate(
**inputs,
max_new_tokens=1,
logits_processor=[self.yes_no_logit_processor],
do_sample=False,
)
return generate_ids[0, -1].item() == self.yes_token
def test_txt(self, txt: str) -> bool:
chat = [
{
"role": "user",
"content": [
{
"type": "text",
"content": PROMPT_TEXT_INTEGRITY.format(prompt=txt),
},
],
}
]
inputs = self.processor.apply_chat_template(
chat,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(self.model.device)
generate_ids = self.model.generate(
**inputs,
max_new_tokens=1,
logits_processor=[self.yes_no_logit_processor],
do_sample=False,
)
return generate_ids[0, -1].item() == self.yes_token

702
flux/util.py Normal file
View File

@ -0,0 +1,702 @@
import getpass
import math
import os
from dataclasses import dataclass
from pathlib import Path
import requests
import torch
from einops import rearrange
from huggingface_hub import hf_hub_download, login
from PIL import ExifTags, Image
from safetensors.torch import load_file as load_sft
from flux.model import Flux, FluxLoraWrapper, FluxParams
from flux.modules.autoencoder import AutoEncoder, AutoEncoderParams
from flux.modules.conditioner import HFEmbedder
CHECKPOINTS_DIR = Path("checkpoints")
CHECKPOINTS_DIR.mkdir(exist_ok=True)
BFL_API_KEY = os.getenv("BFL_API_KEY")
os.environ.setdefault("TRT_ENGINE_DIR", str(CHECKPOINTS_DIR / "trt_engines"))
(CHECKPOINTS_DIR / "trt_engines").mkdir(exist_ok=True)
def ensure_hf_auth():
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
print("Trying to authenticate to HuggingFace with the HF_TOKEN environment variable.")
try:
login(token=hf_token)
print("Successfully authenticated with HuggingFace using HF_TOKEN")
return True
except Exception as e:
print(f"Warning: Failed to authenticate with HF_TOKEN: {e}")
if os.path.exists(os.path.expanduser("~/.cache/huggingface/token")):
print("Already authenticated with HuggingFace")
return True
return False
def prompt_for_hf_auth():
try:
token = getpass.getpass("HF Token (hidden input): ").strip()
if not token:
print("No token provided. Aborting.")
return False
login(token=token)
print("Successfully authenticated!")
return True
except KeyboardInterrupt:
print("\nAuthentication cancelled by user.")
return False
except Exception as auth_e:
print(f"Authentication failed: {auth_e}")
print("Tip: You can also run 'huggingface-cli login' or set HF_TOKEN environment variable")
return False
def get_checkpoint_path(repo_id: str, filename: str, env_var: str) -> Path:
"""Get the local path for a checkpoint file, downloading if necessary."""
# if os.environ.get(env_var) is not None:
# local_path = os.environ[env_var]
# if os.path.exists(local_path):
# return Path(local_path)
# print(
# f"Trying to load model {repo_id}, {filename} from environment "
# f"variable {env_var}. But file {local_path} does not exist. "
# "Falling back to default location."
# )
# # Create a safe directory name from repo_id
# safe_repo_name = repo_id.replace("/", "_")
# checkpoint_dir = CHECKPOINTS_DIR / safe_repo_name
# checkpoint_dir.mkdir(exist_ok=True)
# local_path = checkpoint_dir / filename
local_path = filename
from mmgp import offload
if False:
print(f"Downloading {filename} from {repo_id} to {local_path}")
try:
ensure_hf_auth()
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=checkpoint_dir)
except Exception as e:
if "gated repo" in str(e).lower() or "restricted" in str(e).lower():
print(f"\nError: Cannot access {repo_id} -- this is a gated repository.")
# Try one more time to authenticate
if prompt_for_hf_auth():
# Retry the download after authentication
print("Retrying download...")
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=checkpoint_dir)
else:
print("Authentication failed or cancelled.")
print("You can also run 'huggingface-cli login' or set HF_TOKEN environment variable")
raise RuntimeError(f"Authentication required for {repo_id}")
else:
raise e
return local_path
def download_onnx_models_for_trt(model_name: str, trt_transformer_precision: str = "bf16") -> str | None:
"""Download ONNX models for TRT to our checkpoints directory"""
onnx_repo_map = {
"flux-dev": "black-forest-labs/FLUX.1-dev-onnx",
"flux-schnell": "black-forest-labs/FLUX.1-schnell-onnx",
"flux-dev-canny": "black-forest-labs/FLUX.1-Canny-dev-onnx",
"flux-dev-depth": "black-forest-labs/FLUX.1-Depth-dev-onnx",
"flux-dev-redux": "black-forest-labs/FLUX.1-Redux-dev-onnx",
"flux-dev-fill": "black-forest-labs/FLUX.1-Fill-dev-onnx",
"flux-dev-kontext": "black-forest-labs/FLUX.1-Kontext-dev-onnx",
}
if model_name not in onnx_repo_map:
return None # No ONNX repository required for this model
repo_id = onnx_repo_map[model_name]
safe_repo_name = repo_id.replace("/", "_")
onnx_dir = CHECKPOINTS_DIR / safe_repo_name
# Map of module names to their ONNX file paths (using specified precision)
onnx_file_map = {
"clip": "clip.opt/model.onnx",
"transformer": f"transformer.opt/{trt_transformer_precision}/model.onnx",
"transformer_data": f"transformer.opt/{trt_transformer_precision}/backbone.onnx_data",
"t5": "t5.opt/model.onnx",
"t5_data": "t5.opt/backbone.onnx_data",
"vae": "vae.opt/model.onnx",
}
# If all files exist locally, return the custom_onnx_paths format
if onnx_dir.exists():
all_files_exist = True
custom_paths = []
for module, onnx_file in onnx_file_map.items():
if module.endswith("_data"):
continue # Skip data files
local_path = onnx_dir / onnx_file
if not local_path.exists():
all_files_exist = False
break
custom_paths.append(f"{module}:{local_path}")
if all_files_exist:
print(f"ONNX models ready in {onnx_dir}")
return ",".join(custom_paths)
# If not all files exist, download them
print(f"Downloading ONNX models from {repo_id} to {onnx_dir}")
print(f"Using transformer precision: {trt_transformer_precision}")
onnx_dir.mkdir(exist_ok=True)
# Download all ONNX files
for module, onnx_file in onnx_file_map.items():
local_path = onnx_dir / onnx_file
if local_path.exists():
continue # Already downloaded
# Create parent directories
local_path.parent.mkdir(parents=True, exist_ok=True)
try:
print(f"Downloading {onnx_file}")
hf_hub_download(repo_id=repo_id, filename=onnx_file, local_dir=onnx_dir)
except Exception as e:
if "does not exist" in str(e).lower() or "not found" in str(e).lower():
continue
elif "gated repo" in str(e).lower() or "restricted" in str(e).lower():
print(f"Cannot access {repo_id} - requires license acceptance")
print("Please follow these steps:")
print(f" 1. Visit: https://huggingface.co/{repo_id}")
print(" 2. Log in to your HuggingFace account")
print(" 3. Accept the license terms and conditions")
print(" 4. Then retry this command")
raise RuntimeError(f"License acceptance required for {model_name}")
else:
# Re-raise other errors
raise
print(f"ONNX models ready in {onnx_dir}")
# Return the custom_onnx_paths format that TRT expects: "module1:path1,module2:path2"
# Note: Only return the actual module paths, not the data file
custom_paths = []
for module, onnx_file in onnx_file_map.items():
if module.endswith("_data"):
continue # Skip the data file in the return paths
full_path = onnx_dir / onnx_file
if full_path.exists():
custom_paths.append(f"{module}:{full_path}")
return ",".join(custom_paths)
def check_onnx_access_for_trt(model_name: str, trt_transformer_precision: str = "bf16") -> str | None:
"""Check ONNX access and download models for TRT - returns ONNX directory path"""
return download_onnx_models_for_trt(model_name, trt_transformer_precision)
def track_usage_via_api(name: str, n=1) -> None:
"""
Track usage of licensed models via the BFL API for commercial licensing compliance.
For more information on licensing BFL's models for commercial use and usage reporting,
see the README.md or visit: https://dashboard.bfl.ai/licensing/subscriptions?showInstructions=true
"""
assert BFL_API_KEY is not None, "BFL_API_KEY is not set"
model_slug_map = {
"flux-dev": "flux-1-dev",
"flux-dev-kontext": "flux-1-kontext-dev",
"flux-dev-fill": "flux-tools",
"flux-dev-depth": "flux-tools",
"flux-dev-canny": "flux-tools",
"flux-dev-canny-lora": "flux-tools",
"flux-dev-depth-lora": "flux-tools",
"flux-dev-redux": "flux-tools",
}
if name not in model_slug_map:
print(f"Skipping tracking usage for {name}, as it cannot be tracked. Please check the model name.")
return
model_slug = model_slug_map[name]
url = f"https://api.bfl.ai/v1/licenses/models/{model_slug}/usage"
headers = {"x-key": BFL_API_KEY, "Content-Type": "application/json"}
payload = {"number_of_generations": n}
response = requests.post(url, headers=headers, json=payload)
if response.status_code != 200:
raise Exception(f"Failed to track usage: {response.status_code} {response.text}")
else:
print(f"Successfully tracked usage for {name} with {n} generations")
def save_image(
nsfw_classifier,
name: str,
output_name: str,
idx: int,
x: torch.Tensor,
add_sampling_metadata: bool,
prompt: str,
nsfw_threshold: float = 0.85,
track_usage: bool = False,
) -> int:
fn = output_name.format(idx=idx)
print(f"Saving {fn}")
# bring into PIL format and save
x = x.clamp(-1, 1)
x = rearrange(x[0], "c h w -> h w c")
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
if nsfw_classifier is not None:
nsfw_score = [x["score"] for x in nsfw_classifier(img) if x["label"] == "nsfw"][0]
else:
nsfw_score = nsfw_threshold - 1.0
if nsfw_score < nsfw_threshold:
exif_data = Image.Exif()
if name in ["flux-dev", "flux-schnell"]:
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux"
else:
exif_data[ExifTags.Base.Software] = "AI generated;img2img;flux"
exif_data[ExifTags.Base.Make] = "Black Forest Labs"
exif_data[ExifTags.Base.Model] = name
if add_sampling_metadata:
exif_data[ExifTags.Base.ImageDescription] = prompt
img.save(fn, exif=exif_data, quality=95, subsampling=0)
if track_usage:
track_usage_via_api(name, 1)
idx += 1
else:
print("Your generated image may contain NSFW content.")
return idx
@dataclass
class ModelSpec:
params: FluxParams
ae_params: AutoEncoderParams
repo_id: str
repo_flow: str
repo_ae: str
lora_repo_id: str | None = None
lora_filename: str | None = None
configs = {
"flux-dev": ModelSpec(
repo_id="",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=64,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-schnell": ModelSpec(
repo_id="black-forest-labs/FLUX.1-schnell",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=64,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=False,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-canny": ModelSpec(
repo_id="black-forest-labs/FLUX.1-Canny-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=128,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-canny-lora": ModelSpec(
repo_id="black-forest-labs/FLUX.1-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
lora_repo_id="black-forest-labs/FLUX.1-Canny-dev-lora",
lora_filename="flux1-canny-dev-lora.safetensors",
params=FluxParams(
in_channels=128,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-depth": ModelSpec(
repo_id="black-forest-labs/FLUX.1-Depth-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=128,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-depth-lora": ModelSpec(
repo_id="black-forest-labs/FLUX.1-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
lora_repo_id="black-forest-labs/FLUX.1-Depth-dev-lora",
lora_filename="flux1-depth-dev-lora.safetensors",
params=FluxParams(
in_channels=128,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-redux": ModelSpec(
repo_id="black-forest-labs/FLUX.1-Redux-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=64,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-fill": ModelSpec(
repo_id="black-forest-labs/FLUX.1-Fill-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=384,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-kontext": ModelSpec(
repo_id="black-forest-labs/FLUX.1-Kontext-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=64,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
}
PREFERED_KONTEXT_RESOLUTIONS = [
(672, 1568),
(688, 1504),
(720, 1456),
(752, 1392),
(800, 1328),
(832, 1248),
(880, 1184),
(944, 1104),
(1024, 1024),
(1104, 944),
(1184, 880),
(1248, 832),
(1328, 800),
(1392, 752),
(1456, 720),
(1504, 688),
(1568, 672),
]
def aspect_ratio_to_height_width(aspect_ratio: str, area: int = 1024**2) -> tuple[int, int]:
width = float(aspect_ratio.split(":")[0])
height = float(aspect_ratio.split(":")[1])
ratio = width / height
width = round(math.sqrt(area * ratio))
height = round(math.sqrt(area / ratio))
return 16 * (width // 16), 16 * (height // 16)
def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
if len(missing) > 0 and len(unexpected) > 0:
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
print("\n" + "-" * 79 + "\n")
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
elif len(missing) > 0:
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
elif len(unexpected) > 0:
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
def load_flow_model(name: str, model_filename, device: str | torch.device = "cuda", verbose: bool = True) -> Flux:
# Loading Flux
config = configs[name]
ckpt_path = model_filename #config.repo_flow
with torch.device("meta"):
if config.lora_repo_id is not None and config.lora_filename is not None:
model = FluxLoraWrapper(params=config.params).to(torch.bfloat16)
else:
model = Flux(config.params).to(torch.bfloat16)
# print(f"Loading checkpoint: {ckpt_path}")
from mmgp import offload
offload.load_model_data(model, model_filename )
# # load_sft doesn't support torch.device
# sd = load_sft(ckpt_path, device=str(device))
# sd = optionally_expand_state_dict(model, sd)
# missing, unexpected = model.load_state_dict(sd, strict=False, assign=True)
# if verbose:
# print_load_warning(missing, unexpected)
# if config.lora_repo_id is not None and config.lora_filename is not None:
# print("Loading LoRA")
# lora_path = str(get_checkpoint_path(config.lora_repo_id, config.lora_filename, "FLUX_LORA"))
# lora_sd = load_sft(lora_path, device=str(device))
# # loading the lora params + overwriting scale values in the norms
# missing, unexpected = model.load_state_dict(lora_sd, strict=False, assign=True)
# if verbose:
# print_load_warning(missing, unexpected)
return model
def load_t5(device: str | torch.device = "cuda", text_encoder_filename = None, max_length: int = 512) -> HFEmbedder:
# max length 64, 128, 256 and 512 should work (if your sequence is short enough)
return HFEmbedder("",text_encoder_filename, max_length=max_length, torch_dtype=torch.bfloat16).to(device)
def load_clip(device: str | torch.device = "cuda") -> HFEmbedder:
return HFEmbedder("ckpts/clip_vit_large_patch14", "", max_length=77, torch_dtype=torch.bfloat16, is_clip =True).to(device)
def load_ae(name: str, device: str | torch.device = "cuda") -> AutoEncoder:
config = configs[name]
ckpt_path = str(get_checkpoint_path(config.repo_id, config.repo_ae, "FLUX_AE"))
# Loading the autoencoder
with torch.device("meta"):
ae = AutoEncoder(config.ae_params)
# print(f"Loading AE checkpoint: {ckpt_path}")
sd = load_sft(ckpt_path, device=str(device))
missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True)
print_load_warning(missing, unexpected)
return ae
def optionally_expand_state_dict(model: torch.nn.Module, state_dict: dict) -> dict:
"""
Optionally expand the state dict to match the model's parameters shapes.
"""
for name, param in model.named_parameters():
if name in state_dict:
if state_dict[name].shape != param.shape:
print(
f"Expanding '{name}' with shape {state_dict[name].shape} to model parameter with shape {param.shape}."
)
# expand with zeros:
expanded_state_dict_weight = torch.zeros_like(param, device=state_dict[name].device)
slices = tuple(slice(0, dim) for dim in state_dict[name].shape)
expanded_state_dict_weight[slices] = state_dict[name]
state_dict[name] = expanded_state_dict_weight
return state_dict

View File

@ -149,6 +149,7 @@ class LTXV:
self,
model_filepath: str,
text_encoder_filepath: str,
model_def,
dtype = torch.bfloat16,
VAE_dtype = torch.bfloat16,
mixed_precision_transformer = False
@ -157,8 +158,8 @@ class LTXV:
# if dtype == torch.float16:
dtype = torch.bfloat16
self.mixed_precision_transformer = mixed_precision_transformer
self.distilled = any("lora" in name for name in model_filepath)
model_filepath = [name for name in model_filepath if not "lora" in name ]
self.model_def = model_def
self.pipeline_config = model_def["LTXV_config"]
# with safe_open(ckpt_path, framework="pt") as f:
# metadata = f.metadata()
# config_str = metadata.get("config")
@ -220,11 +221,11 @@ class LTXV:
prompt_enhancer_llm_model = None
prompt_enhancer_llm_tokenizer = None
if prompt_enhancer_image_caption_model != None:
pipe["prompt_enhancer_image_caption_model"] = prompt_enhancer_image_caption_model
prompt_enhancer_image_caption_model._model_dtype = torch.float
# if prompt_enhancer_image_caption_model != None:
# pipe["prompt_enhancer_image_caption_model"] = prompt_enhancer_image_caption_model
# prompt_enhancer_image_caption_model._model_dtype = torch.float
pipe["prompt_enhancer_llm_model"] = prompt_enhancer_llm_model
# pipe["prompt_enhancer_llm_model"] = prompt_enhancer_llm_model
# offload.profile(pipe, profile_no=5, extraModelsToQuantize = None, quantizeTransformer = False, budgets = { "prompt_enhancer_llm_model" : 10000, "prompt_enhancer_image_caption_model" : 10000, "vae" : 3000, "*" : 100 }, verboseLevel=2)
@ -299,14 +300,10 @@ class LTXV:
conditioning_media_paths = None
conditioning_start_frames = None
if self.distilled :
pipeline_config = "ltx_video/configs/ltxv-13b-0.9.7-distilled.yaml"
else:
pipeline_config = "ltx_video/configs/ltxv-13b-0.9.7-dev.yaml"
# check if pipeline_config is a file
if not os.path.isfile(pipeline_config):
raise ValueError(f"Pipeline config file {pipeline_config} does not exist")
with open(pipeline_config, "r") as f:
if not os.path.isfile(self.pipeline_config):
raise ValueError(f"Pipeline config file {self.pipeline_config} does not exist")
with open(self.pipeline_config, "r") as f:
pipeline_config = yaml.safe_load(f)
@ -520,7 +517,7 @@ def get_media_num_frames(media_path: str) -> int:
return media_path.shape[1]
elif isinstance(media_path, str) and any( media_path.lower().endswith(ext) for ext in [".mp4", ".avi", ".mov", ".mkv"]):
reader = imageio.get_reader(media_path)
return min(reader.count_frames(), max_frames)
return min(reader.count_frames(), 0) # to do
else:
raise Exception("video format not supported")
@ -564,6 +561,3 @@ def load_media_file(
raise Exception("video format not supported")
return media_tensor
if __name__ == "__main__":
main()

View File

@ -106,18 +106,18 @@ class WanAny2V:
# config = json.load(f)
# from mmgp import safetensors2
# sd = safetensors2.torch_load_file(xmodel_filename)
# model_filename = "c:/temp/fflf/diffusion_pytorch_model-00001-of-00007.safetensors"
base_config_file = f"configs/{base_model_type}.json"
forcedConfigPath = base_config_file if len(model_filename) > 1 or base_model_type in ["flf2v_720p"] else None
forcedConfigPath = base_config_file if len(model_filename) > 1 else None
# forcedConfigPath = base_config_file = f"configs/flf2v_720p.json"
# model_filename[1] = xmodel_filename
self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, writable_tensors= False, defaultConfigPath=base_config_file , forcedConfigPath= forcedConfigPath)
# self.model = offload.load_model_data(self.model, xmodel_filename )
# offload.load_model_data(self.model, "c:/temp/Phantom-Wan-1.3B.pth")
# self.model.to(torch.bfloat16)
# self.model.cpu()
self.model.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype)
offload.change_dtype(self.model, dtype, True)
# offload.save_model(self.model, "multitalkbf16.safetensors", config_file_path=base_config_file, filter_sd=sd)
# offload.save_model(self.model, "flf2v_720p.safetensors", config_file_path=base_config_file)
# offload.save_model(self.model, "flf2v_quanto_int8_fp16_720p.safetensors", do_quantize= True, config_file_path=base_config_file)
# offload.save_model(self.model, "multitalk_quanto_fp16.safetensors", do_quantize= True, config_file_path=base_config_file, filter_sd=sd)
# offload.save_model(self.model, "wan2.1_selforcing_fp16.safetensors", config_file_path=base_config_file)
@ -126,7 +126,7 @@ class WanAny2V:
self.model.eval().requires_grad_(False)
if save_quantized:
from wgp import save_quantized_model
save_quantized_model(self.model, model_type, model_filename[1 if base_model_type=="fantasy" else 0], dtype, base_config_file)
save_quantized_model(self.model, model_type, model_filename[0], dtype, base_config_file)
self.sample_neg_prompt = config.sample_neg_prompt
@ -477,8 +477,8 @@ class WanAny2V:
any_end_frame = False
if input_frames != None:
_ , preframes_count, height, width = input_frames.shape
lat_h, lat_w = height // self.vae_stride[1], width // self.vae_stride[2]
clip_context = self.clip.visual([input_frames[:, -1:]]) #.to(self.param_dtype)
lat_h, lat_w = height // self.vae_stride[1], width // self.vae_stride[2]
clip_context = self.clip.visual([input_frames[:, -1:]]) if model_type != "flf2v_720p" else self.clip.visual([input_frames[:, -1:], input_frames[:, -1:]])
input_frames = input_frames.to(device=self.device).to(dtype= self.VAE_dtype)
enc = torch.concat( [input_frames, torch.zeros( (3, frame_num-preframes_count, height, width),
device=self.device, dtype= self.VAE_dtype)],
@ -488,7 +488,7 @@ class WanAny2V:
preframes_count = 1
image_start = TF.to_tensor(image_start)
any_end_frame = image_end != None
add_frames_for_end_image = any_end_frame and model_type not in ["fun_inp_1.3B", "fun_inp", "i2v_720p"]
add_frames_for_end_image = any_end_frame and model_type == "i2v"
if any_end_frame:
image_end = TF.to_tensor(image_end)
if add_frames_for_end_image:
@ -517,8 +517,8 @@ class WanAny2V:
img_interpolated2 = resize_lanczos(image_end, h, w).sub_(0.5).div_(0.5).unsqueeze(0).transpose(0,1).to(self.device) #, self.dtype
image_end = resize_lanczos(image_end, clip_image_size, clip_image_size)
image_end = image_end.sub_(0.5).div_(0.5).to(self.device) #, self.dtype
if image_end != None and model_type == "flf2v_720p":
clip_context = self.clip.visual([image_start[:, None, :, :], image_end[:, None, :, :]])
if model_type == "flf2v_720p":
clip_context = self.clip.visual([image_start[:, None, :, :], image_end[:, None, :, :] if image_end != None else image_start[:, None, :, :]])
else:
clip_context = self.clip.visual([image_start[:, None, :, :]])
@ -753,7 +753,7 @@ class WanAny2V:
"context" : [context, context_null, context_null],
"audio_scale": [audio_scale, None, None ]
}
elif multitalk:
elif multitalk and audio_proj != None:
gen_args = {
"x" : [latent_model_input, latent_model_input, latent_model_input],
"context" : [context, context_null, context_null],

View File

@ -184,6 +184,7 @@ def get_full_audio_embeddings(audio_guide1 = None, audio_guide2 = None, combinat
def get_window_audio_embeddings(full_audio_embs, audio_start_idx=0, clip_length = 81, vae_scale = 4, audio_window = 5):
if full_audio_embs == None: return None
HUMAN_NUMBER = len(full_audio_embs)
audio_end_idx = audio_start_idx + clip_length
indices = (torch.arange(2 * 2 + 1) - 2) * 1

660
wgp.py

File diff suppressed because it is too large Load Diff