mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 14:16:57 +00:00
303 lines
10 KiB
Python
303 lines
10 KiB
Python
import os
|
|
import re
|
|
import time
|
|
from dataclasses import dataclass
|
|
from glob import iglob
|
|
|
|
import torch
|
|
from fire import Fire
|
|
from transformers import pipeline
|
|
|
|
from flux.sampling import denoise, get_noise, get_schedule, prepare, unpack
|
|
from flux.util import (
|
|
check_onnx_access_for_trt,
|
|
configs,
|
|
load_ae,
|
|
load_clip,
|
|
load_flow_model,
|
|
load_t5,
|
|
save_image,
|
|
)
|
|
|
|
NSFW_THRESHOLD = 0.85
|
|
|
|
|
|
@dataclass
|
|
class SamplingOptions:
|
|
prompt: str
|
|
width: int
|
|
height: int
|
|
num_steps: int
|
|
guidance: float
|
|
seed: int | None
|
|
|
|
|
|
def parse_prompt(options: SamplingOptions) -> SamplingOptions | None:
|
|
user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n"
|
|
usage = (
|
|
"Usage: Either write your prompt directly, leave this field empty "
|
|
"to repeat the prompt or write a command starting with a slash:\n"
|
|
"- '/w <width>' will set the width of the generated image\n"
|
|
"- '/h <height>' will set the height of the generated image\n"
|
|
"- '/s <seed>' sets the next seed\n"
|
|
"- '/g <guidance>' sets the guidance (flux-dev only)\n"
|
|
"- '/n <steps>' sets the number of steps\n"
|
|
"- '/q' to quit"
|
|
)
|
|
|
|
while (prompt := input(user_question)).startswith("/"):
|
|
if prompt.startswith("/w"):
|
|
if prompt.count(" ") != 1:
|
|
print(f"Got invalid command '{prompt}'\n{usage}")
|
|
continue
|
|
_, width = prompt.split()
|
|
options.width = 16 * (int(width) // 16)
|
|
print(
|
|
f"Setting resolution to {options.width} x {options.height} "
|
|
f"({options.height * options.width / 1e6:.2f}MP)"
|
|
)
|
|
elif prompt.startswith("/h"):
|
|
if prompt.count(" ") != 1:
|
|
print(f"Got invalid command '{prompt}'\n{usage}")
|
|
continue
|
|
_, height = prompt.split()
|
|
options.height = 16 * (int(height) // 16)
|
|
print(
|
|
f"Setting resolution to {options.width} x {options.height} "
|
|
f"({options.height * options.width / 1e6:.2f}MP)"
|
|
)
|
|
elif prompt.startswith("/g"):
|
|
if prompt.count(" ") != 1:
|
|
print(f"Got invalid command '{prompt}'\n{usage}")
|
|
continue
|
|
_, guidance = prompt.split()
|
|
options.guidance = float(guidance)
|
|
print(f"Setting guidance to {options.guidance}")
|
|
elif prompt.startswith("/s"):
|
|
if prompt.count(" ") != 1:
|
|
print(f"Got invalid command '{prompt}'\n{usage}")
|
|
continue
|
|
_, seed = prompt.split()
|
|
options.seed = int(seed)
|
|
print(f"Setting seed to {options.seed}")
|
|
elif prompt.startswith("/n"):
|
|
if prompt.count(" ") != 1:
|
|
print(f"Got invalid command '{prompt}'\n{usage}")
|
|
continue
|
|
_, steps = prompt.split()
|
|
options.num_steps = int(steps)
|
|
print(f"Setting number of steps to {options.num_steps}")
|
|
elif prompt.startswith("/q"):
|
|
print("Quitting")
|
|
return None
|
|
else:
|
|
if not prompt.startswith("/h"):
|
|
print(f"Got invalid command '{prompt}'\n{usage}")
|
|
print(usage)
|
|
if prompt != "":
|
|
options.prompt = prompt
|
|
return options
|
|
|
|
|
|
@torch.inference_mode()
|
|
def main(
|
|
name: str = "flux-schnell",
|
|
width: int = 1360,
|
|
height: int = 768,
|
|
seed: int | None = None,
|
|
prompt: str = (
|
|
"a photo of a forest with mist swirling around the tree trunks. The word "
|
|
'"FLUX" is painted over it in big, red brush strokes with visible texture'
|
|
),
|
|
device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
|
num_steps: int | None = None,
|
|
loop: bool = False,
|
|
guidance: float = 2.5,
|
|
offload: bool = False,
|
|
output_dir: str = "output",
|
|
add_sampling_metadata: bool = True,
|
|
trt: bool = False,
|
|
trt_transformer_precision: str = "bf16",
|
|
track_usage: bool = False,
|
|
):
|
|
"""
|
|
Sample the flux model. Either interactively (set `--loop`) or run for a
|
|
single image.
|
|
|
|
Args:
|
|
name: Name of the model to load
|
|
height: height of the sample in pixels (should be a multiple of 16)
|
|
width: width of the sample in pixels (should be a multiple of 16)
|
|
seed: Set a seed for sampling
|
|
output_name: where to save the output image, `{idx}` will be replaced
|
|
by the index of the sample
|
|
prompt: Prompt used for sampling
|
|
device: Pytorch device
|
|
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
|
|
loop: start an interactive session and sample multiple times
|
|
guidance: guidance value used for guidance distillation
|
|
add_sampling_metadata: Add the prompt to the image Exif metadata
|
|
trt: use TensorRT backend for optimized inference
|
|
trt_transformer_precision: specify transformer precision for inference
|
|
track_usage: track usage of the model for licensing purposes
|
|
"""
|
|
|
|
prompt = prompt.split("|")
|
|
if len(prompt) == 1:
|
|
prompt = prompt[0]
|
|
additional_prompts = None
|
|
else:
|
|
additional_prompts = prompt[1:]
|
|
prompt = prompt[0]
|
|
|
|
assert not (
|
|
(additional_prompts is not None) and loop
|
|
), "Do not provide additional prompts and set loop to True"
|
|
|
|
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)
|
|
|
|
if name not in configs:
|
|
available = ", ".join(configs.keys())
|
|
raise ValueError(f"Got unknown model name: {name}, chose from {available}")
|
|
|
|
torch_device = torch.device(device)
|
|
if num_steps is None:
|
|
num_steps = 4 if name == "flux-schnell" else 50
|
|
|
|
# allow for packing and conversion to latent space
|
|
height = 16 * (height // 16)
|
|
width = 16 * (width // 16)
|
|
|
|
output_name = os.path.join(output_dir, "img_{idx}.jpg")
|
|
if not os.path.exists(output_dir):
|
|
os.makedirs(output_dir)
|
|
idx = 0
|
|
else:
|
|
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
|
|
if len(fns) > 0:
|
|
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
|
|
else:
|
|
idx = 0
|
|
|
|
if not trt:
|
|
t5 = load_t5(torch_device, max_length=256 if name == "flux-schnell" else 512)
|
|
clip = load_clip(torch_device)
|
|
model = load_flow_model(name, device="cpu" if offload else torch_device)
|
|
ae = load_ae(name, device="cpu" if offload else torch_device)
|
|
else:
|
|
# lazy import to make install optional
|
|
from flux.trt.trt_manager import ModuleName, TRTManager
|
|
|
|
# Check if we need ONNX model access (which requires authentication for FLUX models)
|
|
onnx_dir = check_onnx_access_for_trt(name, trt_transformer_precision)
|
|
|
|
trt_ctx_manager = TRTManager(
|
|
trt_transformer_precision=trt_transformer_precision,
|
|
trt_t5_precision=os.getenv("TRT_T5_PRECISION", "bf16"),
|
|
)
|
|
engines = trt_ctx_manager.load_engines(
|
|
model_name=name,
|
|
module_names={
|
|
ModuleName.CLIP,
|
|
ModuleName.TRANSFORMER,
|
|
ModuleName.T5,
|
|
ModuleName.VAE,
|
|
},
|
|
engine_dir=os.environ.get("TRT_ENGINE_DIR", "./engines"),
|
|
custom_onnx_paths=onnx_dir or os.environ.get("CUSTOM_ONNX_PATHS", ""),
|
|
trt_image_height=height,
|
|
trt_image_width=width,
|
|
trt_batch_size=1,
|
|
trt_timing_cache=os.getenv("TRT_TIMING_CACHE_FILE", None),
|
|
trt_static_batch=False,
|
|
trt_static_shape=False,
|
|
)
|
|
|
|
ae = engines[ModuleName.VAE].to(device="cpu" if offload else torch_device)
|
|
model = engines[ModuleName.TRANSFORMER].to(device="cpu" if offload else torch_device)
|
|
clip = engines[ModuleName.CLIP].to(torch_device)
|
|
t5 = engines[ModuleName.T5].to(device="cpu" if offload else torch_device)
|
|
|
|
rng = torch.Generator(device="cpu")
|
|
opts = SamplingOptions(
|
|
prompt=prompt,
|
|
width=width,
|
|
height=height,
|
|
num_steps=num_steps,
|
|
guidance=guidance,
|
|
seed=seed,
|
|
)
|
|
|
|
if loop:
|
|
opts = parse_prompt(opts)
|
|
|
|
while opts is not None:
|
|
if opts.seed is None:
|
|
opts.seed = rng.seed()
|
|
print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
|
|
t0 = time.perf_counter()
|
|
|
|
# prepare input
|
|
x = get_noise(
|
|
1,
|
|
opts.height,
|
|
opts.width,
|
|
device=torch_device,
|
|
dtype=torch.bfloat16,
|
|
seed=opts.seed,
|
|
)
|
|
opts.seed = None
|
|
if offload:
|
|
ae = ae.cpu()
|
|
torch.cuda.empty_cache()
|
|
t5, clip = t5.to(torch_device), clip.to(torch_device)
|
|
inp = prepare(t5, clip, x, prompt=opts.prompt)
|
|
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
|
|
|
|
# offload TEs to CPU, load model to gpu
|
|
if offload:
|
|
t5, clip = t5.cpu(), clip.cpu()
|
|
torch.cuda.empty_cache()
|
|
model = model.to(torch_device)
|
|
|
|
# denoise initial noise
|
|
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
|
|
|
|
# offload model, load autoencoder to gpu
|
|
if offload:
|
|
model.cpu()
|
|
torch.cuda.empty_cache()
|
|
ae.decoder.to(x.device)
|
|
|
|
# decode latents to pixel space
|
|
x = unpack(x.float(), opts.height, opts.width)
|
|
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
|
|
x = ae.decode(x)
|
|
|
|
if torch.cuda.is_available():
|
|
torch.cuda.synchronize()
|
|
t1 = time.perf_counter()
|
|
|
|
fn = output_name.format(idx=idx)
|
|
print(f"Done in {t1 - t0:.1f}s. Saving {fn}")
|
|
|
|
idx = save_image(
|
|
nsfw_classifier, name, output_name, idx, x, add_sampling_metadata, prompt, track_usage=track_usage
|
|
)
|
|
|
|
if loop:
|
|
print("-" * 80)
|
|
opts = parse_prompt(opts)
|
|
elif additional_prompts:
|
|
next_prompt = additional_prompts.pop(0)
|
|
opts.prompt = next_prompt
|
|
else:
|
|
opts = None
|
|
|
|
if trt:
|
|
trt_ctx_manager.stop_runtime()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
Fire(main)
|