mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 14:16:57 +00:00
335 lines
11 KiB
Python
335 lines
11 KiB
Python
import os
|
|
import re
|
|
import time
|
|
from dataclasses import dataclass
|
|
from glob import iglob
|
|
|
|
import torch
|
|
from fire import Fire
|
|
from PIL import Image
|
|
from transformers import pipeline
|
|
|
|
from flux.sampling import denoise, get_noise, get_schedule, prepare_fill, unpack
|
|
from flux.util import configs, load_ae, load_clip, load_flow_model, load_t5, save_image
|
|
|
|
|
|
@dataclass
|
|
class SamplingOptions:
|
|
prompt: str
|
|
width: int
|
|
height: int
|
|
num_steps: int
|
|
guidance: float
|
|
seed: int | None
|
|
img_cond_path: str
|
|
img_mask_path: str
|
|
|
|
|
|
def parse_prompt(options: SamplingOptions) -> SamplingOptions | None:
|
|
user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n"
|
|
usage = (
|
|
"Usage: Either write your prompt directly, leave this field empty "
|
|
"to repeat the prompt or write a command starting with a slash:\n"
|
|
"- '/s <seed>' sets the next seed\n"
|
|
"- '/g <guidance>' sets the guidance (flux-dev only)\n"
|
|
"- '/n <steps>' sets the number of steps\n"
|
|
"- '/q' to quit"
|
|
)
|
|
|
|
while (prompt := input(user_question)).startswith("/"):
|
|
if prompt.startswith("/g"):
|
|
if prompt.count(" ") != 1:
|
|
print(f"Got invalid command '{prompt}'\n{usage}")
|
|
continue
|
|
_, guidance = prompt.split()
|
|
options.guidance = float(guidance)
|
|
print(f"Setting guidance to {options.guidance}")
|
|
elif prompt.startswith("/s"):
|
|
if prompt.count(" ") != 1:
|
|
print(f"Got invalid command '{prompt}'\n{usage}")
|
|
continue
|
|
_, seed = prompt.split()
|
|
options.seed = int(seed)
|
|
print(f"Setting seed to {options.seed}")
|
|
elif prompt.startswith("/n"):
|
|
if prompt.count(" ") != 1:
|
|
print(f"Got invalid command '{prompt}'\n{usage}")
|
|
continue
|
|
_, steps = prompt.split()
|
|
options.num_steps = int(steps)
|
|
print(f"Setting number of steps to {options.num_steps}")
|
|
elif prompt.startswith("/q"):
|
|
print("Quitting")
|
|
return None
|
|
else:
|
|
if not prompt.startswith("/h"):
|
|
print(f"Got invalid command '{prompt}'\n{usage}")
|
|
print(usage)
|
|
if prompt != "":
|
|
options.prompt = prompt
|
|
return options
|
|
|
|
|
|
def parse_img_cond_path(options: SamplingOptions | None) -> SamplingOptions | None:
|
|
if options is None:
|
|
return None
|
|
|
|
user_question = "Next conditioning image (write /h for help, /q to quit and leave empty to repeat):\n"
|
|
usage = (
|
|
"Usage: Either write your prompt directly, leave this field empty "
|
|
"to repeat the conditioning image or write a command starting with a slash:\n"
|
|
"- '/q' to quit"
|
|
)
|
|
|
|
while True:
|
|
img_cond_path = input(user_question)
|
|
|
|
if img_cond_path.startswith("/"):
|
|
if img_cond_path.startswith("/q"):
|
|
print("Quitting")
|
|
return None
|
|
else:
|
|
if not img_cond_path.startswith("/h"):
|
|
print(f"Got invalid command '{img_cond_path}'\n{usage}")
|
|
print(usage)
|
|
continue
|
|
|
|
if img_cond_path == "":
|
|
break
|
|
|
|
if not os.path.isfile(img_cond_path) or not img_cond_path.lower().endswith(
|
|
(".jpg", ".jpeg", ".png", ".webp")
|
|
):
|
|
print(f"File '{img_cond_path}' does not exist or is not a valid image file")
|
|
continue
|
|
else:
|
|
with Image.open(img_cond_path) as img:
|
|
width, height = img.size
|
|
|
|
if width % 32 != 0 or height % 32 != 0:
|
|
print(f"Image dimensions must be divisible by 32, got {width}x{height}")
|
|
continue
|
|
|
|
options.img_cond_path = img_cond_path
|
|
break
|
|
|
|
return options
|
|
|
|
|
|
def parse_img_mask_path(options: SamplingOptions | None) -> SamplingOptions | None:
|
|
if options is None:
|
|
return None
|
|
|
|
user_question = "Next conditioning mask (write /h for help, /q to quit and leave empty to repeat):\n"
|
|
usage = (
|
|
"Usage: Either write your prompt directly, leave this field empty "
|
|
"to repeat the conditioning mask or write a command starting with a slash:\n"
|
|
"- '/q' to quit"
|
|
)
|
|
|
|
while True:
|
|
img_mask_path = input(user_question)
|
|
|
|
if img_mask_path.startswith("/"):
|
|
if img_mask_path.startswith("/q"):
|
|
print("Quitting")
|
|
return None
|
|
else:
|
|
if not img_mask_path.startswith("/h"):
|
|
print(f"Got invalid command '{img_mask_path}'\n{usage}")
|
|
print(usage)
|
|
continue
|
|
|
|
if img_mask_path == "":
|
|
break
|
|
|
|
if not os.path.isfile(img_mask_path) or not img_mask_path.lower().endswith(
|
|
(".jpg", ".jpeg", ".png", ".webp")
|
|
):
|
|
print(f"File '{img_mask_path}' does not exist or is not a valid image file")
|
|
continue
|
|
else:
|
|
with Image.open(img_mask_path) as img:
|
|
width, height = img.size
|
|
|
|
if width % 32 != 0 or height % 32 != 0:
|
|
print(f"Image dimensions must be divisible by 32, got {width}x{height}")
|
|
continue
|
|
else:
|
|
with Image.open(options.img_cond_path) as img_cond:
|
|
img_cond_width, img_cond_height = img_cond.size
|
|
|
|
if width != img_cond_width or height != img_cond_height:
|
|
print(
|
|
f"Mask dimensions must match conditioning image, got {width}x{height} and {img_cond_width}x{img_cond_height}"
|
|
)
|
|
continue
|
|
|
|
options.img_mask_path = img_mask_path
|
|
break
|
|
|
|
return options
|
|
|
|
|
|
@torch.inference_mode()
|
|
def main(
|
|
seed: int | None = None,
|
|
prompt: str = "a white paper cup",
|
|
device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
|
num_steps: int = 50,
|
|
loop: bool = False,
|
|
guidance: float = 30.0,
|
|
offload: bool = False,
|
|
output_dir: str = "output",
|
|
add_sampling_metadata: bool = True,
|
|
img_cond_path: str = "assets/cup.png",
|
|
img_mask_path: str = "assets/cup_mask.png",
|
|
track_usage: bool = False,
|
|
):
|
|
"""
|
|
Sample the flux model. Either interactively (set `--loop`) or run for a
|
|
single image. This demo assumes that the conditioning image and mask have
|
|
the same shape and that height and width are divisible by 32.
|
|
|
|
Args:
|
|
seed: Set a seed for sampling
|
|
output_name: where to save the output image, `{idx}` will be replaced
|
|
by the index of the sample
|
|
prompt: Prompt used for sampling
|
|
device: Pytorch device
|
|
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
|
|
loop: start an interactive session and sample multiple times
|
|
guidance: guidance value used for guidance distillation
|
|
add_sampling_metadata: Add the prompt to the image Exif metadata
|
|
img_cond_path: path to conditioning image (jpeg/png/webp)
|
|
img_mask_path: path to conditioning mask (jpeg/png/webp)
|
|
track_usage: track usage of the model for licensing purposes
|
|
"""
|
|
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)
|
|
|
|
name = "flux-dev-fill"
|
|
if name not in configs:
|
|
available = ", ".join(configs.keys())
|
|
raise ValueError(f"Got unknown model name: {name}, chose from {available}")
|
|
|
|
torch_device = torch.device(device)
|
|
|
|
output_name = os.path.join(output_dir, "img_{idx}.jpg")
|
|
if not os.path.exists(output_dir):
|
|
os.makedirs(output_dir)
|
|
idx = 0
|
|
else:
|
|
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
|
|
if len(fns) > 0:
|
|
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
|
|
else:
|
|
idx = 0
|
|
|
|
# init all components
|
|
t5 = load_t5(torch_device, max_length=128)
|
|
clip = load_clip(torch_device)
|
|
model = load_flow_model(name, device="cpu" if offload else torch_device)
|
|
ae = load_ae(name, device="cpu" if offload else torch_device)
|
|
|
|
rng = torch.Generator(device="cpu")
|
|
with Image.open(img_cond_path) as img:
|
|
width, height = img.size
|
|
opts = SamplingOptions(
|
|
prompt=prompt,
|
|
width=width,
|
|
height=height,
|
|
num_steps=num_steps,
|
|
guidance=guidance,
|
|
seed=seed,
|
|
img_cond_path=img_cond_path,
|
|
img_mask_path=img_mask_path,
|
|
)
|
|
|
|
if loop:
|
|
opts = parse_prompt(opts)
|
|
opts = parse_img_cond_path(opts)
|
|
|
|
with Image.open(opts.img_cond_path) as img:
|
|
width, height = img.size
|
|
opts.height = height
|
|
opts.width = width
|
|
|
|
opts = parse_img_mask_path(opts)
|
|
|
|
while opts is not None:
|
|
if opts.seed is None:
|
|
opts.seed = rng.seed()
|
|
print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
|
|
t0 = time.perf_counter()
|
|
|
|
# prepare input
|
|
x = get_noise(
|
|
1,
|
|
opts.height,
|
|
opts.width,
|
|
device=torch_device,
|
|
dtype=torch.bfloat16,
|
|
seed=opts.seed,
|
|
)
|
|
opts.seed = None
|
|
if offload:
|
|
t5, clip, ae = t5.to(torch_device), clip.to(torch_device), ae.to(torch_device)
|
|
inp = prepare_fill(
|
|
t5,
|
|
clip,
|
|
x,
|
|
prompt=opts.prompt,
|
|
ae=ae,
|
|
img_cond_path=opts.img_cond_path,
|
|
mask_path=opts.img_mask_path,
|
|
)
|
|
|
|
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
|
|
|
|
# offload TEs and AE to CPU, load model to gpu
|
|
if offload:
|
|
t5, clip, ae = t5.cpu(), clip.cpu(), ae.cpu()
|
|
torch.cuda.empty_cache()
|
|
model = model.to(torch_device)
|
|
|
|
# denoise initial noise
|
|
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
|
|
|
|
# offload model, load autoencoder to gpu
|
|
if offload:
|
|
model.cpu()
|
|
torch.cuda.empty_cache()
|
|
ae.decoder.to(x.device)
|
|
|
|
# decode latents to pixel space
|
|
x = unpack(x.float(), opts.height, opts.width)
|
|
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
|
|
x = ae.decode(x)
|
|
|
|
if torch.cuda.is_available():
|
|
torch.cuda.synchronize()
|
|
t1 = time.perf_counter()
|
|
print(f"Done in {t1 - t0:.1f}s")
|
|
|
|
idx = save_image(
|
|
nsfw_classifier, name, output_name, idx, x, add_sampling_metadata, prompt, track_usage=track_usage
|
|
)
|
|
|
|
if loop:
|
|
print("-" * 80)
|
|
opts = parse_prompt(opts)
|
|
opts = parse_img_cond_path(opts)
|
|
|
|
with Image.open(opts.img_cond_path) as img:
|
|
width, height = img.size
|
|
opts.height = height
|
|
opts.width = width
|
|
|
|
opts = parse_img_mask_path(opts)
|
|
else:
|
|
opts = None
|
|
|
|
|
|
if __name__ == "__main__":
|
|
Fire(main)
|