Wan2.1/flux/to_remove/cli_redux.py
2025-07-13 04:24:55 +02:00

291 lines
9.5 KiB
Python

import os
import re
import time
from dataclasses import dataclass
from glob import iglob
import torch
from fire import Fire
from transformers import pipeline
from flux.modules.image_embedders import ReduxImageEncoder
from flux.sampling import denoise, get_noise, get_schedule, prepare_redux, unpack
from flux.util import (
get_checkpoint_path,
load_ae,
load_clip,
load_flow_model,
load_t5,
save_image,
)
@dataclass
class SamplingOptions:
prompt: str
width: int
height: int
num_steps: int
guidance: float
seed: int | None
img_cond_path: str
def parse_prompt(options: SamplingOptions) -> SamplingOptions | None:
user_question = "Write /h for help, /q to quit and leave empty to repeat):\n"
usage = (
"Usage: Leave this field empty to do nothing "
"or write a command starting with a slash:\n"
"- '/w <width>' will set the width of the generated image\n"
"- '/h <height>' will set the height of the generated image\n"
"- '/s <seed>' sets the next seed\n"
"- '/g <guidance>' sets the guidance (flux-dev only)\n"
"- '/n <steps>' sets the number of steps\n"
"- '/q' to quit"
)
while (prompt := input(user_question)).startswith("/"):
if prompt.startswith("/w"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, width = prompt.split()
options.width = 16 * (int(width) // 16)
print(
f"Setting resolution to {options.width} x {options.height} "
f"({options.height * options.width / 1e6:.2f}MP)"
)
elif prompt.startswith("/h"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, height = prompt.split()
options.height = 16 * (int(height) // 16)
print(
f"Setting resolution to {options.width} x {options.height} "
f"({options.height * options.width / 1e6:.2f}MP)"
)
elif prompt.startswith("/g"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, guidance = prompt.split()
options.guidance = float(guidance)
print(f"Setting guidance to {options.guidance}")
elif prompt.startswith("/s"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, seed = prompt.split()
options.seed = int(seed)
print(f"Setting seed to {options.seed}")
elif prompt.startswith("/n"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, steps = prompt.split()
options.num_steps = int(steps)
print(f"Setting number of steps to {options.num_steps}")
elif prompt.startswith("/q"):
print("Quitting")
return None
else:
if not prompt.startswith("/h"):
print(f"Got invalid command '{prompt}'\n{usage}")
print(usage)
return options
def parse_img_cond_path(options: SamplingOptions | None) -> SamplingOptions | None:
if options is None:
return None
user_question = "Next conditioning image (write /h for help, /q to quit and leave empty to repeat):\n"
usage = (
"Usage: Either write your prompt directly, leave this field empty "
"to repeat the conditioning image or write a command starting with a slash:\n"
"- '/q' to quit"
)
while True:
img_cond_path = input(user_question)
if img_cond_path.startswith("/"):
if img_cond_path.startswith("/q"):
print("Quitting")
return None
else:
if not img_cond_path.startswith("/h"):
print(f"Got invalid command '{img_cond_path}'\n{usage}")
print(usage)
continue
if img_cond_path == "":
break
if not os.path.isfile(img_cond_path) or not img_cond_path.lower().endswith(
(".jpg", ".jpeg", ".png", ".webp")
):
print(f"File '{img_cond_path}' does not exist or is not a valid image file")
continue
options.img_cond_path = img_cond_path
break
return options
@torch.inference_mode()
def main(
name: str = "flux-dev",
width: int = 1360,
height: int = 768,
seed: int | None = None,
device: str = "cuda" if torch.cuda.is_available() else "cpu",
num_steps: int | None = None,
loop: bool = False,
guidance: float = 2.5,
offload: bool = False,
output_dir: str = "output",
add_sampling_metadata: bool = True,
img_cond_path: str = "assets/robot.webp",
track_usage: bool = False,
):
"""
Sample the flux model. Either interactively (set `--loop`) or run for a
single image.
Args:
name: Name of the base model to use (either 'flux-dev' or 'flux-schnell')
height: height of the sample in pixels (should be a multiple of 16)
width: width of the sample in pixels (should be a multiple of 16)
seed: Set a seed for sampling
device: Pytorch device
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
loop: start an interactive session and sample multiple times
guidance: guidance value used for guidance distillation
offload: offload models to CPU when not in use
output_dir: where to save the output images
add_sampling_metadata: Add the prompt to the image Exif metadata
img_cond_path: path to conditioning image (jpeg/png/webp)
track_usage: track usage of the model for licensing purposes
"""
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)
if name not in (available := ["flux-dev", "flux-schnell"]):
raise ValueError(f"Got unknown model name: {name}, chose from {available}")
torch_device = torch.device(device)
if num_steps is None:
num_steps = 4 if name == "flux-schnell" else 50
output_name = os.path.join(output_dir, "img_{idx}.jpg")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
idx = 0
else:
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
if len(fns) > 0:
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
else:
idx = 0
# init all components
t5 = load_t5(torch_device, max_length=256 if name == "flux-schnell" else 512)
clip = load_clip(torch_device)
model = load_flow_model(name, device="cpu" if offload else torch_device)
ae = load_ae(name, device="cpu" if offload else torch_device)
# Download and initialize the Redux adapter
redux_path = str(
get_checkpoint_path("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors", "FLUX_REDUX")
)
img_embedder = ReduxImageEncoder(torch_device, redux_path=redux_path)
rng = torch.Generator(device="cpu")
prompt = ""
opts = SamplingOptions(
prompt=prompt,
width=width,
height=height,
num_steps=num_steps,
guidance=guidance,
seed=seed,
img_cond_path=img_cond_path,
)
if loop:
opts = parse_prompt(opts)
opts = parse_img_cond_path(opts)
while opts is not None:
if opts.seed is None:
opts.seed = rng.seed()
print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
t0 = time.perf_counter()
# prepare input
x = get_noise(
1,
opts.height,
opts.width,
device=torch_device,
dtype=torch.bfloat16,
seed=opts.seed,
)
opts.seed = None
if offload:
ae = ae.cpu()
torch.cuda.empty_cache()
t5, clip = t5.to(torch_device), clip.to(torch_device)
inp = prepare_redux(
t5,
clip,
x,
prompt=opts.prompt,
encoder=img_embedder,
img_cond_path=opts.img_cond_path,
)
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
# offload TEs to CPU, load model to gpu
if offload:
t5, clip = t5.cpu(), clip.cpu()
torch.cuda.empty_cache()
model = model.to(torch_device)
# denoise initial noise
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
# offload model, load autoencoder to gpu
if offload:
model.cpu()
torch.cuda.empty_cache()
ae.decoder.to(x.device)
# decode latents to pixel space
x = unpack(x.float(), opts.height, opts.width)
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
x = ae.decode(x)
if torch.cuda.is_available():
torch.cuda.synchronize()
t1 = time.perf_counter()
print(f"Done in {t1 - t0:.1f}s")
idx = save_image(
nsfw_classifier, name, output_name, idx, x, add_sampling_metadata, prompt, track_usage=track_usage
)
if loop:
print("-" * 80)
opts = parse_prompt(opts)
opts = parse_img_cond_path(opts)
else:
opts = None
if __name__ == "__main__":
Fire(main)