mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 14:16:57 +00:00
369 lines
13 KiB
Python
369 lines
13 KiB
Python
import os
|
|
import re
|
|
import time
|
|
from dataclasses import dataclass
|
|
from glob import iglob
|
|
|
|
import torch
|
|
from fire import Fire
|
|
|
|
from flux.content_filters import PixtralContentFilter
|
|
from flux.sampling import denoise, get_schedule, prepare_kontext, unpack
|
|
from flux.util import (
|
|
aspect_ratio_to_height_width,
|
|
check_onnx_access_for_trt,
|
|
load_ae,
|
|
load_clip,
|
|
load_flow_model,
|
|
load_t5,
|
|
save_image,
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class SamplingOptions:
|
|
prompt: str
|
|
width: int | None
|
|
height: int | None
|
|
num_steps: int
|
|
guidance: float
|
|
seed: int | None
|
|
img_cond_path: str
|
|
|
|
|
|
def parse_prompt(options: SamplingOptions) -> SamplingOptions | None:
|
|
user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n"
|
|
usage = (
|
|
"Usage: Either write your prompt directly, leave this field empty "
|
|
"to repeat the prompt or write a command starting with a slash:\n"
|
|
"- '/ar <width>:<height>' will set the aspect ratio of the generated image\n"
|
|
"- '/s <seed>' sets the next seed\n"
|
|
"- '/g <guidance>' sets the guidance (flux-dev only)\n"
|
|
"- '/n <steps>' sets the number of steps\n"
|
|
"- '/q' to quit"
|
|
)
|
|
|
|
while (prompt := input(user_question)).startswith("/"):
|
|
if prompt.startswith("/ar"):
|
|
if prompt.count(" ") != 1:
|
|
print(f"Got invalid command '{prompt}'\n{usage}")
|
|
continue
|
|
_, ratio_prompt = prompt.split()
|
|
if ratio_prompt == "auto":
|
|
options.width = None
|
|
options.height = None
|
|
print("Setting resolution to input image resolution.")
|
|
else:
|
|
options.width, options.height = aspect_ratio_to_height_width(ratio_prompt)
|
|
print(f"Setting resolution to {options.width} x {options.height}.")
|
|
elif prompt.startswith("/h"):
|
|
if prompt.count(" ") != 1:
|
|
print(f"Got invalid command '{prompt}'\n{usage}")
|
|
continue
|
|
_, height = prompt.split()
|
|
if height == "auto":
|
|
options.height = None
|
|
else:
|
|
options.height = 16 * (int(height) // 16)
|
|
if options.height is not None and options.width is not None:
|
|
print(
|
|
f"Setting resolution to {options.width} x {options.height} "
|
|
f"({options.height * options.width / 1e6:.2f}MP)"
|
|
)
|
|
else:
|
|
print(f"Setting resolution to {options.width} x {options.height}.")
|
|
elif prompt.startswith("/g"):
|
|
if prompt.count(" ") != 1:
|
|
print(f"Got invalid command '{prompt}'\n{usage}")
|
|
continue
|
|
_, guidance = prompt.split()
|
|
options.guidance = float(guidance)
|
|
print(f"Setting guidance to {options.guidance}")
|
|
elif prompt.startswith("/s"):
|
|
if prompt.count(" ") != 1:
|
|
print(f"Got invalid command '{prompt}'\n{usage}")
|
|
continue
|
|
_, seed = prompt.split()
|
|
options.seed = int(seed)
|
|
print(f"Setting seed to {options.seed}")
|
|
elif prompt.startswith("/n"):
|
|
if prompt.count(" ") != 1:
|
|
print(f"Got invalid command '{prompt}'\n{usage}")
|
|
continue
|
|
_, steps = prompt.split()
|
|
options.num_steps = int(steps)
|
|
print(f"Setting number of steps to {options.num_steps}")
|
|
elif prompt.startswith("/q"):
|
|
print("Quitting")
|
|
return None
|
|
else:
|
|
if not prompt.startswith("/h"):
|
|
print(f"Got invalid command '{prompt}'\n{usage}")
|
|
print(usage)
|
|
if prompt != "":
|
|
options.prompt = prompt
|
|
return options
|
|
|
|
|
|
def parse_img_cond_path(options: SamplingOptions | None) -> SamplingOptions | None:
|
|
if options is None:
|
|
return None
|
|
|
|
user_question = "Next input image (write /h for help, /q to quit and leave empty to repeat):\n"
|
|
usage = (
|
|
"Usage: Either write a path to an image directly, leave this field empty "
|
|
"to repeat the last input image or write a command starting with a slash:\n"
|
|
"- '/q' to quit\n\n"
|
|
"The input image will be edited by FLUX.1 Kontext creating a new image based"
|
|
"on your instruction prompt."
|
|
)
|
|
|
|
while True:
|
|
img_cond_path = input(user_question)
|
|
|
|
if img_cond_path.startswith("/"):
|
|
if img_cond_path.startswith("/q"):
|
|
print("Quitting")
|
|
return None
|
|
else:
|
|
if not img_cond_path.startswith("/h"):
|
|
print(f"Got invalid command '{img_cond_path}'\n{usage}")
|
|
print(usage)
|
|
continue
|
|
|
|
if img_cond_path == "":
|
|
break
|
|
|
|
if not os.path.isfile(img_cond_path) or not img_cond_path.lower().endswith(
|
|
(".jpg", ".jpeg", ".png", ".webp")
|
|
):
|
|
print(f"File '{img_cond_path}' does not exist or is not a valid image file")
|
|
continue
|
|
|
|
options.img_cond_path = img_cond_path
|
|
break
|
|
|
|
return options
|
|
|
|
|
|
@torch.inference_mode()
|
|
def main(
|
|
name: str = "flux-dev-kontext",
|
|
aspect_ratio: str | None = None,
|
|
seed: int | None = None,
|
|
prompt: str = "replace the logo with the text 'Black Forest Labs'",
|
|
device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
|
num_steps: int = 30,
|
|
loop: bool = False,
|
|
guidance: float = 2.5,
|
|
offload: bool = False,
|
|
output_dir: str = "output",
|
|
add_sampling_metadata: bool = True,
|
|
img_cond_path: str = "assets/cup.png",
|
|
trt: bool = False,
|
|
trt_transformer_precision: str = "bf16",
|
|
track_usage: bool = False,
|
|
):
|
|
"""
|
|
Sample the flux model. Either interactively (set `--loop`) or run for a
|
|
single image.
|
|
|
|
Args:
|
|
height: height of the sample in pixels (should be a multiple of 16), None
|
|
defaults to the size of the conditioning
|
|
width: width of the sample in pixels (should be a multiple of 16), None
|
|
defaults to the size of the conditioning
|
|
seed: Set a seed for sampling
|
|
output_name: where to save the output image, `{idx}` will be replaced
|
|
by the index of the sample
|
|
prompt: Prompt used for sampling
|
|
device: Pytorch device
|
|
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
|
|
loop: start an interactive session and sample multiple times
|
|
guidance: guidance value used for guidance distillation
|
|
add_sampling_metadata: Add the prompt to the image Exif metadata
|
|
img_cond_path: path to conditioning image (jpeg/png/webp)
|
|
trt: use TensorRT backend for optimized inference
|
|
track_usage: track usage of the model for licensing purposes
|
|
"""
|
|
assert name == "flux-dev-kontext", f"Got unknown model name: {name}"
|
|
|
|
torch_device = torch.device(device)
|
|
|
|
output_name = os.path.join(output_dir, "img_{idx}.jpg")
|
|
if not os.path.exists(output_dir):
|
|
os.makedirs(output_dir)
|
|
idx = 0
|
|
else:
|
|
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
|
|
if len(fns) > 0:
|
|
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
|
|
else:
|
|
idx = 0
|
|
|
|
if aspect_ratio is None:
|
|
width = None
|
|
height = None
|
|
else:
|
|
width, height = aspect_ratio_to_height_width(aspect_ratio)
|
|
|
|
if not trt:
|
|
t5 = load_t5(torch_device, max_length=512)
|
|
clip = load_clip(torch_device)
|
|
model = load_flow_model(name, device="cpu" if offload else torch_device)
|
|
else:
|
|
# lazy import to make install optional
|
|
from flux.trt.trt_manager import ModuleName, TRTManager
|
|
|
|
# Check if we need ONNX model access (which requires authentication for FLUX models)
|
|
onnx_dir = check_onnx_access_for_trt(name, trt_transformer_precision)
|
|
|
|
trt_ctx_manager = TRTManager(
|
|
trt_transformer_precision=trt_transformer_precision,
|
|
trt_t5_precision=os.environ.get("TRT_T5_PRECISION", "bf16"),
|
|
)
|
|
engines = trt_ctx_manager.load_engines(
|
|
model_name=name,
|
|
module_names={
|
|
ModuleName.CLIP,
|
|
ModuleName.TRANSFORMER,
|
|
ModuleName.T5,
|
|
},
|
|
engine_dir=os.environ.get("TRT_ENGINE_DIR", "./engines"),
|
|
custom_onnx_paths=onnx_dir or os.environ.get("CUSTOM_ONNX_PATHS", ""),
|
|
trt_image_height=height,
|
|
trt_image_width=width,
|
|
trt_batch_size=1,
|
|
trt_timing_cache=os.getenv("TRT_TIMING_CACHE_FILE", None),
|
|
trt_static_batch=False,
|
|
trt_static_shape=False,
|
|
)
|
|
|
|
model = engines[ModuleName.TRANSFORMER].to(device="cpu" if offload else torch_device)
|
|
clip = engines[ModuleName.CLIP].to(torch_device)
|
|
t5 = engines[ModuleName.T5].to(device="cpu" if offload else torch_device)
|
|
|
|
ae = load_ae(name, device="cpu" if offload else torch_device)
|
|
content_filter = PixtralContentFilter(torch.device("cpu"))
|
|
|
|
rng = torch.Generator(device="cpu")
|
|
opts = SamplingOptions(
|
|
prompt=prompt,
|
|
width=width,
|
|
height=height,
|
|
num_steps=num_steps,
|
|
guidance=guidance,
|
|
seed=seed,
|
|
img_cond_path=img_cond_path,
|
|
)
|
|
|
|
if loop:
|
|
opts = parse_prompt(opts)
|
|
opts = parse_img_cond_path(opts)
|
|
|
|
while opts is not None:
|
|
if opts.seed is None:
|
|
opts.seed = rng.seed()
|
|
print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
|
|
t0 = time.perf_counter()
|
|
|
|
if content_filter.test_txt(opts.prompt):
|
|
print("Your prompt has been automatically flagged. Please choose another prompt.")
|
|
if loop:
|
|
print("-" * 80)
|
|
opts = parse_prompt(opts)
|
|
opts = parse_img_cond_path(opts)
|
|
else:
|
|
opts = None
|
|
continue
|
|
if content_filter.test_image(opts.img_cond_path):
|
|
print("Your input image has been automatically flagged. Please choose another image.")
|
|
if loop:
|
|
print("-" * 80)
|
|
opts = parse_prompt(opts)
|
|
opts = parse_img_cond_path(opts)
|
|
else:
|
|
opts = None
|
|
continue
|
|
|
|
if offload:
|
|
t5, clip, ae = t5.to(torch_device), clip.to(torch_device), ae.to(torch_device)
|
|
inp, height, width = prepare_kontext(
|
|
t5=t5,
|
|
clip=clip,
|
|
prompt=opts.prompt,
|
|
ae=ae,
|
|
img_cond_path=opts.img_cond_path,
|
|
target_width=opts.width,
|
|
target_height=opts.height,
|
|
bs=1,
|
|
seed=opts.seed,
|
|
device=torch_device,
|
|
)
|
|
from safetensors.torch import save_file
|
|
|
|
save_file({k: v.cpu().contiguous() for k, v in inp.items()}, "output/noise.sft")
|
|
inp.pop("img_cond_orig")
|
|
opts.seed = None
|
|
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
|
|
|
|
# offload TEs and AE to CPU, load model to gpu
|
|
if offload:
|
|
t5, clip, ae = t5.cpu(), clip.cpu(), ae.cpu()
|
|
torch.cuda.empty_cache()
|
|
model = model.to(torch_device)
|
|
|
|
# denoise initial noise
|
|
t00 = time.time()
|
|
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
|
|
torch.cuda.synchronize()
|
|
t01 = time.time()
|
|
print(f"Denoising took {t01 - t00:.3f}s")
|
|
|
|
# offload model, load autoencoder to gpu
|
|
if offload:
|
|
model.cpu()
|
|
torch.cuda.empty_cache()
|
|
ae.decoder.to(x.device)
|
|
|
|
# decode latents to pixel space
|
|
x = unpack(x.float(), height, width)
|
|
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
|
|
ae_dev_t0 = time.perf_counter()
|
|
x = ae.decode(x)
|
|
torch.cuda.synchronize()
|
|
ae_dev_t1 = time.perf_counter()
|
|
print(f"AE decode took {ae_dev_t1 - ae_dev_t0:.3f}s")
|
|
|
|
if content_filter.test_image(x.cpu()):
|
|
print(
|
|
"Your output image has been automatically flagged. Choose another prompt/image or try again."
|
|
)
|
|
if loop:
|
|
print("-" * 80)
|
|
opts = parse_prompt(opts)
|
|
opts = parse_img_cond_path(opts)
|
|
else:
|
|
opts = None
|
|
continue
|
|
|
|
if torch.cuda.is_available():
|
|
torch.cuda.synchronize()
|
|
t1 = time.perf_counter()
|
|
print(f"Done in {t1 - t0:.1f}s")
|
|
|
|
idx = save_image(
|
|
None, name, output_name, idx, x, add_sampling_metadata, prompt, track_usage=track_usage
|
|
)
|
|
|
|
if loop:
|
|
print("-" * 80)
|
|
opts = parse_prompt(opts)
|
|
opts = parse_img_cond_path(opts)
|
|
else:
|
|
opts = None
|
|
|
|
|
|
if __name__ == "__main__":
|
|
Fire(main)
|