mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-03 22:04:21 +00:00 
			
		
		
		
	* isort the code * format the code * Add yapf config file * Remove torch cuda memory profiler
		
			
				
	
	
		
			251 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			251 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
						|
import torch
 | 
						|
import torch.cuda.amp as amp
 | 
						|
import torch.nn as nn
 | 
						|
from diffusers.configuration_utils import register_to_config
 | 
						|
 | 
						|
from .model import WanAttentionBlock, WanModel, sinusoidal_embedding_1d
 | 
						|
 | 
						|
 | 
						|
class VaceWanAttentionBlock(WanAttentionBlock):
 | 
						|
 | 
						|
    def __init__(self,
 | 
						|
                 cross_attn_type,
 | 
						|
                 dim,
 | 
						|
                 ffn_dim,
 | 
						|
                 num_heads,
 | 
						|
                 window_size=(-1, -1),
 | 
						|
                 qk_norm=True,
 | 
						|
                 cross_attn_norm=False,
 | 
						|
                 eps=1e-6,
 | 
						|
                 block_id=0):
 | 
						|
        super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size,
 | 
						|
                         qk_norm, cross_attn_norm, eps)
 | 
						|
        self.block_id = block_id
 | 
						|
        if block_id == 0:
 | 
						|
            self.before_proj = nn.Linear(self.dim, self.dim)
 | 
						|
            nn.init.zeros_(self.before_proj.weight)
 | 
						|
            nn.init.zeros_(self.before_proj.bias)
 | 
						|
        self.after_proj = nn.Linear(self.dim, self.dim)
 | 
						|
        nn.init.zeros_(self.after_proj.weight)
 | 
						|
        nn.init.zeros_(self.after_proj.bias)
 | 
						|
 | 
						|
    def forward(self, c, x, **kwargs):
 | 
						|
        if self.block_id == 0:
 | 
						|
            c = self.before_proj(c) + x
 | 
						|
 | 
						|
        c = super().forward(c, **kwargs)
 | 
						|
        c_skip = self.after_proj(c)
 | 
						|
        return c, c_skip
 | 
						|
 | 
						|
 | 
						|
class BaseWanAttentionBlock(WanAttentionBlock):
 | 
						|
 | 
						|
    def __init__(self,
 | 
						|
                 cross_attn_type,
 | 
						|
                 dim,
 | 
						|
                 ffn_dim,
 | 
						|
                 num_heads,
 | 
						|
                 window_size=(-1, -1),
 | 
						|
                 qk_norm=True,
 | 
						|
                 cross_attn_norm=False,
 | 
						|
                 eps=1e-6,
 | 
						|
                 block_id=None):
 | 
						|
        super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size,
 | 
						|
                         qk_norm, cross_attn_norm, eps)
 | 
						|
        self.block_id = block_id
 | 
						|
 | 
						|
    def forward(self, x, hints, context_scale=1.0, **kwargs):
 | 
						|
        x = super().forward(x, **kwargs)
 | 
						|
        if self.block_id is not None:
 | 
						|
            x = x + hints[self.block_id] * context_scale
 | 
						|
        return x
 | 
						|
 | 
						|
 | 
						|
class VaceWanModel(WanModel):
 | 
						|
 | 
						|
    @register_to_config
 | 
						|
    def __init__(self,
 | 
						|
                 vace_layers=None,
 | 
						|
                 vace_in_dim=None,
 | 
						|
                 model_type='vace',
 | 
						|
                 patch_size=(1, 2, 2),
 | 
						|
                 text_len=512,
 | 
						|
                 in_dim=16,
 | 
						|
                 dim=2048,
 | 
						|
                 ffn_dim=8192,
 | 
						|
                 freq_dim=256,
 | 
						|
                 text_dim=4096,
 | 
						|
                 out_dim=16,
 | 
						|
                 num_heads=16,
 | 
						|
                 num_layers=32,
 | 
						|
                 window_size=(-1, -1),
 | 
						|
                 qk_norm=True,
 | 
						|
                 cross_attn_norm=True,
 | 
						|
                 eps=1e-6):
 | 
						|
        super().__init__(model_type, patch_size, text_len, in_dim, dim, ffn_dim,
 | 
						|
                         freq_dim, text_dim, out_dim, num_heads, num_layers,
 | 
						|
                         window_size, qk_norm, cross_attn_norm, eps)
 | 
						|
 | 
						|
        self.vace_layers = [i for i in range(0, self.num_layers, 2)
 | 
						|
                           ] if vace_layers is None else vace_layers
 | 
						|
        self.vace_in_dim = self.in_dim if vace_in_dim is None else vace_in_dim
 | 
						|
 | 
						|
        assert 0 in self.vace_layers
 | 
						|
        self.vace_layers_mapping = {
 | 
						|
            i: n for n, i in enumerate(self.vace_layers)
 | 
						|
        }
 | 
						|
 | 
						|
        # blocks
 | 
						|
        self.blocks = nn.ModuleList([
 | 
						|
            BaseWanAttentionBlock(
 | 
						|
                't2v_cross_attn',
 | 
						|
                self.dim,
 | 
						|
                self.ffn_dim,
 | 
						|
                self.num_heads,
 | 
						|
                self.window_size,
 | 
						|
                self.qk_norm,
 | 
						|
                self.cross_attn_norm,
 | 
						|
                self.eps,
 | 
						|
                block_id=self.vace_layers_mapping[i]
 | 
						|
                if i in self.vace_layers else None)
 | 
						|
            for i in range(self.num_layers)
 | 
						|
        ])
 | 
						|
 | 
						|
        # vace blocks
 | 
						|
        self.vace_blocks = nn.ModuleList([
 | 
						|
            VaceWanAttentionBlock(
 | 
						|
                't2v_cross_attn',
 | 
						|
                self.dim,
 | 
						|
                self.ffn_dim,
 | 
						|
                self.num_heads,
 | 
						|
                self.window_size,
 | 
						|
                self.qk_norm,
 | 
						|
                self.cross_attn_norm,
 | 
						|
                self.eps,
 | 
						|
                block_id=i) for i in self.vace_layers
 | 
						|
        ])
 | 
						|
 | 
						|
        # vace patch embeddings
 | 
						|
        self.vace_patch_embedding = nn.Conv3d(
 | 
						|
            self.vace_in_dim,
 | 
						|
            self.dim,
 | 
						|
            kernel_size=self.patch_size,
 | 
						|
            stride=self.patch_size)
 | 
						|
 | 
						|
    def forward_vace(self, x, vace_context, seq_len, kwargs):
 | 
						|
        # embeddings
 | 
						|
        c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context]
 | 
						|
        c = [u.flatten(2).transpose(1, 2) for u in c]
 | 
						|
        c = torch.cat([
 | 
						|
            torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
 | 
						|
                      dim=1) for u in c
 | 
						|
        ])
 | 
						|
 | 
						|
        # arguments
 | 
						|
        new_kwargs = dict(x=x)
 | 
						|
        new_kwargs.update(kwargs)
 | 
						|
 | 
						|
        hints = []
 | 
						|
        for block in self.vace_blocks:
 | 
						|
            c, c_skip = block(c, **new_kwargs)
 | 
						|
            hints.append(c_skip)
 | 
						|
        return hints
 | 
						|
 | 
						|
    def forward(
 | 
						|
        self,
 | 
						|
        x,
 | 
						|
        t,
 | 
						|
        vace_context,
 | 
						|
        context,
 | 
						|
        seq_len,
 | 
						|
        vace_context_scale=1.0,
 | 
						|
        clip_fea=None,
 | 
						|
        y=None,
 | 
						|
    ):
 | 
						|
        r"""
 | 
						|
        Forward pass through the diffusion model
 | 
						|
 | 
						|
        Args:
 | 
						|
            x (List[Tensor]):
 | 
						|
                List of input video tensors, each with shape [C_in, F, H, W]
 | 
						|
            t (Tensor):
 | 
						|
                Diffusion timesteps tensor of shape [B]
 | 
						|
            context (List[Tensor]):
 | 
						|
                List of text embeddings each with shape [L, C]
 | 
						|
            seq_len (`int`):
 | 
						|
                Maximum sequence length for positional encoding
 | 
						|
            clip_fea (Tensor, *optional*):
 | 
						|
                CLIP image features for image-to-video mode
 | 
						|
            y (List[Tensor], *optional*):
 | 
						|
                Conditional video inputs for image-to-video mode, same shape as x
 | 
						|
 | 
						|
        Returns:
 | 
						|
            List[Tensor]:
 | 
						|
                List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
 | 
						|
        """
 | 
						|
        # if self.model_type == 'i2v':
 | 
						|
        #     assert clip_fea is not None and y is not None
 | 
						|
        # params
 | 
						|
        device = self.patch_embedding.weight.device
 | 
						|
        if self.freqs.device != device:
 | 
						|
            self.freqs = self.freqs.to(device)
 | 
						|
 | 
						|
        # if y is not None:
 | 
						|
        #     x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
 | 
						|
 | 
						|
        # embeddings
 | 
						|
        x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
 | 
						|
        grid_sizes = torch.stack(
 | 
						|
            [torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
 | 
						|
        x = [u.flatten(2).transpose(1, 2) for u in x]
 | 
						|
        seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
 | 
						|
        assert seq_lens.max() <= seq_len
 | 
						|
        x = torch.cat([
 | 
						|
            torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
 | 
						|
                      dim=1) for u in x
 | 
						|
        ])
 | 
						|
 | 
						|
        # time embeddings
 | 
						|
        with amp.autocast(dtype=torch.float32):
 | 
						|
            e = self.time_embedding(
 | 
						|
                sinusoidal_embedding_1d(self.freq_dim, t).float())
 | 
						|
            e0 = self.time_projection(e).unflatten(1, (6, self.dim))
 | 
						|
            assert e.dtype == torch.float32 and e0.dtype == torch.float32
 | 
						|
 | 
						|
        # context
 | 
						|
        context_lens = None
 | 
						|
        context = self.text_embedding(
 | 
						|
            torch.stack([
 | 
						|
                torch.cat(
 | 
						|
                    [u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
 | 
						|
                for u in context
 | 
						|
            ]))
 | 
						|
 | 
						|
        # if clip_fea is not None:
 | 
						|
        #     context_clip = self.img_emb(clip_fea)  # bs x 257 x dim
 | 
						|
        #     context = torch.concat([context_clip, context], dim=1)
 | 
						|
 | 
						|
        # arguments
 | 
						|
        kwargs = dict(
 | 
						|
            e=e0,
 | 
						|
            seq_lens=seq_lens,
 | 
						|
            grid_sizes=grid_sizes,
 | 
						|
            freqs=self.freqs,
 | 
						|
            context=context,
 | 
						|
            context_lens=context_lens)
 | 
						|
 | 
						|
        hints = self.forward_vace(x, vace_context, seq_len, kwargs)
 | 
						|
        kwargs['hints'] = hints
 | 
						|
        kwargs['context_scale'] = vace_context_scale
 | 
						|
 | 
						|
        for block in self.blocks:
 | 
						|
            x = block(x, **kwargs)
 | 
						|
 | 
						|
        # head
 | 
						|
        x = self.head(x, e)
 | 
						|
 | 
						|
        # unpatchify
 | 
						|
        x = self.unpatchify(x, grid_sizes)
 | 
						|
        return [u.float() for u in x]
 |