mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 14:16:57 +00:00
55 lines
1.9 KiB
Python
55 lines
1.9 KiB
Python
import torch
|
|
from einops import rearrange
|
|
from torch import Tensor
|
|
from wan.modules.attention import pay_attention
|
|
|
|
|
|
def attention(qkv_list, pe: Tensor) -> Tensor:
|
|
q, k, v = qkv_list
|
|
qkv_list.clear()
|
|
q_list = [q]
|
|
q = None
|
|
q = apply_rope_(q_list, pe)
|
|
k_list = [k]
|
|
k = None
|
|
k = apply_rope_(k_list, pe)
|
|
qkv_list = [q.transpose(1,2), k.transpose(1,2) ,v.transpose(1,2)]
|
|
del q,k, v
|
|
x = pay_attention(qkv_list).transpose(1,2)
|
|
# x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
|
|
x = rearrange(x, "B H L D -> B L (H D)")
|
|
|
|
return x
|
|
|
|
|
|
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
|
|
assert dim % 2 == 0
|
|
scale = torch.arange(0, dim, 2, dtype=pos.dtype, device=pos.device) / dim
|
|
omega = 1.0 / (theta**scale)
|
|
out = torch.einsum("...n,d->...nd", pos, omega)
|
|
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
|
|
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
|
|
return out.float()
|
|
|
|
|
|
def apply_rope_(q_list, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
|
|
xq= q_list[0]
|
|
xqshape = xq.shape
|
|
xqdtype= xq.dtype
|
|
q_list.clear()
|
|
xq = xq.float().reshape(*xqshape[:-1], -1, 1, 2)
|
|
xq_out = freqs_cis[..., 0] * xq[..., 0]
|
|
xq = freqs_cis[..., 1] * xq[..., 1]
|
|
|
|
xq_out.add_(xq)
|
|
# xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
|
|
|
return xq_out.reshape(*xqshape).to(xqdtype)
|
|
|
|
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
|
|
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
|
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
|
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
|
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
|
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|