mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			391 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			391 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import os
 | 
						|
import re
 | 
						|
import time
 | 
						|
from dataclasses import dataclass
 | 
						|
from glob import iglob
 | 
						|
 | 
						|
import torch
 | 
						|
from fire import Fire
 | 
						|
from transformers import pipeline
 | 
						|
 | 
						|
from flux.modules.image_embedders import CannyImageEncoder, DepthImageEncoder
 | 
						|
from flux.sampling import denoise, get_noise, get_schedule, prepare_control, unpack
 | 
						|
from flux.util import configs, load_ae, load_clip, load_flow_model, load_t5, save_image
 | 
						|
 | 
						|
 | 
						|
@dataclass
 | 
						|
class SamplingOptions:
 | 
						|
    prompt: str
 | 
						|
    width: int
 | 
						|
    height: int
 | 
						|
    num_steps: int
 | 
						|
    guidance: float
 | 
						|
    seed: int | None
 | 
						|
    img_cond_path: str
 | 
						|
    lora_scale: float | None
 | 
						|
 | 
						|
 | 
						|
def parse_prompt(options: SamplingOptions) -> SamplingOptions | None:
 | 
						|
    user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n"
 | 
						|
    usage = (
 | 
						|
        "Usage: Either write your prompt directly, leave this field empty "
 | 
						|
        "to repeat the prompt or write a command starting with a slash:\n"
 | 
						|
        "- '/w <width>' will set the width of the generated image\n"
 | 
						|
        "- '/h <height>' will set the height of the generated image\n"
 | 
						|
        "- '/s <seed>' sets the next seed\n"
 | 
						|
        "- '/g <guidance>' sets the guidance (flux-dev only)\n"
 | 
						|
        "- '/n <steps>' sets the number of steps\n"
 | 
						|
        "- '/q' to quit"
 | 
						|
    )
 | 
						|
 | 
						|
    while (prompt := input(user_question)).startswith("/"):
 | 
						|
        if prompt.startswith("/w"):
 | 
						|
            if prompt.count(" ") != 1:
 | 
						|
                print(f"Got invalid command '{prompt}'\n{usage}")
 | 
						|
                continue
 | 
						|
            _, width = prompt.split()
 | 
						|
            options.width = 16 * (int(width) // 16)
 | 
						|
            print(
 | 
						|
                f"Setting resolution to {options.width} x {options.height} "
 | 
						|
                f"({options.height * options.width / 1e6:.2f}MP)"
 | 
						|
            )
 | 
						|
        elif prompt.startswith("/h"):
 | 
						|
            if prompt.count(" ") != 1:
 | 
						|
                print(f"Got invalid command '{prompt}'\n{usage}")
 | 
						|
                continue
 | 
						|
            _, height = prompt.split()
 | 
						|
            options.height = 16 * (int(height) // 16)
 | 
						|
            print(
 | 
						|
                f"Setting resolution to {options.width} x {options.height} "
 | 
						|
                f"({options.height * options.width / 1e6:.2f}MP)"
 | 
						|
            )
 | 
						|
        elif prompt.startswith("/g"):
 | 
						|
            if prompt.count(" ") != 1:
 | 
						|
                print(f"Got invalid command '{prompt}'\n{usage}")
 | 
						|
                continue
 | 
						|
            _, guidance = prompt.split()
 | 
						|
            options.guidance = float(guidance)
 | 
						|
            print(f"Setting guidance to {options.guidance}")
 | 
						|
        elif prompt.startswith("/s"):
 | 
						|
            if prompt.count(" ") != 1:
 | 
						|
                print(f"Got invalid command '{prompt}'\n{usage}")
 | 
						|
                continue
 | 
						|
            _, seed = prompt.split()
 | 
						|
            options.seed = int(seed)
 | 
						|
            print(f"Setting seed to {options.seed}")
 | 
						|
        elif prompt.startswith("/n"):
 | 
						|
            if prompt.count(" ") != 1:
 | 
						|
                print(f"Got invalid command '{prompt}'\n{usage}")
 | 
						|
                continue
 | 
						|
            _, steps = prompt.split()
 | 
						|
            options.num_steps = int(steps)
 | 
						|
            print(f"Setting number of steps to {options.num_steps}")
 | 
						|
        elif prompt.startswith("/q"):
 | 
						|
            print("Quitting")
 | 
						|
            return None
 | 
						|
        else:
 | 
						|
            if not prompt.startswith("/h"):
 | 
						|
                print(f"Got invalid command '{prompt}'\n{usage}")
 | 
						|
            print(usage)
 | 
						|
    if prompt != "":
 | 
						|
        options.prompt = prompt
 | 
						|
    return options
 | 
						|
 | 
						|
 | 
						|
def parse_img_cond_path(options: SamplingOptions | None) -> SamplingOptions | None:
 | 
						|
    if options is None:
 | 
						|
        return None
 | 
						|
 | 
						|
    user_question = "Next conditioning image (write /h for help, /q to quit and leave empty to repeat):\n"
 | 
						|
    usage = (
 | 
						|
        "Usage: Either write your prompt directly, leave this field empty "
 | 
						|
        "to repeat the conditioning image or write a command starting with a slash:\n"
 | 
						|
        "- '/q' to quit"
 | 
						|
    )
 | 
						|
 | 
						|
    while True:
 | 
						|
        img_cond_path = input(user_question)
 | 
						|
 | 
						|
        if img_cond_path.startswith("/"):
 | 
						|
            if img_cond_path.startswith("/q"):
 | 
						|
                print("Quitting")
 | 
						|
                return None
 | 
						|
            else:
 | 
						|
                if not img_cond_path.startswith("/h"):
 | 
						|
                    print(f"Got invalid command '{img_cond_path}'\n{usage}")
 | 
						|
                print(usage)
 | 
						|
            continue
 | 
						|
 | 
						|
        if img_cond_path == "":
 | 
						|
            break
 | 
						|
 | 
						|
        if not os.path.isfile(img_cond_path) or not img_cond_path.lower().endswith(
 | 
						|
            (".jpg", ".jpeg", ".png", ".webp")
 | 
						|
        ):
 | 
						|
            print(f"File '{img_cond_path}' does not exist or is not a valid image file")
 | 
						|
            continue
 | 
						|
 | 
						|
        options.img_cond_path = img_cond_path
 | 
						|
        break
 | 
						|
 | 
						|
    return options
 | 
						|
 | 
						|
 | 
						|
def parse_lora_scale(options: SamplingOptions | None) -> tuple[SamplingOptions | None, bool]:
 | 
						|
    changed = False
 | 
						|
 | 
						|
    if options is None:
 | 
						|
        return None, changed
 | 
						|
 | 
						|
    user_question = "Next lora scale (write /h for help, /q to quit and leave empty to repeat):\n"
 | 
						|
    usage = (
 | 
						|
        "Usage: Either write your prompt directly, leave this field empty "
 | 
						|
        "to repeat the lora scale or write a command starting with a slash:\n"
 | 
						|
        "- '/q' to quit"
 | 
						|
    )
 | 
						|
 | 
						|
    while (prompt := input(user_question)).startswith("/"):
 | 
						|
        if prompt.startswith("/q"):
 | 
						|
            print("Quitting")
 | 
						|
            return None, changed
 | 
						|
        else:
 | 
						|
            if not prompt.startswith("/h"):
 | 
						|
                print(f"Got invalid command '{prompt}'\n{usage}")
 | 
						|
            print(usage)
 | 
						|
    if prompt != "":
 | 
						|
        options.lora_scale = float(prompt)
 | 
						|
        changed = True
 | 
						|
    return options, changed
 | 
						|
 | 
						|
 | 
						|
@torch.inference_mode()
 | 
						|
def main(
 | 
						|
    name: str,
 | 
						|
    width: int = 1024,
 | 
						|
    height: int = 1024,
 | 
						|
    seed: int | None = None,
 | 
						|
    prompt: str = "a robot made out of gold",
 | 
						|
    device: str = "cuda" if torch.cuda.is_available() else "cpu",
 | 
						|
    num_steps: int = 50,
 | 
						|
    loop: bool = False,
 | 
						|
    guidance: float | None = None,
 | 
						|
    offload: bool = False,
 | 
						|
    output_dir: str = "output",
 | 
						|
    add_sampling_metadata: bool = True,
 | 
						|
    img_cond_path: str = "assets/robot.webp",
 | 
						|
    lora_scale: float | None = 0.85,
 | 
						|
    trt: bool = False,
 | 
						|
    trt_transformer_precision: str = "bf16",
 | 
						|
    track_usage: bool = False,
 | 
						|
    **kwargs: dict | None,
 | 
						|
):
 | 
						|
    """
 | 
						|
    Sample the flux model. Either interactively (set `--loop`) or run for a
 | 
						|
    single image.
 | 
						|
 | 
						|
    Args:
 | 
						|
        height: height of the sample in pixels (should be a multiple of 16)
 | 
						|
        width: width of the sample in pixels (should be a multiple of 16)
 | 
						|
        seed: Set a seed for sampling
 | 
						|
        output_name: where to save the output image, `{idx}` will be replaced
 | 
						|
            by the index of the sample
 | 
						|
        prompt: Prompt used for sampling
 | 
						|
        device: Pytorch device
 | 
						|
        num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
 | 
						|
        loop: start an interactive session and sample multiple times
 | 
						|
        guidance: guidance value used for guidance distillation
 | 
						|
        add_sampling_metadata: Add the prompt to the image Exif metadata
 | 
						|
        img_cond_path: path to conditioning image (jpeg/png/webp)
 | 
						|
        trt: use TensorRT backend for optimized inference
 | 
						|
        trt_transformer_precision: specify transformer precision for inference
 | 
						|
        track_usage: track usage of the model for licensing purposes
 | 
						|
    """
 | 
						|
    nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)
 | 
						|
 | 
						|
    if "lora" in name:
 | 
						|
        assert not trt, "TRT does not support LORA"
 | 
						|
    assert name in [
 | 
						|
        "flux-dev-canny",
 | 
						|
        "flux-dev-depth",
 | 
						|
        "flux-dev-canny-lora",
 | 
						|
        "flux-dev-depth-lora",
 | 
						|
    ], f"Got unknown model name: {name}"
 | 
						|
 | 
						|
    if guidance is None:
 | 
						|
        if name in ["flux-dev-canny", "flux-dev-canny-lora"]:
 | 
						|
            guidance = 30.0
 | 
						|
        elif name in ["flux-dev-depth", "flux-dev-depth-lora"]:
 | 
						|
            guidance = 10.0
 | 
						|
        else:
 | 
						|
            raise NotImplementedError()
 | 
						|
 | 
						|
    if name not in configs:
 | 
						|
        available = ", ".join(configs.keys())
 | 
						|
        raise ValueError(f"Got unknown model name: {name}, chose from {available}")
 | 
						|
 | 
						|
    torch_device = torch.device(device)
 | 
						|
 | 
						|
    output_name = os.path.join(output_dir, "img_{idx}.jpg")
 | 
						|
    if not os.path.exists(output_dir):
 | 
						|
        os.makedirs(output_dir)
 | 
						|
        idx = 0
 | 
						|
    else:
 | 
						|
        fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
 | 
						|
        if len(fns) > 0:
 | 
						|
            idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
 | 
						|
        else:
 | 
						|
            idx = 0
 | 
						|
 | 
						|
    if name in ["flux-dev-depth", "flux-dev-depth-lora"]:
 | 
						|
        img_embedder = DepthImageEncoder(torch_device)
 | 
						|
    elif name in ["flux-dev-canny", "flux-dev-canny-lora"]:
 | 
						|
        img_embedder = CannyImageEncoder(torch_device)
 | 
						|
    else:
 | 
						|
        raise NotImplementedError()
 | 
						|
 | 
						|
    if not trt:
 | 
						|
        # init all components
 | 
						|
        t5 = load_t5(torch_device, max_length=512)
 | 
						|
        clip = load_clip(torch_device)
 | 
						|
        model = load_flow_model(name, device="cpu" if offload else torch_device)
 | 
						|
        ae = load_ae(name, device="cpu" if offload else torch_device)
 | 
						|
    else:
 | 
						|
        # lazy import to make install optional
 | 
						|
        from flux.trt.trt_manager import ModuleName, TRTManager
 | 
						|
 | 
						|
        trt_ctx_manager = TRTManager(
 | 
						|
            trt_transformer_precision=trt_transformer_precision,
 | 
						|
            trt_t5_precision=os.environ.get("TRT_T5_PRECISION", "bf16"),
 | 
						|
        )
 | 
						|
 | 
						|
        engines = trt_ctx_manager.load_engines(
 | 
						|
            model_name=name,
 | 
						|
            module_names={
 | 
						|
                ModuleName.CLIP,
 | 
						|
                ModuleName.TRANSFORMER,
 | 
						|
                ModuleName.T5,
 | 
						|
                ModuleName.VAE,
 | 
						|
                ModuleName.VAE_ENCODER,
 | 
						|
            },
 | 
						|
            engine_dir=os.environ.get("TRT_ENGINE_DIR", "./engines"),
 | 
						|
            custom_onnx_paths=os.environ.get("CUSTOM_ONNX_PATHS", ""),
 | 
						|
            trt_image_height=height,
 | 
						|
            trt_image_width=width,
 | 
						|
            trt_batch_size=1,
 | 
						|
            trt_static_batch=kwargs.get("static_batch", True),
 | 
						|
            trt_static_shape=kwargs.get("static_shape", True),
 | 
						|
        )
 | 
						|
 | 
						|
        ae = engines[ModuleName.VAE].to(device="cpu" if offload else torch_device)
 | 
						|
        model = engines[ModuleName.TRANSFORMER].to(device="cpu" if offload else torch_device)
 | 
						|
        clip = engines[ModuleName.CLIP].to(torch_device)
 | 
						|
        t5 = engines[ModuleName.T5].to(device="cpu" if offload else torch_device)
 | 
						|
 | 
						|
    # set lora scale
 | 
						|
    if "lora" in name and lora_scale is not None:
 | 
						|
        for _, module in model.named_modules():
 | 
						|
            if hasattr(module, "set_scale"):
 | 
						|
                module.set_scale(lora_scale)
 | 
						|
 | 
						|
    rng = torch.Generator(device="cpu")
 | 
						|
    opts = SamplingOptions(
 | 
						|
        prompt=prompt,
 | 
						|
        width=width,
 | 
						|
        height=height,
 | 
						|
        num_steps=num_steps,
 | 
						|
        guidance=guidance,
 | 
						|
        seed=seed,
 | 
						|
        img_cond_path=img_cond_path,
 | 
						|
        lora_scale=lora_scale,
 | 
						|
    )
 | 
						|
 | 
						|
    if loop:
 | 
						|
        opts = parse_prompt(opts)
 | 
						|
        opts = parse_img_cond_path(opts)
 | 
						|
        if "lora" in name:
 | 
						|
            opts, changed = parse_lora_scale(opts)
 | 
						|
            if changed:
 | 
						|
                # update the lora scale:
 | 
						|
                for _, module in model.named_modules():
 | 
						|
                    if hasattr(module, "set_scale"):
 | 
						|
                        module.set_scale(opts.lora_scale)
 | 
						|
 | 
						|
    while opts is not None:
 | 
						|
        if opts.seed is None:
 | 
						|
            opts.seed = rng.seed()
 | 
						|
        print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
 | 
						|
        t0 = time.perf_counter()
 | 
						|
 | 
						|
        # prepare input
 | 
						|
        x = get_noise(
 | 
						|
            1,
 | 
						|
            opts.height,
 | 
						|
            opts.width,
 | 
						|
            device=torch_device,
 | 
						|
            dtype=torch.bfloat16,
 | 
						|
            seed=opts.seed,
 | 
						|
        )
 | 
						|
        opts.seed = None
 | 
						|
        if offload:
 | 
						|
            t5, clip, ae = t5.to(torch_device), clip.to(torch_device), ae.to(torch_device)
 | 
						|
        inp = prepare_control(
 | 
						|
            t5,
 | 
						|
            clip,
 | 
						|
            x,
 | 
						|
            prompt=opts.prompt,
 | 
						|
            ae=ae,
 | 
						|
            encoder=img_embedder,
 | 
						|
            img_cond_path=opts.img_cond_path,
 | 
						|
        )
 | 
						|
        timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
 | 
						|
 | 
						|
        # offload TEs and AE to CPU, load model to gpu
 | 
						|
        if offload:
 | 
						|
            t5, clip, ae = t5.cpu(), clip.cpu(), ae.cpu()
 | 
						|
            torch.cuda.empty_cache()
 | 
						|
            model = model.to(torch_device)
 | 
						|
 | 
						|
        # denoise initial noise
 | 
						|
        x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
 | 
						|
 | 
						|
        # offload model, load autoencoder to gpu
 | 
						|
        if offload:
 | 
						|
            model.cpu()
 | 
						|
            torch.cuda.empty_cache()
 | 
						|
            ae.decoder.to(x.device)
 | 
						|
 | 
						|
        # decode latents to pixel space
 | 
						|
        x = unpack(x.float(), opts.height, opts.width)
 | 
						|
        with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
 | 
						|
            x = ae.decode(x)
 | 
						|
 | 
						|
        if torch.cuda.is_available():
 | 
						|
            torch.cuda.synchronize()
 | 
						|
        t1 = time.perf_counter()
 | 
						|
        print(f"Done in {t1 - t0:.1f}s")
 | 
						|
 | 
						|
        idx = save_image(
 | 
						|
            nsfw_classifier, name, output_name, idx, x, add_sampling_metadata, prompt, track_usage=track_usage
 | 
						|
        )
 | 
						|
 | 
						|
        if loop:
 | 
						|
            print("-" * 80)
 | 
						|
            opts = parse_prompt(opts)
 | 
						|
            opts = parse_img_cond_path(opts)
 | 
						|
            if "lora" in name:
 | 
						|
                opts, changed = parse_lora_scale(opts)
 | 
						|
                if changed:
 | 
						|
                    # update the lora scale:
 | 
						|
                    for _, module in model.named_modules():
 | 
						|
                        if hasattr(module, "set_scale"):
 | 
						|
                            module.set_scale(opts.lora_scale)
 | 
						|
        else:
 | 
						|
            opts = None
 | 
						|
 | 
						|
    if trt:
 | 
						|
        trt_ctx_manager.stop_runtime()
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    Fire(main)
 |