mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			369 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			369 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import os
 | 
						|
import re
 | 
						|
import time
 | 
						|
from dataclasses import dataclass
 | 
						|
from glob import iglob
 | 
						|
 | 
						|
import torch
 | 
						|
from fire import Fire
 | 
						|
 | 
						|
from flux.content_filters import PixtralContentFilter
 | 
						|
from flux.sampling import denoise, get_schedule, prepare_kontext, unpack
 | 
						|
from flux.util import (
 | 
						|
    aspect_ratio_to_height_width,
 | 
						|
    check_onnx_access_for_trt,
 | 
						|
    load_ae,
 | 
						|
    load_clip,
 | 
						|
    load_flow_model,
 | 
						|
    load_t5,
 | 
						|
    save_image,
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
@dataclass
 | 
						|
class SamplingOptions:
 | 
						|
    prompt: str
 | 
						|
    width: int | None
 | 
						|
    height: int | None
 | 
						|
    num_steps: int
 | 
						|
    guidance: float
 | 
						|
    seed: int | None
 | 
						|
    img_cond_path: str
 | 
						|
 | 
						|
 | 
						|
def parse_prompt(options: SamplingOptions) -> SamplingOptions | None:
 | 
						|
    user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n"
 | 
						|
    usage = (
 | 
						|
        "Usage: Either write your prompt directly, leave this field empty "
 | 
						|
        "to repeat the prompt or write a command starting with a slash:\n"
 | 
						|
        "- '/ar <width>:<height>' will set the aspect ratio of the generated image\n"
 | 
						|
        "- '/s <seed>' sets the next seed\n"
 | 
						|
        "- '/g <guidance>' sets the guidance (flux-dev only)\n"
 | 
						|
        "- '/n <steps>' sets the number of steps\n"
 | 
						|
        "- '/q' to quit"
 | 
						|
    )
 | 
						|
 | 
						|
    while (prompt := input(user_question)).startswith("/"):
 | 
						|
        if prompt.startswith("/ar"):
 | 
						|
            if prompt.count(" ") != 1:
 | 
						|
                print(f"Got invalid command '{prompt}'\n{usage}")
 | 
						|
                continue
 | 
						|
            _, ratio_prompt = prompt.split()
 | 
						|
            if ratio_prompt == "auto":
 | 
						|
                options.width = None
 | 
						|
                options.height = None
 | 
						|
                print("Setting resolution to input image resolution.")
 | 
						|
            else:
 | 
						|
                options.width, options.height = aspect_ratio_to_height_width(ratio_prompt)
 | 
						|
                print(f"Setting resolution to {options.width} x {options.height}.")
 | 
						|
        elif prompt.startswith("/h"):
 | 
						|
            if prompt.count(" ") != 1:
 | 
						|
                print(f"Got invalid command '{prompt}'\n{usage}")
 | 
						|
                continue
 | 
						|
            _, height = prompt.split()
 | 
						|
            if height == "auto":
 | 
						|
                options.height = None
 | 
						|
            else:
 | 
						|
                options.height = 16 * (int(height) // 16)
 | 
						|
            if options.height is not None and options.width is not None:
 | 
						|
                print(
 | 
						|
                    f"Setting resolution to {options.width} x {options.height} "
 | 
						|
                    f"({options.height * options.width / 1e6:.2f}MP)"
 | 
						|
                )
 | 
						|
            else:
 | 
						|
                print(f"Setting resolution to {options.width} x {options.height}.")
 | 
						|
        elif prompt.startswith("/g"):
 | 
						|
            if prompt.count(" ") != 1:
 | 
						|
                print(f"Got invalid command '{prompt}'\n{usage}")
 | 
						|
                continue
 | 
						|
            _, guidance = prompt.split()
 | 
						|
            options.guidance = float(guidance)
 | 
						|
            print(f"Setting guidance to {options.guidance}")
 | 
						|
        elif prompt.startswith("/s"):
 | 
						|
            if prompt.count(" ") != 1:
 | 
						|
                print(f"Got invalid command '{prompt}'\n{usage}")
 | 
						|
                continue
 | 
						|
            _, seed = prompt.split()
 | 
						|
            options.seed = int(seed)
 | 
						|
            print(f"Setting seed to {options.seed}")
 | 
						|
        elif prompt.startswith("/n"):
 | 
						|
            if prompt.count(" ") != 1:
 | 
						|
                print(f"Got invalid command '{prompt}'\n{usage}")
 | 
						|
                continue
 | 
						|
            _, steps = prompt.split()
 | 
						|
            options.num_steps = int(steps)
 | 
						|
            print(f"Setting number of steps to {options.num_steps}")
 | 
						|
        elif prompt.startswith("/q"):
 | 
						|
            print("Quitting")
 | 
						|
            return None
 | 
						|
        else:
 | 
						|
            if not prompt.startswith("/h"):
 | 
						|
                print(f"Got invalid command '{prompt}'\n{usage}")
 | 
						|
            print(usage)
 | 
						|
    if prompt != "":
 | 
						|
        options.prompt = prompt
 | 
						|
    return options
 | 
						|
 | 
						|
 | 
						|
def parse_img_cond_path(options: SamplingOptions | None) -> SamplingOptions | None:
 | 
						|
    if options is None:
 | 
						|
        return None
 | 
						|
 | 
						|
    user_question = "Next input image (write /h for help, /q to quit and leave empty to repeat):\n"
 | 
						|
    usage = (
 | 
						|
        "Usage: Either write a path to an image directly, leave this field empty "
 | 
						|
        "to repeat the last input image or write a command starting with a slash:\n"
 | 
						|
        "- '/q' to quit\n\n"
 | 
						|
        "The input image will be edited by FLUX.1 Kontext creating a new image based"
 | 
						|
        "on your instruction prompt."
 | 
						|
    )
 | 
						|
 | 
						|
    while True:
 | 
						|
        img_cond_path = input(user_question)
 | 
						|
 | 
						|
        if img_cond_path.startswith("/"):
 | 
						|
            if img_cond_path.startswith("/q"):
 | 
						|
                print("Quitting")
 | 
						|
                return None
 | 
						|
            else:
 | 
						|
                if not img_cond_path.startswith("/h"):
 | 
						|
                    print(f"Got invalid command '{img_cond_path}'\n{usage}")
 | 
						|
                print(usage)
 | 
						|
            continue
 | 
						|
 | 
						|
        if img_cond_path == "":
 | 
						|
            break
 | 
						|
 | 
						|
        if not os.path.isfile(img_cond_path) or not img_cond_path.lower().endswith(
 | 
						|
            (".jpg", ".jpeg", ".png", ".webp")
 | 
						|
        ):
 | 
						|
            print(f"File '{img_cond_path}' does not exist or is not a valid image file")
 | 
						|
            continue
 | 
						|
 | 
						|
        options.img_cond_path = img_cond_path
 | 
						|
        break
 | 
						|
 | 
						|
    return options
 | 
						|
 | 
						|
 | 
						|
@torch.inference_mode()
 | 
						|
def main(
 | 
						|
    name: str = "flux-dev-kontext",
 | 
						|
    aspect_ratio: str | None = None,
 | 
						|
    seed: int | None = None,
 | 
						|
    prompt: str = "replace the logo with the text 'Black Forest Labs'",
 | 
						|
    device: str = "cuda" if torch.cuda.is_available() else "cpu",
 | 
						|
    num_steps: int = 30,
 | 
						|
    loop: bool = False,
 | 
						|
    guidance: float = 2.5,
 | 
						|
    offload: bool = False,
 | 
						|
    output_dir: str = "output",
 | 
						|
    add_sampling_metadata: bool = True,
 | 
						|
    img_cond_path: str = "assets/cup.png",
 | 
						|
    trt: bool = False,
 | 
						|
    trt_transformer_precision: str = "bf16",
 | 
						|
    track_usage: bool = False,
 | 
						|
):
 | 
						|
    """
 | 
						|
    Sample the flux model. Either interactively (set `--loop`) or run for a
 | 
						|
    single image.
 | 
						|
 | 
						|
    Args:
 | 
						|
        height: height of the sample in pixels (should be a multiple of 16), None
 | 
						|
            defaults to the size of the conditioning
 | 
						|
        width: width of the sample in pixels (should be a multiple of 16), None
 | 
						|
            defaults to the size of the conditioning
 | 
						|
        seed: Set a seed for sampling
 | 
						|
        output_name: where to save the output image, `{idx}` will be replaced
 | 
						|
            by the index of the sample
 | 
						|
        prompt: Prompt used for sampling
 | 
						|
        device: Pytorch device
 | 
						|
        num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
 | 
						|
        loop: start an interactive session and sample multiple times
 | 
						|
        guidance: guidance value used for guidance distillation
 | 
						|
        add_sampling_metadata: Add the prompt to the image Exif metadata
 | 
						|
        img_cond_path: path to conditioning image (jpeg/png/webp)
 | 
						|
        trt: use TensorRT backend for optimized inference
 | 
						|
        track_usage: track usage of the model for licensing purposes
 | 
						|
    """
 | 
						|
    assert name == "flux-dev-kontext", f"Got unknown model name: {name}"
 | 
						|
 | 
						|
    torch_device = torch.device(device)
 | 
						|
 | 
						|
    output_name = os.path.join(output_dir, "img_{idx}.jpg")
 | 
						|
    if not os.path.exists(output_dir):
 | 
						|
        os.makedirs(output_dir)
 | 
						|
        idx = 0
 | 
						|
    else:
 | 
						|
        fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
 | 
						|
        if len(fns) > 0:
 | 
						|
            idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
 | 
						|
        else:
 | 
						|
            idx = 0
 | 
						|
 | 
						|
    if aspect_ratio is None:
 | 
						|
        width = None
 | 
						|
        height = None
 | 
						|
    else:
 | 
						|
        width, height = aspect_ratio_to_height_width(aspect_ratio)
 | 
						|
 | 
						|
    if not trt:
 | 
						|
        t5 = load_t5(torch_device, max_length=512)
 | 
						|
        clip = load_clip(torch_device)
 | 
						|
        model = load_flow_model(name, device="cpu" if offload else torch_device)
 | 
						|
    else:
 | 
						|
        # lazy import to make install optional
 | 
						|
        from flux.trt.trt_manager import ModuleName, TRTManager
 | 
						|
 | 
						|
        # Check if we need ONNX model access (which requires authentication for FLUX models)
 | 
						|
        onnx_dir = check_onnx_access_for_trt(name, trt_transformer_precision)
 | 
						|
 | 
						|
        trt_ctx_manager = TRTManager(
 | 
						|
            trt_transformer_precision=trt_transformer_precision,
 | 
						|
            trt_t5_precision=os.environ.get("TRT_T5_PRECISION", "bf16"),
 | 
						|
        )
 | 
						|
        engines = trt_ctx_manager.load_engines(
 | 
						|
            model_name=name,
 | 
						|
            module_names={
 | 
						|
                ModuleName.CLIP,
 | 
						|
                ModuleName.TRANSFORMER,
 | 
						|
                ModuleName.T5,
 | 
						|
            },
 | 
						|
            engine_dir=os.environ.get("TRT_ENGINE_DIR", "./engines"),
 | 
						|
            custom_onnx_paths=onnx_dir or os.environ.get("CUSTOM_ONNX_PATHS", ""),
 | 
						|
            trt_image_height=height,
 | 
						|
            trt_image_width=width,
 | 
						|
            trt_batch_size=1,
 | 
						|
            trt_timing_cache=os.getenv("TRT_TIMING_CACHE_FILE", None),
 | 
						|
            trt_static_batch=False,
 | 
						|
            trt_static_shape=False,
 | 
						|
        )
 | 
						|
 | 
						|
        model = engines[ModuleName.TRANSFORMER].to(device="cpu" if offload else torch_device)
 | 
						|
        clip = engines[ModuleName.CLIP].to(torch_device)
 | 
						|
        t5 = engines[ModuleName.T5].to(device="cpu" if offload else torch_device)
 | 
						|
 | 
						|
    ae = load_ae(name, device="cpu" if offload else torch_device)
 | 
						|
    content_filter = PixtralContentFilter(torch.device("cpu"))
 | 
						|
 | 
						|
    rng = torch.Generator(device="cpu")
 | 
						|
    opts = SamplingOptions(
 | 
						|
        prompt=prompt,
 | 
						|
        width=width,
 | 
						|
        height=height,
 | 
						|
        num_steps=num_steps,
 | 
						|
        guidance=guidance,
 | 
						|
        seed=seed,
 | 
						|
        img_cond_path=img_cond_path,
 | 
						|
    )
 | 
						|
 | 
						|
    if loop:
 | 
						|
        opts = parse_prompt(opts)
 | 
						|
        opts = parse_img_cond_path(opts)
 | 
						|
 | 
						|
    while opts is not None:
 | 
						|
        if opts.seed is None:
 | 
						|
            opts.seed = rng.seed()
 | 
						|
        print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
 | 
						|
        t0 = time.perf_counter()
 | 
						|
 | 
						|
        if content_filter.test_txt(opts.prompt):
 | 
						|
            print("Your prompt has been automatically flagged. Please choose another prompt.")
 | 
						|
            if loop:
 | 
						|
                print("-" * 80)
 | 
						|
                opts = parse_prompt(opts)
 | 
						|
                opts = parse_img_cond_path(opts)
 | 
						|
            else:
 | 
						|
                opts = None
 | 
						|
            continue
 | 
						|
        if content_filter.test_image(opts.img_cond_path):
 | 
						|
            print("Your input image has been automatically flagged. Please choose another image.")
 | 
						|
            if loop:
 | 
						|
                print("-" * 80)
 | 
						|
                opts = parse_prompt(opts)
 | 
						|
                opts = parse_img_cond_path(opts)
 | 
						|
            else:
 | 
						|
                opts = None
 | 
						|
            continue
 | 
						|
 | 
						|
        if offload:
 | 
						|
            t5, clip, ae = t5.to(torch_device), clip.to(torch_device), ae.to(torch_device)
 | 
						|
        inp, height, width = prepare_kontext(
 | 
						|
            t5=t5,
 | 
						|
            clip=clip,
 | 
						|
            prompt=opts.prompt,
 | 
						|
            ae=ae,
 | 
						|
            img_cond_path=opts.img_cond_path,
 | 
						|
            target_width=opts.width,
 | 
						|
            target_height=opts.height,
 | 
						|
            bs=1,
 | 
						|
            seed=opts.seed,
 | 
						|
            device=torch_device,
 | 
						|
        )
 | 
						|
        from safetensors.torch import save_file
 | 
						|
 | 
						|
        save_file({k: v.cpu().contiguous() for k, v in inp.items()}, "output/noise.sft")
 | 
						|
        inp.pop("img_cond_orig")
 | 
						|
        opts.seed = None
 | 
						|
        timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
 | 
						|
 | 
						|
        # offload TEs and AE to CPU, load model to gpu
 | 
						|
        if offload:
 | 
						|
            t5, clip, ae = t5.cpu(), clip.cpu(), ae.cpu()
 | 
						|
            torch.cuda.empty_cache()
 | 
						|
            model = model.to(torch_device)
 | 
						|
 | 
						|
        # denoise initial noise
 | 
						|
        t00 = time.time()
 | 
						|
        x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
 | 
						|
        torch.cuda.synchronize()
 | 
						|
        t01 = time.time()
 | 
						|
        print(f"Denoising took {t01 - t00:.3f}s")
 | 
						|
 | 
						|
        # offload model, load autoencoder to gpu
 | 
						|
        if offload:
 | 
						|
            model.cpu()
 | 
						|
            torch.cuda.empty_cache()
 | 
						|
            ae.decoder.to(x.device)
 | 
						|
 | 
						|
        # decode latents to pixel space
 | 
						|
        x = unpack(x.float(), height, width)
 | 
						|
        with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
 | 
						|
            ae_dev_t0 = time.perf_counter()
 | 
						|
            x = ae.decode(x)
 | 
						|
            torch.cuda.synchronize()
 | 
						|
            ae_dev_t1 = time.perf_counter()
 | 
						|
            print(f"AE decode took {ae_dev_t1 - ae_dev_t0:.3f}s")
 | 
						|
 | 
						|
        if content_filter.test_image(x.cpu()):
 | 
						|
            print(
 | 
						|
                "Your output image has been automatically flagged. Choose another prompt/image or try again."
 | 
						|
            )
 | 
						|
            if loop:
 | 
						|
                print("-" * 80)
 | 
						|
                opts = parse_prompt(opts)
 | 
						|
                opts = parse_img_cond_path(opts)
 | 
						|
            else:
 | 
						|
                opts = None
 | 
						|
            continue
 | 
						|
 | 
						|
        if torch.cuda.is_available():
 | 
						|
            torch.cuda.synchronize()
 | 
						|
        t1 = time.perf_counter()
 | 
						|
        print(f"Done in {t1 - t0:.1f}s")
 | 
						|
 | 
						|
        idx = save_image(
 | 
						|
            None, name, output_name, idx, x, add_sampling_metadata, prompt, track_usage=track_usage
 | 
						|
        )
 | 
						|
 | 
						|
        if loop:
 | 
						|
            print("-" * 80)
 | 
						|
            opts = parse_prompt(opts)
 | 
						|
            opts = parse_img_cond_path(opts)
 | 
						|
        else:
 | 
						|
            opts = None
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    Fire(main)
 |