Wan2.1/flux/to_remove/cli_kontext.py
2025-07-13 04:24:55 +02:00

369 lines
13 KiB
Python

import os
import re
import time
from dataclasses import dataclass
from glob import iglob
import torch
from fire import Fire
from flux.content_filters import PixtralContentFilter
from flux.sampling import denoise, get_schedule, prepare_kontext, unpack
from flux.util import (
aspect_ratio_to_height_width,
check_onnx_access_for_trt,
load_ae,
load_clip,
load_flow_model,
load_t5,
save_image,
)
@dataclass
class SamplingOptions:
prompt: str
width: int | None
height: int | None
num_steps: int
guidance: float
seed: int | None
img_cond_path: str
def parse_prompt(options: SamplingOptions) -> SamplingOptions | None:
user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n"
usage = (
"Usage: Either write your prompt directly, leave this field empty "
"to repeat the prompt or write a command starting with a slash:\n"
"- '/ar <width>:<height>' will set the aspect ratio of the generated image\n"
"- '/s <seed>' sets the next seed\n"
"- '/g <guidance>' sets the guidance (flux-dev only)\n"
"- '/n <steps>' sets the number of steps\n"
"- '/q' to quit"
)
while (prompt := input(user_question)).startswith("/"):
if prompt.startswith("/ar"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, ratio_prompt = prompt.split()
if ratio_prompt == "auto":
options.width = None
options.height = None
print("Setting resolution to input image resolution.")
else:
options.width, options.height = aspect_ratio_to_height_width(ratio_prompt)
print(f"Setting resolution to {options.width} x {options.height}.")
elif prompt.startswith("/h"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, height = prompt.split()
if height == "auto":
options.height = None
else:
options.height = 16 * (int(height) // 16)
if options.height is not None and options.width is not None:
print(
f"Setting resolution to {options.width} x {options.height} "
f"({options.height * options.width / 1e6:.2f}MP)"
)
else:
print(f"Setting resolution to {options.width} x {options.height}.")
elif prompt.startswith("/g"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, guidance = prompt.split()
options.guidance = float(guidance)
print(f"Setting guidance to {options.guidance}")
elif prompt.startswith("/s"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, seed = prompt.split()
options.seed = int(seed)
print(f"Setting seed to {options.seed}")
elif prompt.startswith("/n"):
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
_, steps = prompt.split()
options.num_steps = int(steps)
print(f"Setting number of steps to {options.num_steps}")
elif prompt.startswith("/q"):
print("Quitting")
return None
else:
if not prompt.startswith("/h"):
print(f"Got invalid command '{prompt}'\n{usage}")
print(usage)
if prompt != "":
options.prompt = prompt
return options
def parse_img_cond_path(options: SamplingOptions | None) -> SamplingOptions | None:
if options is None:
return None
user_question = "Next input image (write /h for help, /q to quit and leave empty to repeat):\n"
usage = (
"Usage: Either write a path to an image directly, leave this field empty "
"to repeat the last input image or write a command starting with a slash:\n"
"- '/q' to quit\n\n"
"The input image will be edited by FLUX.1 Kontext creating a new image based"
"on your instruction prompt."
)
while True:
img_cond_path = input(user_question)
if img_cond_path.startswith("/"):
if img_cond_path.startswith("/q"):
print("Quitting")
return None
else:
if not img_cond_path.startswith("/h"):
print(f"Got invalid command '{img_cond_path}'\n{usage}")
print(usage)
continue
if img_cond_path == "":
break
if not os.path.isfile(img_cond_path) or not img_cond_path.lower().endswith(
(".jpg", ".jpeg", ".png", ".webp")
):
print(f"File '{img_cond_path}' does not exist or is not a valid image file")
continue
options.img_cond_path = img_cond_path
break
return options
@torch.inference_mode()
def main(
name: str = "flux-dev-kontext",
aspect_ratio: str | None = None,
seed: int | None = None,
prompt: str = "replace the logo with the text 'Black Forest Labs'",
device: str = "cuda" if torch.cuda.is_available() else "cpu",
num_steps: int = 30,
loop: bool = False,
guidance: float = 2.5,
offload: bool = False,
output_dir: str = "output",
add_sampling_metadata: bool = True,
img_cond_path: str = "assets/cup.png",
trt: bool = False,
trt_transformer_precision: str = "bf16",
track_usage: bool = False,
):
"""
Sample the flux model. Either interactively (set `--loop`) or run for a
single image.
Args:
height: height of the sample in pixels (should be a multiple of 16), None
defaults to the size of the conditioning
width: width of the sample in pixels (should be a multiple of 16), None
defaults to the size of the conditioning
seed: Set a seed for sampling
output_name: where to save the output image, `{idx}` will be replaced
by the index of the sample
prompt: Prompt used for sampling
device: Pytorch device
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
loop: start an interactive session and sample multiple times
guidance: guidance value used for guidance distillation
add_sampling_metadata: Add the prompt to the image Exif metadata
img_cond_path: path to conditioning image (jpeg/png/webp)
trt: use TensorRT backend for optimized inference
track_usage: track usage of the model for licensing purposes
"""
assert name == "flux-dev-kontext", f"Got unknown model name: {name}"
torch_device = torch.device(device)
output_name = os.path.join(output_dir, "img_{idx}.jpg")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
idx = 0
else:
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
if len(fns) > 0:
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
else:
idx = 0
if aspect_ratio is None:
width = None
height = None
else:
width, height = aspect_ratio_to_height_width(aspect_ratio)
if not trt:
t5 = load_t5(torch_device, max_length=512)
clip = load_clip(torch_device)
model = load_flow_model(name, device="cpu" if offload else torch_device)
else:
# lazy import to make install optional
from flux.trt.trt_manager import ModuleName, TRTManager
# Check if we need ONNX model access (which requires authentication for FLUX models)
onnx_dir = check_onnx_access_for_trt(name, trt_transformer_precision)
trt_ctx_manager = TRTManager(
trt_transformer_precision=trt_transformer_precision,
trt_t5_precision=os.environ.get("TRT_T5_PRECISION", "bf16"),
)
engines = trt_ctx_manager.load_engines(
model_name=name,
module_names={
ModuleName.CLIP,
ModuleName.TRANSFORMER,
ModuleName.T5,
},
engine_dir=os.environ.get("TRT_ENGINE_DIR", "./engines"),
custom_onnx_paths=onnx_dir or os.environ.get("CUSTOM_ONNX_PATHS", ""),
trt_image_height=height,
trt_image_width=width,
trt_batch_size=1,
trt_timing_cache=os.getenv("TRT_TIMING_CACHE_FILE", None),
trt_static_batch=False,
trt_static_shape=False,
)
model = engines[ModuleName.TRANSFORMER].to(device="cpu" if offload else torch_device)
clip = engines[ModuleName.CLIP].to(torch_device)
t5 = engines[ModuleName.T5].to(device="cpu" if offload else torch_device)
ae = load_ae(name, device="cpu" if offload else torch_device)
content_filter = PixtralContentFilter(torch.device("cpu"))
rng = torch.Generator(device="cpu")
opts = SamplingOptions(
prompt=prompt,
width=width,
height=height,
num_steps=num_steps,
guidance=guidance,
seed=seed,
img_cond_path=img_cond_path,
)
if loop:
opts = parse_prompt(opts)
opts = parse_img_cond_path(opts)
while opts is not None:
if opts.seed is None:
opts.seed = rng.seed()
print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
t0 = time.perf_counter()
if content_filter.test_txt(opts.prompt):
print("Your prompt has been automatically flagged. Please choose another prompt.")
if loop:
print("-" * 80)
opts = parse_prompt(opts)
opts = parse_img_cond_path(opts)
else:
opts = None
continue
if content_filter.test_image(opts.img_cond_path):
print("Your input image has been automatically flagged. Please choose another image.")
if loop:
print("-" * 80)
opts = parse_prompt(opts)
opts = parse_img_cond_path(opts)
else:
opts = None
continue
if offload:
t5, clip, ae = t5.to(torch_device), clip.to(torch_device), ae.to(torch_device)
inp, height, width = prepare_kontext(
t5=t5,
clip=clip,
prompt=opts.prompt,
ae=ae,
img_cond_path=opts.img_cond_path,
target_width=opts.width,
target_height=opts.height,
bs=1,
seed=opts.seed,
device=torch_device,
)
from safetensors.torch import save_file
save_file({k: v.cpu().contiguous() for k, v in inp.items()}, "output/noise.sft")
inp.pop("img_cond_orig")
opts.seed = None
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
# offload TEs and AE to CPU, load model to gpu
if offload:
t5, clip, ae = t5.cpu(), clip.cpu(), ae.cpu()
torch.cuda.empty_cache()
model = model.to(torch_device)
# denoise initial noise
t00 = time.time()
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
torch.cuda.synchronize()
t01 = time.time()
print(f"Denoising took {t01 - t00:.3f}s")
# offload model, load autoencoder to gpu
if offload:
model.cpu()
torch.cuda.empty_cache()
ae.decoder.to(x.device)
# decode latents to pixel space
x = unpack(x.float(), height, width)
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
ae_dev_t0 = time.perf_counter()
x = ae.decode(x)
torch.cuda.synchronize()
ae_dev_t1 = time.perf_counter()
print(f"AE decode took {ae_dev_t1 - ae_dev_t0:.3f}s")
if content_filter.test_image(x.cpu()):
print(
"Your output image has been automatically flagged. Choose another prompt/image or try again."
)
if loop:
print("-" * 80)
opts = parse_prompt(opts)
opts = parse_img_cond_path(opts)
else:
opts = None
continue
if torch.cuda.is_available():
torch.cuda.synchronize()
t1 = time.perf_counter()
print(f"Done in {t1 - t0:.1f}s")
idx = save_image(
None, name, output_name, idx, x, add_sampling_metadata, prompt, track_usage=track_usage
)
if loop:
print("-" * 80)
opts = parse_prompt(opts)
opts = parse_img_cond_path(opts)
else:
opts = None
if __name__ == "__main__":
Fire(main)