mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-06-07 15:54:52 +00:00
526 lines
16 KiB
Python
526 lines
16 KiB
Python
import os
|
||
import torch
|
||
import uuid
|
||
import time
|
||
import asyncio
|
||
import numpy as np
|
||
from threading import Lock
|
||
from typing import Optional, Dict, List
|
||
from fastapi import FastAPI, HTTPException, status, Depends
|
||
from fastapi.staticfiles import StaticFiles
|
||
from pydantic import BaseModel, Field, field_validator, ValidationError
|
||
from diffusers.utils import export_to_video, load_image
|
||
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline
|
||
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
|
||
from transformers import CLIPVisionModel
|
||
from PIL import Image
|
||
import requests
|
||
from io import BytesIO
|
||
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
||
from contextlib import asynccontextmanager
|
||
from requests.exceptions import RequestException
|
||
|
||
# 创建存储目录
|
||
os.makedirs("generated_videos", exist_ok=True)
|
||
os.makedirs("temp_images", exist_ok=True)
|
||
|
||
# ======================
|
||
# 生命周期管理
|
||
# ======================
|
||
@asynccontextmanager
|
||
async def lifespan(app: FastAPI):
|
||
"""资源管理器"""
|
||
try:
|
||
# 初始化认证系统
|
||
app.state.valid_api_keys = {
|
||
"密钥"
|
||
}
|
||
|
||
# 初始化模型
|
||
model_id = "./Wan2.1-I2V-14B-480P-Diffusers"
|
||
|
||
# 加载图像编码器
|
||
image_encoder = CLIPVisionModel.from_pretrained(
|
||
model_id,
|
||
subfolder="image_encoder",
|
||
torch_dtype=torch.float32
|
||
)
|
||
|
||
# 加载VAE
|
||
vae = AutoencoderKLWan.from_pretrained(
|
||
model_id,
|
||
subfolder="vae",
|
||
torch_dtype=torch.float32
|
||
)
|
||
|
||
# 配置调度器
|
||
scheduler = UniPCMultistepScheduler(
|
||
prediction_type='flow_prediction',
|
||
use_flow_sigmas=True,
|
||
num_train_timesteps=1000,
|
||
flow_shift=3.0
|
||
)
|
||
|
||
# 创建管道
|
||
app.state.pipe = WanImageToVideoPipeline.from_pretrained(
|
||
model_id,
|
||
vae=vae,
|
||
image_encoder=image_encoder,
|
||
torch_dtype=torch.bfloat16
|
||
).to("cuda")
|
||
app.state.pipe.scheduler = scheduler
|
||
|
||
# 初始化任务系统
|
||
app.state.tasks: Dict[str, dict] = {}
|
||
app.state.pending_queue: List[str] = []
|
||
app.state.model_lock = Lock()
|
||
app.state.task_lock = Lock()
|
||
app.state.base_url = "ip地址+端口"
|
||
app.state.semaphore = asyncio.Semaphore(2) # 并发限制
|
||
|
||
# 启动后台处理器
|
||
asyncio.create_task(task_processor())
|
||
|
||
print("✅ 系统初始化完成")
|
||
yield
|
||
|
||
finally:
|
||
# 资源清理
|
||
if hasattr(app.state, 'pipe'):
|
||
del app.state.pipe
|
||
torch.cuda.empty_cache()
|
||
print("♻️ 资源已释放")
|
||
|
||
# ======================
|
||
# FastAPI应用
|
||
# ======================
|
||
app = FastAPI(lifespan=lifespan)
|
||
app.mount("/videos", StaticFiles(directory="generated_videos"), name="videos")
|
||
# 认证模块
|
||
security = HTTPBearer(auto_error=False)
|
||
|
||
# ======================
|
||
# 数据模型--查询参数模型
|
||
# ======================
|
||
class VideoSubmitRequest(BaseModel):
|
||
model: str = Field(
|
||
default="Wan2.1-I2V-14B-480P",
|
||
description="模型版本"
|
||
)
|
||
prompt: str = Field(
|
||
...,
|
||
min_length=10,
|
||
max_length=500,
|
||
description="视频描述提示词,10-500个字符"
|
||
)
|
||
image_url: str = Field(
|
||
...,
|
||
description="输入图像URL,需支持HTTP/HTTPS协议"
|
||
)
|
||
image_size: str = Field(
|
||
default="auto",
|
||
description="输出分辨率,格式:宽x高 或 auto(自动计算)"
|
||
)
|
||
negative_prompt: Optional[str] = Field(
|
||
default=None,
|
||
max_length=500,
|
||
description="排除不需要的内容"
|
||
)
|
||
seed: Optional[int] = Field(
|
||
default=None,
|
||
ge=0,
|
||
le=2147483647,
|
||
description="随机数种子,范围0-2147483647"
|
||
)
|
||
num_frames: int = Field(
|
||
default=81,
|
||
ge=24,
|
||
le=120,
|
||
description="视频帧数,24-89帧"
|
||
)
|
||
guidance_scale: float = Field(
|
||
default=3.0,
|
||
ge=1.0,
|
||
le=20.0,
|
||
description="引导系数,1.0-20.0"
|
||
)
|
||
infer_steps: int = Field(
|
||
default=30,
|
||
ge=20,
|
||
le=100,
|
||
description="推理步数,20-100步"
|
||
)
|
||
|
||
@field_validator('image_size')
|
||
def validate_image_size(cls, v):
|
||
allowed_sizes = {"480x832", "832x480", "auto"}
|
||
if v not in allowed_sizes:
|
||
raise ValueError(f"支持的分辨率: {', '.join(allowed_sizes)}")
|
||
return v
|
||
|
||
class VideoStatusRequest(BaseModel):
|
||
requestId: str = Field(
|
||
...,
|
||
min_length=32,
|
||
max_length=32,
|
||
description="32位任务ID"
|
||
)
|
||
|
||
class VideoStatusResponse(BaseModel):
|
||
status: str = Field(..., description="任务状态: Succeed, InQueue, InProgress, Failed,Cancelled")
|
||
reason: Optional[str] = Field(None, description="失败原因")
|
||
results: Optional[dict] = Field(None, description="生成结果")
|
||
queue_position: Optional[int] = Field(None, description="队列位置")
|
||
|
||
class VideoCancelRequest(BaseModel):
|
||
requestId: str = Field(
|
||
...,
|
||
min_length=32,
|
||
max_length=32,
|
||
description="32位任务ID"
|
||
)
|
||
|
||
# ======================
|
||
# 核心逻辑
|
||
# ======================
|
||
async def verify_auth(credentials: HTTPAuthorizationCredentials = Depends(security)):
|
||
"""统一认证验证"""
|
||
if not credentials:
|
||
raise HTTPException(
|
||
status_code=401,
|
||
detail={"status": "Failed", "reason": "缺少认证头"},
|
||
headers={"WWW-Authenticate": "Bearer"}
|
||
)
|
||
if credentials.scheme != "Bearer":
|
||
raise HTTPException(
|
||
status_code=401,
|
||
detail={"status": "Failed", "reason": "无效的认证方案"},
|
||
headers={"WWW-Authenticate": "Bearer"}
|
||
)
|
||
if credentials.credentials not in app.state.valid_api_keys:
|
||
raise HTTPException(
|
||
status_code=401,
|
||
detail={"status": "Failed", "reason": "无效的API密钥"},
|
||
headers={"WWW-Authenticate": "Bearer"}
|
||
)
|
||
return True
|
||
|
||
async def task_processor():
|
||
"""任务处理器"""
|
||
while True:
|
||
async with app.state.semaphore:
|
||
task_id = await get_next_task()
|
||
if task_id:
|
||
await process_task(task_id)
|
||
else:
|
||
await asyncio.sleep(0.5)
|
||
|
||
async def get_next_task():
|
||
"""获取下一个任务"""
|
||
with app.state.task_lock:
|
||
return app.state.pending_queue.pop(0) if app.state.pending_queue else None
|
||
|
||
async def process_task(task_id: str):
|
||
"""处理单个任务"""
|
||
task = app.state.tasks.get(task_id)
|
||
if not task:
|
||
return
|
||
|
||
try:
|
||
# 更新任务状态
|
||
task['status'] = 'InProgress'
|
||
task['started_at'] = int(time.time())
|
||
print(task['request'].image_url)
|
||
# 下载输入图像
|
||
image = await download_image(task['request'].image_url)
|
||
image_path = f"temp_images/{task_id}.jpg"
|
||
image.save(image_path)
|
||
|
||
# 生成视频
|
||
video_path = await generate_video(task['request'], task_id, image)
|
||
|
||
# 生成下载链接
|
||
download_url = f"{app.state.base_url}/videos/{os.path.basename(video_path)}"
|
||
|
||
# 更新任务状态
|
||
task.update({
|
||
'status': 'Succeed',
|
||
'download_url': download_url,
|
||
'completed_at': int(time.time())
|
||
})
|
||
|
||
# 安排清理
|
||
asyncio.create_task(cleanup_files([image_path, video_path]))
|
||
except Exception as e:
|
||
handle_task_error(task, e)
|
||
|
||
def handle_task_error(task: dict, error: Exception):
|
||
"""错误处理(包含详细错误信息)"""
|
||
error_msg = str(error)
|
||
|
||
# 1. 显存不足错误
|
||
if isinstance(error, torch.cuda.OutOfMemoryError):
|
||
error_msg = "显存不足,请降低分辨率"
|
||
|
||
# 2. 网络请求相关错误
|
||
elif isinstance(error, (RequestException, HTTPException)):
|
||
# 从异常中提取具体信息
|
||
if isinstance(error, HTTPException):
|
||
# 如果是 HTTPException,获取其 detail 字段
|
||
error_detail = getattr(error, "detail", "")
|
||
error_msg = f"图像下载失败: {error_detail}"
|
||
|
||
elif isinstance(error, Timeout):
|
||
error_msg = "图像下载超时,请检查网络"
|
||
|
||
elif isinstance(error, ConnectionError):
|
||
error_msg = "无法连接到服务器,请检查 URL"
|
||
|
||
elif isinstance(error, HTTPError):
|
||
# requests 的 HTTPError(例如 4xx/5xx 状态码)
|
||
status_code = error.response.status_code
|
||
error_msg = f"服务器返回错误状态码: {status_code}"
|
||
|
||
else:
|
||
# 其他 RequestException 错误
|
||
error_msg = f"图像下载失败: {str(error)}"
|
||
|
||
# 3. 其他未知错误
|
||
else:
|
||
error_msg = f"未知错误: {str(error)}"
|
||
|
||
# 更新任务状态
|
||
task.update({
|
||
'status': 'Failed',
|
||
'reason': error_msg,
|
||
'completed_at': int(time.time())
|
||
})
|
||
# ======================
|
||
# 视频生成逻辑
|
||
# ======================
|
||
async def download_image(url: str) -> Image.Image:
|
||
"""异步下载图像(包含详细错误信息)"""
|
||
loop = asyncio.get_event_loop()
|
||
try:
|
||
response = await loop.run_in_executor(
|
||
None,
|
||
lambda: requests.get(url) # 将 timeout 传递给 requests.get
|
||
)
|
||
|
||
# 如果状态码非 200,主动抛出 HTTPException
|
||
if response.status_code != 200:
|
||
raise HTTPException(
|
||
status_code=response.status_code,
|
||
detail=f"服务器返回状态码 {response.status_code}"
|
||
)
|
||
|
||
return Image.open(BytesIO(response.content)).convert("RGB")
|
||
|
||
except RequestException as e:
|
||
# 将原始 requests 错误信息抛出
|
||
raise HTTPException(
|
||
status_code=500,
|
||
detail=f"请求失败: {str(e)}"
|
||
)
|
||
async def generate_video(request: VideoSubmitRequest, task_id: str, image: Image.Image):
|
||
"""异步生成入口"""
|
||
loop = asyncio.get_event_loop()
|
||
return await loop.run_in_executor(
|
||
None,
|
||
sync_generate_video,
|
||
request,
|
||
task_id,
|
||
image
|
||
)
|
||
|
||
def sync_generate_video(request: VideoSubmitRequest, task_id: str, image: Image.Image):
|
||
"""同步生成核心"""
|
||
with app.state.model_lock:
|
||
try:
|
||
# 解析分辨率
|
||
mod_value = 16 # 模型要求的模数
|
||
print(request.image_size)
|
||
print('--------------------------------')
|
||
if request.image_size == "auto":
|
||
# 原版自动计算逻辑
|
||
aspect_ratio = image.height / image.width
|
||
print(image.height,image.width)
|
||
max_area = 399360 # 模型基础分辨率
|
||
|
||
# 计算理想尺寸
|
||
height = round(np.sqrt(max_area * aspect_ratio))
|
||
width = round(np.sqrt(max_area / aspect_ratio))
|
||
|
||
# 应用模数调整
|
||
height = height // mod_value * mod_value
|
||
width = width // mod_value * mod_value
|
||
resized_image = image.resize((width, height))
|
||
else:
|
||
width_str, height_str = request.image_size.split('x')
|
||
width = int(width_str)
|
||
height = int(height_str)
|
||
mod_value = 16
|
||
# 调整图像尺寸
|
||
resized_image = image.resize((width, height))
|
||
|
||
|
||
# 设置随机种子
|
||
generator = None
|
||
# 修改点1: 使用属性访问seed
|
||
if request.seed is not None:
|
||
generator = torch.Generator(device="cuda")
|
||
generator.manual_seed(request.seed) # 修改点2
|
||
print(f"🔮 使用随机种子: {request.seed}")
|
||
print(resized_image)
|
||
print(height,width)
|
||
|
||
# 执行推理
|
||
output = app.state.pipe(
|
||
image=resized_image,
|
||
prompt=request.prompt,
|
||
negative_prompt=request.negative_prompt,
|
||
height=height,
|
||
width=width,
|
||
num_frames=request.num_frames,
|
||
guidance_scale=request.guidance_scale,
|
||
num_inference_steps=request.infer_steps,
|
||
generator=generator
|
||
).frames[0]
|
||
|
||
# 导出视频
|
||
video_id = uuid.uuid4().hex
|
||
output_path = f"generated_videos/{video_id}.mp4"
|
||
export_to_video(output, output_path, fps=16)
|
||
return output_path
|
||
except Exception as e:
|
||
raise RuntimeError(f"视频生成失败: {str(e)}") from e
|
||
|
||
# ======================
|
||
# API端点
|
||
# ======================
|
||
@app.post("/video/submit",
|
||
response_model=dict,
|
||
status_code=status.HTTP_202_ACCEPTED,
|
||
tags=["视频生成"])
|
||
async def submit_task(
|
||
request: VideoSubmitRequest,
|
||
auth: bool = Depends(verify_auth)
|
||
):
|
||
"""提交生成任务"""
|
||
# 参数验证
|
||
if request.image_url is None:
|
||
raise HTTPException(
|
||
status_code=422,
|
||
detail={"status": "Failed", "reason": "需要图像URL参数"}
|
||
)
|
||
|
||
# 创建任务记录
|
||
task_id = uuid.uuid4().hex
|
||
with app.state.task_lock:
|
||
app.state.tasks[task_id] = {
|
||
"request": request,
|
||
"status": "InQueue",
|
||
"created_at": int(time.time())
|
||
}
|
||
app.state.pending_queue.append(task_id)
|
||
|
||
return {"requestId": task_id}
|
||
|
||
@app.post("/video/status",
|
||
response_model=VideoStatusResponse,
|
||
tags=["视频生成"])
|
||
async def get_status(
|
||
request: VideoStatusRequest,
|
||
auth: bool = Depends(verify_auth)
|
||
):
|
||
"""查询任务状态"""
|
||
task = app.state.tasks.get(request.requestId)
|
||
if not task:
|
||
raise HTTPException(
|
||
status_code=404,
|
||
detail={"status": "Failed", "reason": "无效的任务ID"}
|
||
)
|
||
|
||
# 计算队列位置(仅当在队列中时)
|
||
queue_pos = 0
|
||
if task['status'] == "InQueue" and request.requestId in app.state.pending_queue:
|
||
queue_pos = app.state.pending_queue.index(request.requestId) + 1
|
||
|
||
response = {
|
||
"status": task['status'],
|
||
"reason": task.get('reason'),
|
||
"queue_position": queue_pos if task['status'] == "InQueue" else None # 非排队状态返回null
|
||
}
|
||
|
||
# 成功状态的特殊处理
|
||
if task['status'] == "Succeed":
|
||
response["results"] = {
|
||
"videos": [{"url": task['download_url']}],
|
||
"timings": {
|
||
"inference": task['completed_at'] - task['started_at']
|
||
},
|
||
"seed": task['request'].seed
|
||
}
|
||
# 取消状态的补充信息
|
||
elif task['status'] == "Cancelled":
|
||
response["reason"] = task.get('reason', "用户主动取消") # 确保原因字段存在
|
||
|
||
return response
|
||
|
||
@app.post("/video/cancel",
|
||
response_model=dict,
|
||
tags=["视频生成"])
|
||
async def cancel_task(
|
||
request: VideoCancelRequest,
|
||
auth: bool = Depends(verify_auth)
|
||
):
|
||
"""取消排队中的生成任务"""
|
||
task_id = request.requestId
|
||
|
||
with app.state.task_lock:
|
||
task = app.state.tasks.get(task_id)
|
||
|
||
# 检查任务是否存在
|
||
if not task:
|
||
raise HTTPException(
|
||
status_code=404,
|
||
detail={"status": "Failed", "reason": "无效的任务ID"}
|
||
)
|
||
|
||
current_status = task['status']
|
||
|
||
# 仅允许取消排队中的任务
|
||
if current_status != "InQueue":
|
||
raise HTTPException(
|
||
status_code=400,
|
||
detail={"status": "Failed", "reason": f"仅允许取消排队任务,当前状态: {current_status}"}
|
||
)
|
||
|
||
# 从队列移除
|
||
try:
|
||
app.state.pending_queue.remove(task_id)
|
||
except ValueError:
|
||
pass # 可能已被处理
|
||
|
||
# 更新任务状态
|
||
task.update({
|
||
"status": "Cancelled",
|
||
"reason": "用户主动取消",
|
||
"completed_at": int(time.time())
|
||
})
|
||
|
||
return {"status": "Succeed"}
|
||
|
||
async def cleanup_files(paths: List[str], delay: int = 3600):
|
||
"""定时清理文件"""
|
||
await asyncio.sleep(delay)
|
||
for path in paths:
|
||
try:
|
||
if os.path.exists(path):
|
||
os.remove(path)
|
||
except Exception as e:
|
||
print(f"清理失败 {path}: {str(e)}")
|
||
|
||
if __name__ == "__main__":
|
||
import uvicorn
|
||
uvicorn.run(app, host="0.0.0.0", port=8088) |