mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	* isort the code * format the code * Add yapf config file * Remove torch cuda memory profiler
		
			
				
	
	
		
			860 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			860 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copied from https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
 | 
						|
# Convert dpm solver for flow matching
 | 
						|
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
						|
 | 
						|
import inspect
 | 
						|
import math
 | 
						|
from typing import List, Optional, Tuple, Union
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
from diffusers.configuration_utils import ConfigMixin, register_to_config
 | 
						|
from diffusers.schedulers.scheduling_utils import (
 | 
						|
    KarrasDiffusionSchedulers,
 | 
						|
    SchedulerMixin,
 | 
						|
    SchedulerOutput,
 | 
						|
)
 | 
						|
from diffusers.utils import deprecate, is_scipy_available
 | 
						|
from diffusers.utils.torch_utils import randn_tensor
 | 
						|
 | 
						|
if is_scipy_available():
 | 
						|
    pass
 | 
						|
 | 
						|
 | 
						|
def get_sampling_sigmas(sampling_steps, shift):
 | 
						|
    sigma = np.linspace(1, 0, sampling_steps + 1)[:sampling_steps]
 | 
						|
    sigma = (shift * sigma / (1 + (shift - 1) * sigma))
 | 
						|
 | 
						|
    return sigma
 | 
						|
 | 
						|
 | 
						|
def retrieve_timesteps(
 | 
						|
    scheduler,
 | 
						|
    num_inference_steps=None,
 | 
						|
    device=None,
 | 
						|
    timesteps=None,
 | 
						|
    sigmas=None,
 | 
						|
    **kwargs,
 | 
						|
):
 | 
						|
    if timesteps is not None and sigmas is not None:
 | 
						|
        raise ValueError(
 | 
						|
            "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
 | 
						|
        )
 | 
						|
    if timesteps is not None:
 | 
						|
        accepts_timesteps = "timesteps" in set(
 | 
						|
            inspect.signature(scheduler.set_timesteps).parameters.keys())
 | 
						|
        if not accepts_timesteps:
 | 
						|
            raise ValueError(
 | 
						|
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
 | 
						|
                f" timestep schedules. Please check whether you are using the correct scheduler."
 | 
						|
            )
 | 
						|
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
 | 
						|
        timesteps = scheduler.timesteps
 | 
						|
        num_inference_steps = len(timesteps)
 | 
						|
    elif sigmas is not None:
 | 
						|
        accept_sigmas = "sigmas" in set(
 | 
						|
            inspect.signature(scheduler.set_timesteps).parameters.keys())
 | 
						|
        if not accept_sigmas:
 | 
						|
            raise ValueError(
 | 
						|
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
 | 
						|
                f" sigmas schedules. Please check whether you are using the correct scheduler."
 | 
						|
            )
 | 
						|
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
 | 
						|
        timesteps = scheduler.timesteps
 | 
						|
        num_inference_steps = len(timesteps)
 | 
						|
    else:
 | 
						|
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
 | 
						|
        timesteps = scheduler.timesteps
 | 
						|
    return timesteps, num_inference_steps
 | 
						|
 | 
						|
 | 
						|
class FlowDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
 | 
						|
    """
 | 
						|
    `FlowDPMSolverMultistepScheduler` is a fast dedicated high-order solver for diffusion ODEs.
 | 
						|
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
 | 
						|
    methods the library implements for all schedulers such as loading and saving.
 | 
						|
    Args:
 | 
						|
        num_train_timesteps (`int`, defaults to 1000):
 | 
						|
            The number of diffusion steps to train the model. This determines the resolution of the diffusion process.
 | 
						|
        solver_order (`int`, defaults to 2):
 | 
						|
            The DPMSolver order which can be `1`, `2`, or `3`. It is recommended to use `solver_order=2` for guided
 | 
						|
            sampling, and `solver_order=3` for unconditional sampling. This affects the number of model outputs stored
 | 
						|
            and used in multistep updates.
 | 
						|
        prediction_type (`str`, defaults to "flow_prediction"):
 | 
						|
            Prediction type of the scheduler function; must be `flow_prediction` for this scheduler, which predicts
 | 
						|
            the flow of the diffusion process.
 | 
						|
        shift (`float`, *optional*, defaults to 1.0):
 | 
						|
            A factor used to adjust the sigmas in the noise schedule. It modifies the step sizes during the sampling
 | 
						|
            process.
 | 
						|
        use_dynamic_shifting (`bool`, defaults to `False`):
 | 
						|
            Whether to apply dynamic shifting to the timesteps based on image resolution. If `True`, the shifting is
 | 
						|
            applied on the fly.
 | 
						|
        thresholding (`bool`, defaults to `False`):
 | 
						|
            Whether to use the "dynamic thresholding" method. This method adjusts the predicted sample to prevent
 | 
						|
            saturation and improve photorealism.
 | 
						|
        dynamic_thresholding_ratio (`float`, defaults to 0.995):
 | 
						|
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
 | 
						|
        sample_max_value (`float`, defaults to 1.0):
 | 
						|
            The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
 | 
						|
            `algorithm_type="dpmsolver++"`.
 | 
						|
        algorithm_type (`str`, defaults to `dpmsolver++`):
 | 
						|
            Algorithm type for the solver; can be `dpmsolver`, `dpmsolver++`, `sde-dpmsolver` or `sde-dpmsolver++`. The
 | 
						|
            `dpmsolver` type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927)
 | 
						|
            paper, and the `dpmsolver++` type implements the algorithms in the
 | 
						|
            [DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use `dpmsolver++` or
 | 
						|
            `sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
 | 
						|
        solver_type (`str`, defaults to `midpoint`):
 | 
						|
            Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
 | 
						|
            sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
 | 
						|
        lower_order_final (`bool`, defaults to `True`):
 | 
						|
            Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
 | 
						|
            stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
 | 
						|
        euler_at_final (`bool`, defaults to `False`):
 | 
						|
            Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
 | 
						|
            richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
 | 
						|
            steps, but sometimes may result in blurring.
 | 
						|
        final_sigmas_type (`str`, *optional*, defaults to "zero"):
 | 
						|
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
 | 
						|
            sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
 | 
						|
        lambda_min_clipped (`float`, defaults to `-inf`):
 | 
						|
            Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
 | 
						|
            cosine (`squaredcos_cap_v2`) noise schedule.
 | 
						|
        variance_type (`str`, *optional*):
 | 
						|
            Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
 | 
						|
            contains the predicted Gaussian variance.
 | 
						|
    """
 | 
						|
 | 
						|
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
 | 
						|
    order = 1
 | 
						|
 | 
						|
    @register_to_config
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        num_train_timesteps: int = 1000,
 | 
						|
        solver_order: int = 2,
 | 
						|
        prediction_type: str = "flow_prediction",
 | 
						|
        shift: Optional[float] = 1.0,
 | 
						|
        use_dynamic_shifting=False,
 | 
						|
        thresholding: bool = False,
 | 
						|
        dynamic_thresholding_ratio: float = 0.995,
 | 
						|
        sample_max_value: float = 1.0,
 | 
						|
        algorithm_type: str = "dpmsolver++",
 | 
						|
        solver_type: str = "midpoint",
 | 
						|
        lower_order_final: bool = True,
 | 
						|
        euler_at_final: bool = False,
 | 
						|
        final_sigmas_type: Optional[str] = "zero",  # "zero", "sigma_min"
 | 
						|
        lambda_min_clipped: float = -float("inf"),
 | 
						|
        variance_type: Optional[str] = None,
 | 
						|
        invert_sigmas: bool = False,
 | 
						|
    ):
 | 
						|
        if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
 | 
						|
            deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
 | 
						|
            deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0",
 | 
						|
                      deprecation_message)
 | 
						|
 | 
						|
        # settings for DPM-Solver
 | 
						|
        if algorithm_type not in [
 | 
						|
                "dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"
 | 
						|
        ]:
 | 
						|
            if algorithm_type == "deis":
 | 
						|
                self.register_to_config(algorithm_type="dpmsolver++")
 | 
						|
            else:
 | 
						|
                raise NotImplementedError(
 | 
						|
                    f"{algorithm_type} is not implemented for {self.__class__}")
 | 
						|
 | 
						|
        if solver_type not in ["midpoint", "heun"]:
 | 
						|
            if solver_type in ["logrho", "bh1", "bh2"]:
 | 
						|
                self.register_to_config(solver_type="midpoint")
 | 
						|
            else:
 | 
						|
                raise NotImplementedError(
 | 
						|
                    f"{solver_type} is not implemented for {self.__class__}")
 | 
						|
 | 
						|
        if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"
 | 
						|
                                 ] and final_sigmas_type == "zero":
 | 
						|
            raise ValueError(
 | 
						|
                f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead."
 | 
						|
            )
 | 
						|
 | 
						|
        # setable values
 | 
						|
        self.num_inference_steps = None
 | 
						|
        alphas = np.linspace(1, 1 / num_train_timesteps,
 | 
						|
                             num_train_timesteps)[::-1].copy()
 | 
						|
        sigmas = 1.0 - alphas
 | 
						|
        sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32)
 | 
						|
 | 
						|
        if not use_dynamic_shifting:
 | 
						|
            # when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution
 | 
						|
            sigmas = shift * sigmas / (1 +
 | 
						|
                                       (shift - 1) * sigmas)  # pyright: ignore
 | 
						|
 | 
						|
        self.sigmas = sigmas
 | 
						|
        self.timesteps = sigmas * num_train_timesteps
 | 
						|
 | 
						|
        self.model_outputs = [None] * solver_order
 | 
						|
        self.lower_order_nums = 0
 | 
						|
        self._step_index = None
 | 
						|
        self._begin_index = None
 | 
						|
 | 
						|
        # self.sigmas = self.sigmas.to(
 | 
						|
        #     "cpu")  # to avoid too much CPU/GPU communication
 | 
						|
        self.sigma_min = self.sigmas[-1].item()
 | 
						|
        self.sigma_max = self.sigmas[0].item()
 | 
						|
 | 
						|
    @property
 | 
						|
    def step_index(self):
 | 
						|
        """
 | 
						|
        The index counter for current timestep. It will increase 1 after each scheduler step.
 | 
						|
        """
 | 
						|
        return self._step_index
 | 
						|
 | 
						|
    @property
 | 
						|
    def begin_index(self):
 | 
						|
        """
 | 
						|
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
 | 
						|
        """
 | 
						|
        return self._begin_index
 | 
						|
 | 
						|
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
 | 
						|
    def set_begin_index(self, begin_index: int = 0):
 | 
						|
        """
 | 
						|
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
 | 
						|
        Args:
 | 
						|
            begin_index (`int`):
 | 
						|
                The begin index for the scheduler.
 | 
						|
        """
 | 
						|
        self._begin_index = begin_index
 | 
						|
 | 
						|
    # Modified from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler.set_timesteps
 | 
						|
    def set_timesteps(
 | 
						|
        self,
 | 
						|
        num_inference_steps: Union[int, None] = None,
 | 
						|
        device: Union[str, torch.device] = None,
 | 
						|
        sigmas: Optional[List[float]] = None,
 | 
						|
        mu: Optional[Union[float, None]] = None,
 | 
						|
        shift: Optional[Union[float, None]] = None,
 | 
						|
    ):
 | 
						|
        """
 | 
						|
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
 | 
						|
        Args:
 | 
						|
            num_inference_steps (`int`):
 | 
						|
                Total number of the spacing of the time steps.
 | 
						|
            device (`str` or `torch.device`, *optional*):
 | 
						|
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
 | 
						|
        """
 | 
						|
 | 
						|
        if self.config.use_dynamic_shifting and mu is None:
 | 
						|
            raise ValueError(
 | 
						|
                " you have to pass a value for `mu` when `use_dynamic_shifting` is set to be `True`"
 | 
						|
            )
 | 
						|
 | 
						|
        if sigmas is None:
 | 
						|
            sigmas = np.linspace(self.sigma_max, self.sigma_min,
 | 
						|
                                 num_inference_steps +
 | 
						|
                                 1).copy()[:-1]  # pyright: ignore
 | 
						|
 | 
						|
        if self.config.use_dynamic_shifting:
 | 
						|
            sigmas = self.time_shift(mu, 1.0, sigmas)  # pyright: ignore
 | 
						|
        else:
 | 
						|
            if shift is None:
 | 
						|
                shift = self.config.shift
 | 
						|
            sigmas = shift * sigmas / (1 +
 | 
						|
                                       (shift - 1) * sigmas)  # pyright: ignore
 | 
						|
 | 
						|
        if self.config.final_sigmas_type == "sigma_min":
 | 
						|
            sigma_last = ((1 - self.alphas_cumprod[0]) /
 | 
						|
                          self.alphas_cumprod[0])**0.5
 | 
						|
        elif self.config.final_sigmas_type == "zero":
 | 
						|
            sigma_last = 0
 | 
						|
        else:
 | 
						|
            raise ValueError(
 | 
						|
                f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
 | 
						|
            )
 | 
						|
 | 
						|
        timesteps = sigmas * self.config.num_train_timesteps
 | 
						|
        sigmas = np.concatenate([sigmas, [sigma_last]
 | 
						|
                                ]).astype(np.float32)  # pyright: ignore
 | 
						|
 | 
						|
        self.sigmas = torch.from_numpy(sigmas)
 | 
						|
        self.timesteps = torch.from_numpy(timesteps).to(
 | 
						|
            device=device, dtype=torch.int64)
 | 
						|
 | 
						|
        self.num_inference_steps = len(timesteps)
 | 
						|
 | 
						|
        self.model_outputs = [
 | 
						|
            None,
 | 
						|
        ] * self.config.solver_order
 | 
						|
        self.lower_order_nums = 0
 | 
						|
 | 
						|
        self._step_index = None
 | 
						|
        self._begin_index = None
 | 
						|
        # self.sigmas = self.sigmas.to(
 | 
						|
        #     "cpu")  # to avoid too much CPU/GPU communication
 | 
						|
 | 
						|
    # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
 | 
						|
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
 | 
						|
        """
 | 
						|
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
 | 
						|
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
 | 
						|
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
 | 
						|
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
 | 
						|
        photorealism as well as better image-text alignment, especially when using very large guidance weights."
 | 
						|
        https://arxiv.org/abs/2205.11487
 | 
						|
        """
 | 
						|
        dtype = sample.dtype
 | 
						|
        batch_size, channels, *remaining_dims = sample.shape
 | 
						|
 | 
						|
        if dtype not in (torch.float32, torch.float64):
 | 
						|
            sample = sample.float(
 | 
						|
            )  # upcast for quantile calculation, and clamp not implemented for cpu half
 | 
						|
 | 
						|
        # Flatten sample for doing quantile calculation along each image
 | 
						|
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
 | 
						|
 | 
						|
        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"
 | 
						|
 | 
						|
        s = torch.quantile(
 | 
						|
            abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
 | 
						|
        s = torch.clamp(
 | 
						|
            s, min=1, max=self.config.sample_max_value
 | 
						|
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
 | 
						|
        s = s.unsqueeze(
 | 
						|
            1)  # (batch_size, 1) because clamp will broadcast along dim=0
 | 
						|
        sample = torch.clamp(
 | 
						|
            sample, -s, s
 | 
						|
        ) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"
 | 
						|
 | 
						|
        sample = sample.reshape(batch_size, channels, *remaining_dims)
 | 
						|
        sample = sample.to(dtype)
 | 
						|
 | 
						|
        return sample
 | 
						|
 | 
						|
    # Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler._sigma_to_t
 | 
						|
    def _sigma_to_t(self, sigma):
 | 
						|
        return sigma * self.config.num_train_timesteps
 | 
						|
 | 
						|
    def _sigma_to_alpha_sigma_t(self, sigma):
 | 
						|
        return 1 - sigma, sigma
 | 
						|
 | 
						|
    # Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.set_timesteps
 | 
						|
    def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
 | 
						|
        return math.exp(mu) / (math.exp(mu) + (1 / t - 1)**sigma)
 | 
						|
 | 
						|
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.convert_model_output
 | 
						|
    def convert_model_output(
 | 
						|
        self,
 | 
						|
        model_output: torch.Tensor,
 | 
						|
        *args,
 | 
						|
        sample: torch.Tensor = None,
 | 
						|
        **kwargs,
 | 
						|
    ) -> torch.Tensor:
 | 
						|
        """
 | 
						|
        Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
 | 
						|
        designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
 | 
						|
        integral of the data prediction model.
 | 
						|
        <Tip>
 | 
						|
        The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
 | 
						|
        prediction and data prediction models.
 | 
						|
        </Tip>
 | 
						|
        Args:
 | 
						|
            model_output (`torch.Tensor`):
 | 
						|
                The direct output from the learned diffusion model.
 | 
						|
            sample (`torch.Tensor`):
 | 
						|
                A current instance of a sample created by the diffusion process.
 | 
						|
        Returns:
 | 
						|
            `torch.Tensor`:
 | 
						|
                The converted model output.
 | 
						|
        """
 | 
						|
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
 | 
						|
        if sample is None:
 | 
						|
            if len(args) > 1:
 | 
						|
                sample = args[1]
 | 
						|
            else:
 | 
						|
                raise ValueError(
 | 
						|
                    "missing `sample` as a required keyward argument")
 | 
						|
        if timestep is not None:
 | 
						|
            deprecate(
 | 
						|
                "timesteps",
 | 
						|
                "1.0.0",
 | 
						|
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
 | 
						|
            )
 | 
						|
 | 
						|
        # DPM-Solver++ needs to solve an integral of the data prediction model.
 | 
						|
        if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
 | 
						|
            if self.config.prediction_type == "flow_prediction":
 | 
						|
                sigma_t = self.sigmas[self.step_index]
 | 
						|
                x0_pred = sample - sigma_t * model_output
 | 
						|
            else:
 | 
						|
                raise ValueError(
 | 
						|
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`,"
 | 
						|
                    " `v_prediction`, or `flow_prediction` for the FlowDPMSolverMultistepScheduler."
 | 
						|
                )
 | 
						|
 | 
						|
            if self.config.thresholding:
 | 
						|
                x0_pred = self._threshold_sample(x0_pred)
 | 
						|
 | 
						|
            return x0_pred
 | 
						|
 | 
						|
        # DPM-Solver needs to solve an integral of the noise prediction model.
 | 
						|
        elif self.config.algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
 | 
						|
            if self.config.prediction_type == "flow_prediction":
 | 
						|
                sigma_t = self.sigmas[self.step_index]
 | 
						|
                epsilon = sample - (1 - sigma_t) * model_output
 | 
						|
            else:
 | 
						|
                raise ValueError(
 | 
						|
                    f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`,"
 | 
						|
                    " `v_prediction` or `flow_prediction` for the FlowDPMSolverMultistepScheduler."
 | 
						|
                )
 | 
						|
 | 
						|
            if self.config.thresholding:
 | 
						|
                sigma_t = self.sigmas[self.step_index]
 | 
						|
                x0_pred = sample - sigma_t * model_output
 | 
						|
                x0_pred = self._threshold_sample(x0_pred)
 | 
						|
                epsilon = model_output + x0_pred
 | 
						|
 | 
						|
            return epsilon
 | 
						|
 | 
						|
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.dpm_solver_first_order_update
 | 
						|
    def dpm_solver_first_order_update(
 | 
						|
        self,
 | 
						|
        model_output: torch.Tensor,
 | 
						|
        *args,
 | 
						|
        sample: torch.Tensor = None,
 | 
						|
        noise: Optional[torch.Tensor] = None,
 | 
						|
        **kwargs,
 | 
						|
    ) -> torch.Tensor:
 | 
						|
        """
 | 
						|
        One step for the first-order DPMSolver (equivalent to DDIM).
 | 
						|
        Args:
 | 
						|
            model_output (`torch.Tensor`):
 | 
						|
                The direct output from the learned diffusion model.
 | 
						|
            sample (`torch.Tensor`):
 | 
						|
                A current instance of a sample created by the diffusion process.
 | 
						|
        Returns:
 | 
						|
            `torch.Tensor`:
 | 
						|
                The sample tensor at the previous timestep.
 | 
						|
        """
 | 
						|
        timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
 | 
						|
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop(
 | 
						|
            "prev_timestep", None)
 | 
						|
        if sample is None:
 | 
						|
            if len(args) > 2:
 | 
						|
                sample = args[2]
 | 
						|
            else:
 | 
						|
                raise ValueError(
 | 
						|
                    " missing `sample` as a required keyward argument")
 | 
						|
        if timestep is not None:
 | 
						|
            deprecate(
 | 
						|
                "timesteps",
 | 
						|
                "1.0.0",
 | 
						|
                "Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
 | 
						|
            )
 | 
						|
 | 
						|
        if prev_timestep is not None:
 | 
						|
            deprecate(
 | 
						|
                "prev_timestep",
 | 
						|
                "1.0.0",
 | 
						|
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
 | 
						|
            )
 | 
						|
 | 
						|
        sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[
 | 
						|
            self.step_index]  # pyright: ignore
 | 
						|
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
 | 
						|
        alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
 | 
						|
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
 | 
						|
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
 | 
						|
 | 
						|
        h = lambda_t - lambda_s
 | 
						|
        if self.config.algorithm_type == "dpmsolver++":
 | 
						|
            x_t = (sigma_t /
 | 
						|
                   sigma_s) * sample - (alpha_t *
 | 
						|
                                        (torch.exp(-h) - 1.0)) * model_output
 | 
						|
        elif self.config.algorithm_type == "dpmsolver":
 | 
						|
            x_t = (alpha_t /
 | 
						|
                   alpha_s) * sample - (sigma_t *
 | 
						|
                                        (torch.exp(h) - 1.0)) * model_output
 | 
						|
        elif self.config.algorithm_type == "sde-dpmsolver++":
 | 
						|
            assert noise is not None
 | 
						|
            x_t = ((sigma_t / sigma_s * torch.exp(-h)) * sample +
 | 
						|
                   (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output +
 | 
						|
                   sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise)
 | 
						|
        elif self.config.algorithm_type == "sde-dpmsolver":
 | 
						|
            assert noise is not None
 | 
						|
            x_t = ((alpha_t / alpha_s) * sample - 2.0 *
 | 
						|
                   (sigma_t * (torch.exp(h) - 1.0)) * model_output +
 | 
						|
                   sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise)
 | 
						|
        return x_t  # pyright: ignore
 | 
						|
 | 
						|
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.multistep_dpm_solver_second_order_update
 | 
						|
    def multistep_dpm_solver_second_order_update(
 | 
						|
        self,
 | 
						|
        model_output_list: List[torch.Tensor],
 | 
						|
        *args,
 | 
						|
        sample: torch.Tensor = None,
 | 
						|
        noise: Optional[torch.Tensor] = None,
 | 
						|
        **kwargs,
 | 
						|
    ) -> torch.Tensor:
 | 
						|
        """
 | 
						|
        One step for the second-order multistep DPMSolver.
 | 
						|
        Args:
 | 
						|
            model_output_list (`List[torch.Tensor]`):
 | 
						|
                The direct outputs from learned diffusion model at current and latter timesteps.
 | 
						|
            sample (`torch.Tensor`):
 | 
						|
                A current instance of a sample created by the diffusion process.
 | 
						|
        Returns:
 | 
						|
            `torch.Tensor`:
 | 
						|
                The sample tensor at the previous timestep.
 | 
						|
        """
 | 
						|
        timestep_list = args[0] if len(args) > 0 else kwargs.pop(
 | 
						|
            "timestep_list", None)
 | 
						|
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop(
 | 
						|
            "prev_timestep", None)
 | 
						|
        if sample is None:
 | 
						|
            if len(args) > 2:
 | 
						|
                sample = args[2]
 | 
						|
            else:
 | 
						|
                raise ValueError(
 | 
						|
                    " missing `sample` as a required keyward argument")
 | 
						|
        if timestep_list is not None:
 | 
						|
            deprecate(
 | 
						|
                "timestep_list",
 | 
						|
                "1.0.0",
 | 
						|
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
 | 
						|
            )
 | 
						|
 | 
						|
        if prev_timestep is not None:
 | 
						|
            deprecate(
 | 
						|
                "prev_timestep",
 | 
						|
                "1.0.0",
 | 
						|
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
 | 
						|
            )
 | 
						|
 | 
						|
        sigma_t, sigma_s0, sigma_s1 = (
 | 
						|
            self.sigmas[self.step_index + 1],  # pyright: ignore
 | 
						|
            self.sigmas[self.step_index],
 | 
						|
            self.sigmas[self.step_index - 1],  # pyright: ignore
 | 
						|
        )
 | 
						|
 | 
						|
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
 | 
						|
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
 | 
						|
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
 | 
						|
 | 
						|
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
 | 
						|
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
 | 
						|
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
 | 
						|
 | 
						|
        m0, m1 = model_output_list[-1], model_output_list[-2]
 | 
						|
 | 
						|
        h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
 | 
						|
        r0 = h_0 / h
 | 
						|
        D0, D1 = m0, (1.0 / r0) * (m0 - m1)
 | 
						|
        if self.config.algorithm_type == "dpmsolver++":
 | 
						|
            # See https://arxiv.org/abs/2211.01095 for detailed derivations
 | 
						|
            if self.config.solver_type == "midpoint":
 | 
						|
                x_t = ((sigma_t / sigma_s0) * sample -
 | 
						|
                       (alpha_t * (torch.exp(-h) - 1.0)) * D0 - 0.5 *
 | 
						|
                       (alpha_t * (torch.exp(-h) - 1.0)) * D1)
 | 
						|
            elif self.config.solver_type == "heun":
 | 
						|
                x_t = ((sigma_t / sigma_s0) * sample -
 | 
						|
                       (alpha_t * (torch.exp(-h) - 1.0)) * D0 +
 | 
						|
                       (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1)
 | 
						|
        elif self.config.algorithm_type == "dpmsolver":
 | 
						|
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
 | 
						|
            if self.config.solver_type == "midpoint":
 | 
						|
                x_t = ((alpha_t / alpha_s0) * sample -
 | 
						|
                       (sigma_t * (torch.exp(h) - 1.0)) * D0 - 0.5 *
 | 
						|
                       (sigma_t * (torch.exp(h) - 1.0)) * D1)
 | 
						|
            elif self.config.solver_type == "heun":
 | 
						|
                x_t = ((alpha_t / alpha_s0) * sample -
 | 
						|
                       (sigma_t * (torch.exp(h) - 1.0)) * D0 -
 | 
						|
                       (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1)
 | 
						|
        elif self.config.algorithm_type == "sde-dpmsolver++":
 | 
						|
            assert noise is not None
 | 
						|
            if self.config.solver_type == "midpoint":
 | 
						|
                x_t = ((sigma_t / sigma_s0 * torch.exp(-h)) * sample +
 | 
						|
                       (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 + 0.5 *
 | 
						|
                       (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 +
 | 
						|
                       sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise)
 | 
						|
            elif self.config.solver_type == "heun":
 | 
						|
                x_t = ((sigma_t / sigma_s0 * torch.exp(-h)) * sample +
 | 
						|
                       (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 +
 | 
						|
                       (alpha_t * ((1.0 - torch.exp(-2.0 * h)) /
 | 
						|
                                   (-2.0 * h) + 1.0)) * D1 +
 | 
						|
                       sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise)
 | 
						|
        elif self.config.algorithm_type == "sde-dpmsolver":
 | 
						|
            assert noise is not None
 | 
						|
            if self.config.solver_type == "midpoint":
 | 
						|
                x_t = ((alpha_t / alpha_s0) * sample - 2.0 *
 | 
						|
                       (sigma_t * (torch.exp(h) - 1.0)) * D0 -
 | 
						|
                       (sigma_t * (torch.exp(h) - 1.0)) * D1 +
 | 
						|
                       sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise)
 | 
						|
            elif self.config.solver_type == "heun":
 | 
						|
                x_t = ((alpha_t / alpha_s0) * sample - 2.0 *
 | 
						|
                       (sigma_t * (torch.exp(h) - 1.0)) * D0 - 2.0 *
 | 
						|
                       (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 +
 | 
						|
                       sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise)
 | 
						|
        return x_t  # pyright: ignore
 | 
						|
 | 
						|
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.multistep_dpm_solver_third_order_update
 | 
						|
    def multistep_dpm_solver_third_order_update(
 | 
						|
        self,
 | 
						|
        model_output_list: List[torch.Tensor],
 | 
						|
        *args,
 | 
						|
        sample: torch.Tensor = None,
 | 
						|
        **kwargs,
 | 
						|
    ) -> torch.Tensor:
 | 
						|
        """
 | 
						|
        One step for the third-order multistep DPMSolver.
 | 
						|
        Args:
 | 
						|
            model_output_list (`List[torch.Tensor]`):
 | 
						|
                The direct outputs from learned diffusion model at current and latter timesteps.
 | 
						|
            sample (`torch.Tensor`):
 | 
						|
                A current instance of a sample created by diffusion process.
 | 
						|
        Returns:
 | 
						|
            `torch.Tensor`:
 | 
						|
                The sample tensor at the previous timestep.
 | 
						|
        """
 | 
						|
 | 
						|
        timestep_list = args[0] if len(args) > 0 else kwargs.pop(
 | 
						|
            "timestep_list", None)
 | 
						|
        prev_timestep = args[1] if len(args) > 1 else kwargs.pop(
 | 
						|
            "prev_timestep", None)
 | 
						|
        if sample is None:
 | 
						|
            if len(args) > 2:
 | 
						|
                sample = args[2]
 | 
						|
            else:
 | 
						|
                raise ValueError(
 | 
						|
                    " missing`sample` as a required keyward argument")
 | 
						|
        if timestep_list is not None:
 | 
						|
            deprecate(
 | 
						|
                "timestep_list",
 | 
						|
                "1.0.0",
 | 
						|
                "Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
 | 
						|
            )
 | 
						|
 | 
						|
        if prev_timestep is not None:
 | 
						|
            deprecate(
 | 
						|
                "prev_timestep",
 | 
						|
                "1.0.0",
 | 
						|
                "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
 | 
						|
            )
 | 
						|
 | 
						|
        sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
 | 
						|
            self.sigmas[self.step_index + 1],  # pyright: ignore
 | 
						|
            self.sigmas[self.step_index],
 | 
						|
            self.sigmas[self.step_index - 1],  # pyright: ignore
 | 
						|
            self.sigmas[self.step_index - 2],  # pyright: ignore
 | 
						|
        )
 | 
						|
 | 
						|
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
 | 
						|
        alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
 | 
						|
        alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
 | 
						|
        alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)
 | 
						|
 | 
						|
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
 | 
						|
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
 | 
						|
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
 | 
						|
        lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2)
 | 
						|
 | 
						|
        m0, m1, m2 = model_output_list[-1], model_output_list[
 | 
						|
            -2], model_output_list[-3]
 | 
						|
 | 
						|
        h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
 | 
						|
        r0, r1 = h_0 / h, h_1 / h
 | 
						|
        D0 = m0
 | 
						|
        D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
 | 
						|
        D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
 | 
						|
        D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
 | 
						|
        if self.config.algorithm_type == "dpmsolver++":
 | 
						|
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
 | 
						|
            x_t = ((sigma_t / sigma_s0) * sample -
 | 
						|
                   (alpha_t * (torch.exp(-h) - 1.0)) * D0 +
 | 
						|
                   (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1 -
 | 
						|
                   (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2)
 | 
						|
        elif self.config.algorithm_type == "dpmsolver":
 | 
						|
            # See https://arxiv.org/abs/2206.00927 for detailed derivations
 | 
						|
            x_t = ((alpha_t / alpha_s0) * sample - (sigma_t *
 | 
						|
                                                    (torch.exp(h) - 1.0)) * D0 -
 | 
						|
                   (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1 -
 | 
						|
                   (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2)
 | 
						|
        return x_t  # pyright: ignore
 | 
						|
 | 
						|
    def index_for_timestep(self, timestep, schedule_timesteps=None):
 | 
						|
        if schedule_timesteps is None:
 | 
						|
            schedule_timesteps = self.timesteps
 | 
						|
 | 
						|
        indices = (schedule_timesteps == timestep).nonzero()
 | 
						|
 | 
						|
        # The sigma index that is taken for the **very** first `step`
 | 
						|
        # is always the second index (or the last index if there is only 1)
 | 
						|
        # This way we can ensure we don't accidentally skip a sigma in
 | 
						|
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
 | 
						|
        pos = 1 if len(indices) > 1 else 0
 | 
						|
 | 
						|
        return indices[pos].item()
 | 
						|
 | 
						|
    def _init_step_index(self, timestep):
 | 
						|
        """
 | 
						|
        Initialize the step_index counter for the scheduler.
 | 
						|
        """
 | 
						|
 | 
						|
        if self.begin_index is None:
 | 
						|
            if isinstance(timestep, torch.Tensor):
 | 
						|
                timestep = timestep.to(self.timesteps.device)
 | 
						|
            self._step_index = self.index_for_timestep(timestep)
 | 
						|
        else:
 | 
						|
            self._step_index = self._begin_index
 | 
						|
 | 
						|
    # Modified from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.step
 | 
						|
    def step(
 | 
						|
        self,
 | 
						|
        model_output: torch.Tensor,
 | 
						|
        timestep: Union[int, torch.Tensor],
 | 
						|
        sample: torch.Tensor,
 | 
						|
        generator=None,
 | 
						|
        variance_noise: Optional[torch.Tensor] = None,
 | 
						|
        return_dict: bool = True,
 | 
						|
    ) -> Union[SchedulerOutput, Tuple]:
 | 
						|
        """
 | 
						|
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
 | 
						|
        the multistep DPMSolver.
 | 
						|
        Args:
 | 
						|
            model_output (`torch.Tensor`):
 | 
						|
                The direct output from learned diffusion model.
 | 
						|
            timestep (`int`):
 | 
						|
                The current discrete timestep in the diffusion chain.
 | 
						|
            sample (`torch.Tensor`):
 | 
						|
                A current instance of a sample created by the diffusion process.
 | 
						|
            generator (`torch.Generator`, *optional*):
 | 
						|
                A random number generator.
 | 
						|
            variance_noise (`torch.Tensor`):
 | 
						|
                Alternative to generating noise with `generator` by directly providing the noise for the variance
 | 
						|
                itself. Useful for methods such as [`LEdits++`].
 | 
						|
            return_dict (`bool`):
 | 
						|
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
 | 
						|
        Returns:
 | 
						|
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
 | 
						|
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
 | 
						|
                tuple is returned where the first element is the sample tensor.
 | 
						|
        """
 | 
						|
        if self.num_inference_steps is None:
 | 
						|
            raise ValueError(
 | 
						|
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
 | 
						|
            )
 | 
						|
 | 
						|
        if self.step_index is None:
 | 
						|
            self._init_step_index(timestep)
 | 
						|
 | 
						|
        # Improve numerical stability for small number of steps
 | 
						|
        lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
 | 
						|
            self.config.euler_at_final or
 | 
						|
            (self.config.lower_order_final and len(self.timesteps) < 15) or
 | 
						|
            self.config.final_sigmas_type == "zero")
 | 
						|
        lower_order_second = ((self.step_index == len(self.timesteps) - 2) and
 | 
						|
                              self.config.lower_order_final and
 | 
						|
                              len(self.timesteps) < 15)
 | 
						|
 | 
						|
        model_output = self.convert_model_output(model_output, sample=sample)
 | 
						|
        for i in range(self.config.solver_order - 1):
 | 
						|
            self.model_outputs[i] = self.model_outputs[i + 1]
 | 
						|
        self.model_outputs[-1] = model_output
 | 
						|
 | 
						|
        # Upcast to avoid precision issues when computing prev_sample
 | 
						|
        sample = sample.to(torch.float32)
 | 
						|
        if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"
 | 
						|
                                         ] and variance_noise is None:
 | 
						|
            noise = randn_tensor(
 | 
						|
                model_output.shape,
 | 
						|
                generator=generator,
 | 
						|
                device=model_output.device,
 | 
						|
                dtype=torch.float32)
 | 
						|
        elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
 | 
						|
            noise = variance_noise.to(
 | 
						|
                device=model_output.device,
 | 
						|
                dtype=torch.float32)  # pyright: ignore
 | 
						|
        else:
 | 
						|
            noise = None
 | 
						|
 | 
						|
        if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
 | 
						|
            prev_sample = self.dpm_solver_first_order_update(
 | 
						|
                model_output, sample=sample, noise=noise)
 | 
						|
        elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
 | 
						|
            prev_sample = self.multistep_dpm_solver_second_order_update(
 | 
						|
                self.model_outputs, sample=sample, noise=noise)
 | 
						|
        else:
 | 
						|
            prev_sample = self.multistep_dpm_solver_third_order_update(
 | 
						|
                self.model_outputs, sample=sample)
 | 
						|
 | 
						|
        if self.lower_order_nums < self.config.solver_order:
 | 
						|
            self.lower_order_nums += 1
 | 
						|
 | 
						|
        # Cast sample back to expected dtype
 | 
						|
        prev_sample = prev_sample.to(model_output.dtype)
 | 
						|
 | 
						|
        # upon completion increase step index by one
 | 
						|
        self._step_index += 1  # pyright: ignore
 | 
						|
 | 
						|
        if not return_dict:
 | 
						|
            return (prev_sample,)
 | 
						|
 | 
						|
        return SchedulerOutput(prev_sample=prev_sample)
 | 
						|
 | 
						|
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.scale_model_input
 | 
						|
    def scale_model_input(self, sample: torch.Tensor, *args,
 | 
						|
                          **kwargs) -> torch.Tensor:
 | 
						|
        """
 | 
						|
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
 | 
						|
        current timestep.
 | 
						|
        Args:
 | 
						|
            sample (`torch.Tensor`):
 | 
						|
                The input sample.
 | 
						|
        Returns:
 | 
						|
            `torch.Tensor`:
 | 
						|
                A scaled input sample.
 | 
						|
        """
 | 
						|
        return sample
 | 
						|
 | 
						|
    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.scale_model_input
 | 
						|
    def add_noise(
 | 
						|
        self,
 | 
						|
        original_samples: torch.Tensor,
 | 
						|
        noise: torch.Tensor,
 | 
						|
        timesteps: torch.IntTensor,
 | 
						|
    ) -> torch.Tensor:
 | 
						|
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
 | 
						|
        sigmas = self.sigmas.to(
 | 
						|
            device=original_samples.device, dtype=original_samples.dtype)
 | 
						|
        if original_samples.device.type == "mps" and torch.is_floating_point(
 | 
						|
                timesteps):
 | 
						|
            # mps does not support float64
 | 
						|
            schedule_timesteps = self.timesteps.to(
 | 
						|
                original_samples.device, dtype=torch.float32)
 | 
						|
            timesteps = timesteps.to(
 | 
						|
                original_samples.device, dtype=torch.float32)
 | 
						|
        else:
 | 
						|
            schedule_timesteps = self.timesteps.to(original_samples.device)
 | 
						|
            timesteps = timesteps.to(original_samples.device)
 | 
						|
 | 
						|
        # begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
 | 
						|
        if self.begin_index is None:
 | 
						|
            step_indices = [
 | 
						|
                self.index_for_timestep(t, schedule_timesteps)
 | 
						|
                for t in timesteps
 | 
						|
            ]
 | 
						|
        elif self.step_index is not None:
 | 
						|
            # add_noise is called after first denoising step (for inpainting)
 | 
						|
            step_indices = [self.step_index] * timesteps.shape[0]
 | 
						|
        else:
 | 
						|
            # add noise is called before first denoising step to create initial latent(img2img)
 | 
						|
            step_indices = [self.begin_index] * timesteps.shape[0]
 | 
						|
 | 
						|
        sigma = sigmas[step_indices].flatten()
 | 
						|
        while len(sigma.shape) < len(original_samples.shape):
 | 
						|
            sigma = sigma.unsqueeze(-1)
 | 
						|
 | 
						|
        alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
 | 
						|
        noisy_samples = alpha_t * original_samples + sigma_t * noise
 | 
						|
        return noisy_samples
 | 
						|
 | 
						|
    def __len__(self):
 | 
						|
        return self.config.num_train_timesteps
 |