mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-03 22:04:21 +00:00 
			
		
		
		
	* isort the code * format the code * Add yapf config file * Remove torch cuda memory profiler
		
			
				
	
	
		
			798 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			798 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
						|
import gc
 | 
						|
import logging
 | 
						|
import math
 | 
						|
import os
 | 
						|
import random
 | 
						|
import sys
 | 
						|
import time
 | 
						|
import traceback
 | 
						|
import types
 | 
						|
from contextlib import contextmanager
 | 
						|
from functools import partial
 | 
						|
 | 
						|
import torch
 | 
						|
import torch.cuda.amp as amp
 | 
						|
import torch.distributed as dist
 | 
						|
import torch.multiprocessing as mp
 | 
						|
import torch.nn.functional as F
 | 
						|
import torchvision.transforms.functional as TF
 | 
						|
from PIL import Image
 | 
						|
from tqdm import tqdm
 | 
						|
 | 
						|
from .modules.vace_model import VaceWanModel
 | 
						|
from .text2video import (
 | 
						|
    FlowDPMSolverMultistepScheduler,
 | 
						|
    FlowUniPCMultistepScheduler,
 | 
						|
    T5EncoderModel,
 | 
						|
    WanT2V,
 | 
						|
    WanVAE,
 | 
						|
    get_sampling_sigmas,
 | 
						|
    retrieve_timesteps,
 | 
						|
    shard_model,
 | 
						|
)
 | 
						|
from .utils.vace_processor import VaceVideoProcessor
 | 
						|
 | 
						|
 | 
						|
class WanVace(WanT2V):
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        config,
 | 
						|
        checkpoint_dir,
 | 
						|
        device_id=0,
 | 
						|
        rank=0,
 | 
						|
        t5_fsdp=False,
 | 
						|
        dit_fsdp=False,
 | 
						|
        use_usp=False,
 | 
						|
        t5_cpu=False,
 | 
						|
    ):
 | 
						|
        r"""
 | 
						|
        Initializes the Wan text-to-video generation model components.
 | 
						|
 | 
						|
        Args:
 | 
						|
            config (EasyDict):
 | 
						|
                Object containing model parameters initialized from config.py
 | 
						|
            checkpoint_dir (`str`):
 | 
						|
                Path to directory containing model checkpoints
 | 
						|
            device_id (`int`,  *optional*, defaults to 0):
 | 
						|
                Id of target GPU device
 | 
						|
            rank (`int`,  *optional*, defaults to 0):
 | 
						|
                Process rank for distributed training
 | 
						|
            t5_fsdp (`bool`, *optional*, defaults to False):
 | 
						|
                Enable FSDP sharding for T5 model
 | 
						|
            dit_fsdp (`bool`, *optional*, defaults to False):
 | 
						|
                Enable FSDP sharding for DiT model
 | 
						|
            use_usp (`bool`, *optional*, defaults to False):
 | 
						|
                Enable distribution strategy of USP.
 | 
						|
            t5_cpu (`bool`, *optional*, defaults to False):
 | 
						|
                Whether to place T5 model on CPU. Only works without t5_fsdp.
 | 
						|
        """
 | 
						|
        self.device = torch.device(f"cuda:{device_id}")
 | 
						|
        self.config = config
 | 
						|
        self.rank = rank
 | 
						|
        self.t5_cpu = t5_cpu
 | 
						|
 | 
						|
        self.num_train_timesteps = config.num_train_timesteps
 | 
						|
        self.param_dtype = config.param_dtype
 | 
						|
 | 
						|
        shard_fn = partial(shard_model, device_id=device_id)
 | 
						|
        self.text_encoder = T5EncoderModel(
 | 
						|
            text_len=config.text_len,
 | 
						|
            dtype=config.t5_dtype,
 | 
						|
            device=torch.device('cpu'),
 | 
						|
            checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
 | 
						|
            tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
 | 
						|
            shard_fn=shard_fn if t5_fsdp else None)
 | 
						|
 | 
						|
        self.vae_stride = config.vae_stride
 | 
						|
        self.patch_size = config.patch_size
 | 
						|
        self.vae = WanVAE(
 | 
						|
            vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
 | 
						|
            device=self.device)
 | 
						|
 | 
						|
        logging.info(f"Creating VaceWanModel from {checkpoint_dir}")
 | 
						|
        self.model = VaceWanModel.from_pretrained(checkpoint_dir)
 | 
						|
        self.model.eval().requires_grad_(False)
 | 
						|
 | 
						|
        if use_usp:
 | 
						|
            from xfuser.core.distributed import get_sequence_parallel_world_size
 | 
						|
 | 
						|
            from .distributed.xdit_context_parallel import (
 | 
						|
                usp_attn_forward,
 | 
						|
                usp_dit_forward,
 | 
						|
                usp_dit_forward_vace,
 | 
						|
            )
 | 
						|
            for block in self.model.blocks:
 | 
						|
                block.self_attn.forward = types.MethodType(
 | 
						|
                    usp_attn_forward, block.self_attn)
 | 
						|
            for block in self.model.vace_blocks:
 | 
						|
                block.self_attn.forward = types.MethodType(
 | 
						|
                    usp_attn_forward, block.self_attn)
 | 
						|
            self.model.forward = types.MethodType(usp_dit_forward, self.model)
 | 
						|
            self.model.forward_vace = types.MethodType(usp_dit_forward_vace,
 | 
						|
                                                       self.model)
 | 
						|
            self.sp_size = get_sequence_parallel_world_size()
 | 
						|
        else:
 | 
						|
            self.sp_size = 1
 | 
						|
 | 
						|
        if dist.is_initialized():
 | 
						|
            dist.barrier()
 | 
						|
        if dit_fsdp:
 | 
						|
            self.model = shard_fn(self.model)
 | 
						|
        else:
 | 
						|
            self.model.to(self.device)
 | 
						|
 | 
						|
        self.sample_neg_prompt = config.sample_neg_prompt
 | 
						|
 | 
						|
        self.vid_proc = VaceVideoProcessor(
 | 
						|
            downsample=tuple(
 | 
						|
                [x * y for x, y in zip(config.vae_stride, self.patch_size)]),
 | 
						|
            min_area=720 * 1280,
 | 
						|
            max_area=720 * 1280,
 | 
						|
            min_fps=config.sample_fps,
 | 
						|
            max_fps=config.sample_fps,
 | 
						|
            zero_start=True,
 | 
						|
            seq_len=75600,
 | 
						|
            keep_last=True)
 | 
						|
 | 
						|
    def vace_encode_frames(self, frames, ref_images, masks=None, vae=None):
 | 
						|
        vae = self.vae if vae is None else vae
 | 
						|
        if ref_images is None:
 | 
						|
            ref_images = [None] * len(frames)
 | 
						|
        else:
 | 
						|
            assert len(frames) == len(ref_images)
 | 
						|
 | 
						|
        if masks is None:
 | 
						|
            latents = vae.encode(frames)
 | 
						|
        else:
 | 
						|
            masks = [torch.where(m > 0.5, 1.0, 0.0) for m in masks]
 | 
						|
            inactive = [i * (1 - m) + 0 * m for i, m in zip(frames, masks)]
 | 
						|
            reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)]
 | 
						|
            inactive = vae.encode(inactive)
 | 
						|
            reactive = vae.encode(reactive)
 | 
						|
            latents = [
 | 
						|
                torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)
 | 
						|
            ]
 | 
						|
 | 
						|
        cat_latents = []
 | 
						|
        for latent, refs in zip(latents, ref_images):
 | 
						|
            if refs is not None:
 | 
						|
                if masks is None:
 | 
						|
                    ref_latent = vae.encode(refs)
 | 
						|
                else:
 | 
						|
                    ref_latent = vae.encode(refs)
 | 
						|
                    ref_latent = [
 | 
						|
                        torch.cat((u, torch.zeros_like(u)), dim=0)
 | 
						|
                        for u in ref_latent
 | 
						|
                    ]
 | 
						|
                assert all([x.shape[1] == 1 for x in ref_latent])
 | 
						|
                latent = torch.cat([*ref_latent, latent], dim=1)
 | 
						|
            cat_latents.append(latent)
 | 
						|
        return cat_latents
 | 
						|
 | 
						|
    def vace_encode_masks(self, masks, ref_images=None, vae_stride=None):
 | 
						|
        vae_stride = self.vae_stride if vae_stride is None else vae_stride
 | 
						|
        if ref_images is None:
 | 
						|
            ref_images = [None] * len(masks)
 | 
						|
        else:
 | 
						|
            assert len(masks) == len(ref_images)
 | 
						|
 | 
						|
        result_masks = []
 | 
						|
        for mask, refs in zip(masks, ref_images):
 | 
						|
            c, depth, height, width = mask.shape
 | 
						|
            new_depth = int((depth + 3) // vae_stride[0])
 | 
						|
            height = 2 * (int(height) // (vae_stride[1] * 2))
 | 
						|
            width = 2 * (int(width) // (vae_stride[2] * 2))
 | 
						|
 | 
						|
            # reshape
 | 
						|
            mask = mask[0, :, :, :]
 | 
						|
            mask = mask.view(depth, height, vae_stride[1], width,
 | 
						|
                             vae_stride[1])  # depth, height, 8, width, 8
 | 
						|
            mask = mask.permute(2, 4, 0, 1, 3)  # 8, 8, depth, height, width
 | 
						|
            mask = mask.reshape(vae_stride[1] * vae_stride[2], depth, height,
 | 
						|
                                width)  # 8*8, depth, height, width
 | 
						|
 | 
						|
            # interpolation
 | 
						|
            mask = F.interpolate(
 | 
						|
                mask.unsqueeze(0),
 | 
						|
                size=(new_depth, height, width),
 | 
						|
                mode='nearest-exact').squeeze(0)
 | 
						|
 | 
						|
            if refs is not None:
 | 
						|
                length = len(refs)
 | 
						|
                mask_pad = torch.zeros_like(mask[:, :length, :, :])
 | 
						|
                mask = torch.cat((mask_pad, mask), dim=1)
 | 
						|
            result_masks.append(mask)
 | 
						|
        return result_masks
 | 
						|
 | 
						|
    def vace_latent(self, z, m):
 | 
						|
        return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)]
 | 
						|
 | 
						|
    def prepare_source(self, src_video, src_mask, src_ref_images, num_frames,
 | 
						|
                       image_size, device):
 | 
						|
        area = image_size[0] * image_size[1]
 | 
						|
        self.vid_proc.set_area(area)
 | 
						|
        if area == 720 * 1280:
 | 
						|
            self.vid_proc.set_seq_len(75600)
 | 
						|
        elif area == 480 * 832:
 | 
						|
            self.vid_proc.set_seq_len(32760)
 | 
						|
        else:
 | 
						|
            raise NotImplementedError(
 | 
						|
                f'image_size {image_size} is not supported')
 | 
						|
 | 
						|
        image_size = (image_size[1], image_size[0])
 | 
						|
        image_sizes = []
 | 
						|
        for i, (sub_src_video,
 | 
						|
                sub_src_mask) in enumerate(zip(src_video, src_mask)):
 | 
						|
            if sub_src_mask is not None and sub_src_video is not None:
 | 
						|
                src_video[i], src_mask[
 | 
						|
                    i], _, _, _ = self.vid_proc.load_video_pair(
 | 
						|
                        sub_src_video, sub_src_mask)
 | 
						|
                src_video[i] = src_video[i].to(device)
 | 
						|
                src_mask[i] = src_mask[i].to(device)
 | 
						|
                src_mask[i] = torch.clamp(
 | 
						|
                    (src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1)
 | 
						|
                image_sizes.append(src_video[i].shape[2:])
 | 
						|
            elif sub_src_video is None:
 | 
						|
                src_video[i] = torch.zeros(
 | 
						|
                    (3, num_frames, image_size[0], image_size[1]),
 | 
						|
                    device=device)
 | 
						|
                src_mask[i] = torch.ones_like(src_video[i], device=device)
 | 
						|
                image_sizes.append(image_size)
 | 
						|
            else:
 | 
						|
                src_video[i], _, _, _ = self.vid_proc.load_video(sub_src_video)
 | 
						|
                src_video[i] = src_video[i].to(device)
 | 
						|
                src_mask[i] = torch.ones_like(src_video[i], device=device)
 | 
						|
                image_sizes.append(src_video[i].shape[2:])
 | 
						|
 | 
						|
        for i, ref_images in enumerate(src_ref_images):
 | 
						|
            if ref_images is not None:
 | 
						|
                image_size = image_sizes[i]
 | 
						|
                for j, ref_img in enumerate(ref_images):
 | 
						|
                    if ref_img is not None:
 | 
						|
                        ref_img = Image.open(ref_img).convert("RGB")
 | 
						|
                        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(
 | 
						|
                            0.5).unsqueeze(1)
 | 
						|
                        if ref_img.shape[-2:] != image_size:
 | 
						|
                            canvas_height, canvas_width = image_size
 | 
						|
                            ref_height, ref_width = ref_img.shape[-2:]
 | 
						|
                            white_canvas = torch.ones(
 | 
						|
                                (3, 1, canvas_height, canvas_width),
 | 
						|
                                device=device)  # [-1, 1]
 | 
						|
                            scale = min(canvas_height / ref_height,
 | 
						|
                                        canvas_width / ref_width)
 | 
						|
                            new_height = int(ref_height * scale)
 | 
						|
                            new_width = int(ref_width * scale)
 | 
						|
                            resized_image = F.interpolate(
 | 
						|
                                ref_img.squeeze(1).unsqueeze(0),
 | 
						|
                                size=(new_height, new_width),
 | 
						|
                                mode='bilinear',
 | 
						|
                                align_corners=False).squeeze(0).unsqueeze(1)
 | 
						|
                            top = (canvas_height - new_height) // 2
 | 
						|
                            left = (canvas_width - new_width) // 2
 | 
						|
                            white_canvas[:, :, top:top + new_height,
 | 
						|
                                         left:left + new_width] = resized_image
 | 
						|
                            ref_img = white_canvas
 | 
						|
                        src_ref_images[i][j] = ref_img.to(device)
 | 
						|
        return src_video, src_mask, src_ref_images
 | 
						|
 | 
						|
    def decode_latent(self, zs, ref_images=None, vae=None):
 | 
						|
        vae = self.vae if vae is None else vae
 | 
						|
        if ref_images is None:
 | 
						|
            ref_images = [None] * len(zs)
 | 
						|
        else:
 | 
						|
            assert len(zs) == len(ref_images)
 | 
						|
 | 
						|
        trimed_zs = []
 | 
						|
        for z, refs in zip(zs, ref_images):
 | 
						|
            if refs is not None:
 | 
						|
                z = z[:, len(refs):, :, :]
 | 
						|
            trimed_zs.append(z)
 | 
						|
 | 
						|
        return vae.decode(trimed_zs)
 | 
						|
 | 
						|
    def generate(self,
 | 
						|
                 input_prompt,
 | 
						|
                 input_frames,
 | 
						|
                 input_masks,
 | 
						|
                 input_ref_images,
 | 
						|
                 size=(1280, 720),
 | 
						|
                 frame_num=81,
 | 
						|
                 context_scale=1.0,
 | 
						|
                 shift=5.0,
 | 
						|
                 sample_solver='unipc',
 | 
						|
                 sampling_steps=50,
 | 
						|
                 guide_scale=5.0,
 | 
						|
                 n_prompt="",
 | 
						|
                 seed=-1,
 | 
						|
                 offload_model=True):
 | 
						|
        r"""
 | 
						|
        Generates video frames from text prompt using diffusion process.
 | 
						|
 | 
						|
        Args:
 | 
						|
            input_prompt (`str`):
 | 
						|
                Text prompt for content generation
 | 
						|
            size (tupele[`int`], *optional*, defaults to (1280,720)):
 | 
						|
                Controls video resolution, (width,height).
 | 
						|
            frame_num (`int`, *optional*, defaults to 81):
 | 
						|
                How many frames to sample from a video. The number should be 4n+1
 | 
						|
            shift (`float`, *optional*, defaults to 5.0):
 | 
						|
                Noise schedule shift parameter. Affects temporal dynamics
 | 
						|
            sample_solver (`str`, *optional*, defaults to 'unipc'):
 | 
						|
                Solver used to sample the video.
 | 
						|
            sampling_steps (`int`, *optional*, defaults to 40):
 | 
						|
                Number of diffusion sampling steps. Higher values improve quality but slow generation
 | 
						|
            guide_scale (`float`, *optional*, defaults 5.0):
 | 
						|
                Classifier-free guidance scale. Controls prompt adherence vs. creativity
 | 
						|
            n_prompt (`str`, *optional*, defaults to ""):
 | 
						|
                Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
 | 
						|
            seed (`int`, *optional*, defaults to -1):
 | 
						|
                Random seed for noise generation. If -1, use random seed.
 | 
						|
            offload_model (`bool`, *optional*, defaults to True):
 | 
						|
                If True, offloads models to CPU during generation to save VRAM
 | 
						|
 | 
						|
        Returns:
 | 
						|
            torch.Tensor:
 | 
						|
                Generated video frames tensor. Dimensions: (C, N H, W) where:
 | 
						|
                - C: Color channels (3 for RGB)
 | 
						|
                - N: Number of frames (81)
 | 
						|
                - H: Frame height (from size)
 | 
						|
                - W: Frame width from size)
 | 
						|
        """
 | 
						|
        # preprocess
 | 
						|
        # F = frame_num
 | 
						|
        # target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
 | 
						|
        #                 size[1] // self.vae_stride[1],
 | 
						|
        #                 size[0] // self.vae_stride[2])
 | 
						|
        #
 | 
						|
        # seq_len = math.ceil((target_shape[2] * target_shape[3]) /
 | 
						|
        #                     (self.patch_size[1] * self.patch_size[2]) *
 | 
						|
        #                     target_shape[1] / self.sp_size) * self.sp_size
 | 
						|
 | 
						|
        if n_prompt == "":
 | 
						|
            n_prompt = self.sample_neg_prompt
 | 
						|
        seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
 | 
						|
        seed_g = torch.Generator(device=self.device)
 | 
						|
        seed_g.manual_seed(seed)
 | 
						|
 | 
						|
        if not self.t5_cpu:
 | 
						|
            self.text_encoder.model.to(self.device)
 | 
						|
            context = self.text_encoder([input_prompt], self.device)
 | 
						|
            context_null = self.text_encoder([n_prompt], self.device)
 | 
						|
            if offload_model:
 | 
						|
                self.text_encoder.model.cpu()
 | 
						|
        else:
 | 
						|
            context = self.text_encoder([input_prompt], torch.device('cpu'))
 | 
						|
            context_null = self.text_encoder([n_prompt], torch.device('cpu'))
 | 
						|
            context = [t.to(self.device) for t in context]
 | 
						|
            context_null = [t.to(self.device) for t in context_null]
 | 
						|
 | 
						|
        # vace context encode
 | 
						|
        z0 = self.vace_encode_frames(
 | 
						|
            input_frames, input_ref_images, masks=input_masks)
 | 
						|
        m0 = self.vace_encode_masks(input_masks, input_ref_images)
 | 
						|
        z = self.vace_latent(z0, m0)
 | 
						|
 | 
						|
        target_shape = list(z0[0].shape)
 | 
						|
        target_shape[0] = int(target_shape[0] / 2)
 | 
						|
        noise = [
 | 
						|
            torch.randn(
 | 
						|
                target_shape[0],
 | 
						|
                target_shape[1],
 | 
						|
                target_shape[2],
 | 
						|
                target_shape[3],
 | 
						|
                dtype=torch.float32,
 | 
						|
                device=self.device,
 | 
						|
                generator=seed_g)
 | 
						|
        ]
 | 
						|
        seq_len = math.ceil((target_shape[2] * target_shape[3]) /
 | 
						|
                            (self.patch_size[1] * self.patch_size[2]) *
 | 
						|
                            target_shape[1] / self.sp_size) * self.sp_size
 | 
						|
 | 
						|
        @contextmanager
 | 
						|
        def noop_no_sync():
 | 
						|
            yield
 | 
						|
 | 
						|
        no_sync = getattr(self.model, 'no_sync', noop_no_sync)
 | 
						|
 | 
						|
        # evaluation mode
 | 
						|
        with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():
 | 
						|
 | 
						|
            if sample_solver == 'unipc':
 | 
						|
                sample_scheduler = FlowUniPCMultistepScheduler(
 | 
						|
                    num_train_timesteps=self.num_train_timesteps,
 | 
						|
                    shift=1,
 | 
						|
                    use_dynamic_shifting=False)
 | 
						|
                sample_scheduler.set_timesteps(
 | 
						|
                    sampling_steps, device=self.device, shift=shift)
 | 
						|
                timesteps = sample_scheduler.timesteps
 | 
						|
            elif sample_solver == 'dpm++':
 | 
						|
                sample_scheduler = FlowDPMSolverMultistepScheduler(
 | 
						|
                    num_train_timesteps=self.num_train_timesteps,
 | 
						|
                    shift=1,
 | 
						|
                    use_dynamic_shifting=False)
 | 
						|
                sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
 | 
						|
                timesteps, _ = retrieve_timesteps(
 | 
						|
                    sample_scheduler,
 | 
						|
                    device=self.device,
 | 
						|
                    sigmas=sampling_sigmas)
 | 
						|
            else:
 | 
						|
                raise NotImplementedError("Unsupported solver.")
 | 
						|
 | 
						|
            # sample videos
 | 
						|
            latents = noise
 | 
						|
 | 
						|
            arg_c = {'context': context, 'seq_len': seq_len}
 | 
						|
            arg_null = {'context': context_null, 'seq_len': seq_len}
 | 
						|
 | 
						|
            for _, t in enumerate(tqdm(timesteps)):
 | 
						|
                latent_model_input = latents
 | 
						|
                timestep = [t]
 | 
						|
 | 
						|
                timestep = torch.stack(timestep)
 | 
						|
 | 
						|
                self.model.to(self.device)
 | 
						|
                noise_pred_cond = self.model(
 | 
						|
                    latent_model_input,
 | 
						|
                    t=timestep,
 | 
						|
                    vace_context=z,
 | 
						|
                    vace_context_scale=context_scale,
 | 
						|
                    **arg_c)[0]
 | 
						|
                noise_pred_uncond = self.model(
 | 
						|
                    latent_model_input,
 | 
						|
                    t=timestep,
 | 
						|
                    vace_context=z,
 | 
						|
                    vace_context_scale=context_scale,
 | 
						|
                    **arg_null)[0]
 | 
						|
 | 
						|
                noise_pred = noise_pred_uncond + guide_scale * (
 | 
						|
                    noise_pred_cond - noise_pred_uncond)
 | 
						|
 | 
						|
                temp_x0 = sample_scheduler.step(
 | 
						|
                    noise_pred.unsqueeze(0),
 | 
						|
                    t,
 | 
						|
                    latents[0].unsqueeze(0),
 | 
						|
                    return_dict=False,
 | 
						|
                    generator=seed_g)[0]
 | 
						|
                latents = [temp_x0.squeeze(0)]
 | 
						|
 | 
						|
            x0 = latents
 | 
						|
            if offload_model:
 | 
						|
                self.model.cpu()
 | 
						|
                torch.cuda.empty_cache()
 | 
						|
            if self.rank == 0:
 | 
						|
                videos = self.decode_latent(x0, input_ref_images)
 | 
						|
 | 
						|
        del noise, latents
 | 
						|
        del sample_scheduler
 | 
						|
        if offload_model:
 | 
						|
            gc.collect()
 | 
						|
            torch.cuda.synchronize()
 | 
						|
        if dist.is_initialized():
 | 
						|
            dist.barrier()
 | 
						|
 | 
						|
        return videos[0] if self.rank == 0 else None
 | 
						|
 | 
						|
 | 
						|
class WanVaceMP(WanVace):
 | 
						|
 | 
						|
    def __init__(self,
 | 
						|
                 config,
 | 
						|
                 checkpoint_dir,
 | 
						|
                 use_usp=False,
 | 
						|
                 ulysses_size=None,
 | 
						|
                 ring_size=None):
 | 
						|
        self.config = config
 | 
						|
        self.checkpoint_dir = checkpoint_dir
 | 
						|
        self.use_usp = use_usp
 | 
						|
        os.environ['MASTER_ADDR'] = 'localhost'
 | 
						|
        os.environ['MASTER_PORT'] = '12345'
 | 
						|
        os.environ['RANK'] = '0'
 | 
						|
        os.environ['WORLD_SIZE'] = '1'
 | 
						|
        self.in_q_list = None
 | 
						|
        self.out_q = None
 | 
						|
        self.inference_pids = None
 | 
						|
        self.ulysses_size = ulysses_size
 | 
						|
        self.ring_size = ring_size
 | 
						|
        self.dynamic_load()
 | 
						|
 | 
						|
        self.device = 'cpu' if torch.cuda.is_available() else 'cpu'
 | 
						|
        self.vid_proc = VaceVideoProcessor(
 | 
						|
            downsample=tuple(
 | 
						|
                [x * y for x, y in zip(config.vae_stride, config.patch_size)]),
 | 
						|
            min_area=480 * 832,
 | 
						|
            max_area=480 * 832,
 | 
						|
            min_fps=self.config.sample_fps,
 | 
						|
            max_fps=self.config.sample_fps,
 | 
						|
            zero_start=True,
 | 
						|
            seq_len=32760,
 | 
						|
            keep_last=True)
 | 
						|
 | 
						|
    def dynamic_load(self):
 | 
						|
        if hasattr(self, 'inference_pids') and self.inference_pids is not None:
 | 
						|
            return
 | 
						|
        gpu_infer = os.environ.get(
 | 
						|
            'LOCAL_WORLD_SIZE') or torch.cuda.device_count()
 | 
						|
        pmi_rank = int(os.environ['RANK'])
 | 
						|
        pmi_world_size = int(os.environ['WORLD_SIZE'])
 | 
						|
        in_q_list = [
 | 
						|
            torch.multiprocessing.Manager().Queue() for _ in range(gpu_infer)
 | 
						|
        ]
 | 
						|
        out_q = torch.multiprocessing.Manager().Queue()
 | 
						|
        initialized_events = [
 | 
						|
            torch.multiprocessing.Manager().Event() for _ in range(gpu_infer)
 | 
						|
        ]
 | 
						|
        context = mp.spawn(
 | 
						|
            self.mp_worker,
 | 
						|
            nprocs=gpu_infer,
 | 
						|
            args=(gpu_infer, pmi_rank, pmi_world_size, in_q_list, out_q,
 | 
						|
                  initialized_events, self),
 | 
						|
            join=False)
 | 
						|
        all_initialized = False
 | 
						|
        while not all_initialized:
 | 
						|
            all_initialized = all(
 | 
						|
                event.is_set() for event in initialized_events)
 | 
						|
            if not all_initialized:
 | 
						|
                time.sleep(0.1)
 | 
						|
        print('Inference model is initialized', flush=True)
 | 
						|
        self.in_q_list = in_q_list
 | 
						|
        self.out_q = out_q
 | 
						|
        self.inference_pids = context.pids()
 | 
						|
        self.initialized_events = initialized_events
 | 
						|
 | 
						|
    def transfer_data_to_cuda(self, data, device):
 | 
						|
        if data is None:
 | 
						|
            return None
 | 
						|
        else:
 | 
						|
            if isinstance(data, torch.Tensor):
 | 
						|
                data = data.to(device)
 | 
						|
            elif isinstance(data, list):
 | 
						|
                data = [
 | 
						|
                    self.transfer_data_to_cuda(subdata, device)
 | 
						|
                    for subdata in data
 | 
						|
                ]
 | 
						|
            elif isinstance(data, dict):
 | 
						|
                data = {
 | 
						|
                    key: self.transfer_data_to_cuda(val, device)
 | 
						|
                    for key, val in data.items()
 | 
						|
                }
 | 
						|
        return data
 | 
						|
 | 
						|
    def mp_worker(self, gpu, gpu_infer, pmi_rank, pmi_world_size, in_q_list,
 | 
						|
                  out_q, initialized_events, work_env):
 | 
						|
        try:
 | 
						|
            world_size = pmi_world_size * gpu_infer
 | 
						|
            rank = pmi_rank * gpu_infer + gpu
 | 
						|
            print("world_size", world_size, "rank", rank, flush=True)
 | 
						|
 | 
						|
            torch.cuda.set_device(gpu)
 | 
						|
            dist.init_process_group(
 | 
						|
                backend='nccl',
 | 
						|
                init_method='env://',
 | 
						|
                rank=rank,
 | 
						|
                world_size=world_size)
 | 
						|
 | 
						|
            from xfuser.core.distributed import (
 | 
						|
                init_distributed_environment,
 | 
						|
                initialize_model_parallel,
 | 
						|
            )
 | 
						|
            init_distributed_environment(
 | 
						|
                rank=dist.get_rank(), world_size=dist.get_world_size())
 | 
						|
 | 
						|
            initialize_model_parallel(
 | 
						|
                sequence_parallel_degree=dist.get_world_size(),
 | 
						|
                ring_degree=self.ring_size or 1,
 | 
						|
                ulysses_degree=self.ulysses_size or 1)
 | 
						|
 | 
						|
            num_train_timesteps = self.config.num_train_timesteps
 | 
						|
            param_dtype = self.config.param_dtype
 | 
						|
            shard_fn = partial(shard_model, device_id=gpu)
 | 
						|
            text_encoder = T5EncoderModel(
 | 
						|
                text_len=self.config.text_len,
 | 
						|
                dtype=self.config.t5_dtype,
 | 
						|
                device=torch.device('cpu'),
 | 
						|
                checkpoint_path=os.path.join(self.checkpoint_dir,
 | 
						|
                                             self.config.t5_checkpoint),
 | 
						|
                tokenizer_path=os.path.join(self.checkpoint_dir,
 | 
						|
                                            self.config.t5_tokenizer),
 | 
						|
                shard_fn=shard_fn if True else None)
 | 
						|
            text_encoder.model.to(gpu)
 | 
						|
            vae_stride = self.config.vae_stride
 | 
						|
            patch_size = self.config.patch_size
 | 
						|
            vae = WanVAE(
 | 
						|
                vae_pth=os.path.join(self.checkpoint_dir,
 | 
						|
                                     self.config.vae_checkpoint),
 | 
						|
                device=gpu)
 | 
						|
            logging.info(f"Creating VaceWanModel from {self.checkpoint_dir}")
 | 
						|
            model = VaceWanModel.from_pretrained(self.checkpoint_dir)
 | 
						|
            model.eval().requires_grad_(False)
 | 
						|
 | 
						|
            if self.use_usp:
 | 
						|
                from xfuser.core.distributed import get_sequence_parallel_world_size
 | 
						|
 | 
						|
                from .distributed.xdit_context_parallel import (
 | 
						|
                    usp_attn_forward,
 | 
						|
                    usp_dit_forward,
 | 
						|
                    usp_dit_forward_vace,
 | 
						|
                )
 | 
						|
                for block in model.blocks:
 | 
						|
                    block.self_attn.forward = types.MethodType(
 | 
						|
                        usp_attn_forward, block.self_attn)
 | 
						|
                for block in model.vace_blocks:
 | 
						|
                    block.self_attn.forward = types.MethodType(
 | 
						|
                        usp_attn_forward, block.self_attn)
 | 
						|
                model.forward = types.MethodType(usp_dit_forward, model)
 | 
						|
                model.forward_vace = types.MethodType(usp_dit_forward_vace,
 | 
						|
                                                      model)
 | 
						|
                sp_size = get_sequence_parallel_world_size()
 | 
						|
            else:
 | 
						|
                sp_size = 1
 | 
						|
 | 
						|
            dist.barrier()
 | 
						|
            model = shard_fn(model)
 | 
						|
            sample_neg_prompt = self.config.sample_neg_prompt
 | 
						|
 | 
						|
            torch.cuda.empty_cache()
 | 
						|
            event = initialized_events[gpu]
 | 
						|
            in_q = in_q_list[gpu]
 | 
						|
            event.set()
 | 
						|
 | 
						|
            while True:
 | 
						|
                item = in_q.get()
 | 
						|
                input_prompt, input_frames, input_masks, input_ref_images, size, frame_num, context_scale, \
 | 
						|
                shift, sample_solver, sampling_steps, guide_scale, n_prompt, seed, offload_model = item
 | 
						|
                input_frames = self.transfer_data_to_cuda(input_frames, gpu)
 | 
						|
                input_masks = self.transfer_data_to_cuda(input_masks, gpu)
 | 
						|
                input_ref_images = self.transfer_data_to_cuda(
 | 
						|
                    input_ref_images, gpu)
 | 
						|
 | 
						|
                if n_prompt == "":
 | 
						|
                    n_prompt = sample_neg_prompt
 | 
						|
                seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
 | 
						|
                seed_g = torch.Generator(device=gpu)
 | 
						|
                seed_g.manual_seed(seed)
 | 
						|
 | 
						|
                context = text_encoder([input_prompt], gpu)
 | 
						|
                context_null = text_encoder([n_prompt], gpu)
 | 
						|
 | 
						|
                # vace context encode
 | 
						|
                z0 = self.vace_encode_frames(
 | 
						|
                    input_frames, input_ref_images, masks=input_masks, vae=vae)
 | 
						|
                m0 = self.vace_encode_masks(
 | 
						|
                    input_masks, input_ref_images, vae_stride=vae_stride)
 | 
						|
                z = self.vace_latent(z0, m0)
 | 
						|
 | 
						|
                target_shape = list(z0[0].shape)
 | 
						|
                target_shape[0] = int(target_shape[0] / 2)
 | 
						|
                noise = [
 | 
						|
                    torch.randn(
 | 
						|
                        target_shape[0],
 | 
						|
                        target_shape[1],
 | 
						|
                        target_shape[2],
 | 
						|
                        target_shape[3],
 | 
						|
                        dtype=torch.float32,
 | 
						|
                        device=gpu,
 | 
						|
                        generator=seed_g)
 | 
						|
                ]
 | 
						|
                seq_len = math.ceil((target_shape[2] * target_shape[3]) /
 | 
						|
                                    (patch_size[1] * patch_size[2]) *
 | 
						|
                                    target_shape[1] / sp_size) * sp_size
 | 
						|
 | 
						|
                @contextmanager
 | 
						|
                def noop_no_sync():
 | 
						|
                    yield
 | 
						|
 | 
						|
                no_sync = getattr(model, 'no_sync', noop_no_sync)
 | 
						|
 | 
						|
                # evaluation mode
 | 
						|
                with amp.autocast(
 | 
						|
                        dtype=param_dtype), torch.no_grad(), no_sync():
 | 
						|
 | 
						|
                    if sample_solver == 'unipc':
 | 
						|
                        sample_scheduler = FlowUniPCMultistepScheduler(
 | 
						|
                            num_train_timesteps=num_train_timesteps,
 | 
						|
                            shift=1,
 | 
						|
                            use_dynamic_shifting=False)
 | 
						|
                        sample_scheduler.set_timesteps(
 | 
						|
                            sampling_steps, device=gpu, shift=shift)
 | 
						|
                        timesteps = sample_scheduler.timesteps
 | 
						|
                    elif sample_solver == 'dpm++':
 | 
						|
                        sample_scheduler = FlowDPMSolverMultistepScheduler(
 | 
						|
                            num_train_timesteps=num_train_timesteps,
 | 
						|
                            shift=1,
 | 
						|
                            use_dynamic_shifting=False)
 | 
						|
                        sampling_sigmas = get_sampling_sigmas(
 | 
						|
                            sampling_steps, shift)
 | 
						|
                        timesteps, _ = retrieve_timesteps(
 | 
						|
                            sample_scheduler,
 | 
						|
                            device=gpu,
 | 
						|
                            sigmas=sampling_sigmas)
 | 
						|
                    else:
 | 
						|
                        raise NotImplementedError("Unsupported solver.")
 | 
						|
 | 
						|
                    # sample videos
 | 
						|
                    latents = noise
 | 
						|
 | 
						|
                    arg_c = {'context': context, 'seq_len': seq_len}
 | 
						|
                    arg_null = {'context': context_null, 'seq_len': seq_len}
 | 
						|
 | 
						|
                    for _, t in enumerate(tqdm(timesteps)):
 | 
						|
                        latent_model_input = latents
 | 
						|
                        timestep = [t]
 | 
						|
 | 
						|
                        timestep = torch.stack(timestep)
 | 
						|
 | 
						|
                        model.to(gpu)
 | 
						|
                        noise_pred_cond = model(
 | 
						|
                            latent_model_input,
 | 
						|
                            t=timestep,
 | 
						|
                            vace_context=z,
 | 
						|
                            vace_context_scale=context_scale,
 | 
						|
                            **arg_c)[0]
 | 
						|
                        noise_pred_uncond = model(
 | 
						|
                            latent_model_input,
 | 
						|
                            t=timestep,
 | 
						|
                            vace_context=z,
 | 
						|
                            vace_context_scale=context_scale,
 | 
						|
                            **arg_null)[0]
 | 
						|
 | 
						|
                        noise_pred = noise_pred_uncond + guide_scale * (
 | 
						|
                            noise_pred_cond - noise_pred_uncond)
 | 
						|
 | 
						|
                        temp_x0 = sample_scheduler.step(
 | 
						|
                            noise_pred.unsqueeze(0),
 | 
						|
                            t,
 | 
						|
                            latents[0].unsqueeze(0),
 | 
						|
                            return_dict=False,
 | 
						|
                            generator=seed_g)[0]
 | 
						|
                        latents = [temp_x0.squeeze(0)]
 | 
						|
 | 
						|
                    torch.cuda.empty_cache()
 | 
						|
                    x0 = latents
 | 
						|
                    if rank == 0:
 | 
						|
                        videos = self.decode_latent(
 | 
						|
                            x0, input_ref_images, vae=vae)
 | 
						|
 | 
						|
                del noise, latents
 | 
						|
                del sample_scheduler
 | 
						|
                if offload_model:
 | 
						|
                    gc.collect()
 | 
						|
                    torch.cuda.synchronize()
 | 
						|
                if dist.is_initialized():
 | 
						|
                    dist.barrier()
 | 
						|
 | 
						|
                if rank == 0:
 | 
						|
                    out_q.put(videos[0].cpu())
 | 
						|
 | 
						|
        except Exception as e:
 | 
						|
            trace_info = traceback.format_exc()
 | 
						|
            print(trace_info, flush=True)
 | 
						|
            print(e, flush=True)
 | 
						|
 | 
						|
    def generate(self,
 | 
						|
                 input_prompt,
 | 
						|
                 input_frames,
 | 
						|
                 input_masks,
 | 
						|
                 input_ref_images,
 | 
						|
                 size=(1280, 720),
 | 
						|
                 frame_num=81,
 | 
						|
                 context_scale=1.0,
 | 
						|
                 shift=5.0,
 | 
						|
                 sample_solver='unipc',
 | 
						|
                 sampling_steps=50,
 | 
						|
                 guide_scale=5.0,
 | 
						|
                 n_prompt="",
 | 
						|
                 seed=-1,
 | 
						|
                 offload_model=True):
 | 
						|
 | 
						|
        input_data = (input_prompt, input_frames, input_masks, input_ref_images,
 | 
						|
                      size, frame_num, context_scale, shift, sample_solver,
 | 
						|
                      sampling_steps, guide_scale, n_prompt, seed,
 | 
						|
                      offload_model)
 | 
						|
        for in_q in self.in_q_list:
 | 
						|
            in_q.put(input_data)
 | 
						|
        value_output = self.out_q.get()
 | 
						|
 | 
						|
        return value_output
 |