Compare commits

...

3 Commits

Author SHA1 Message Date
Zengtudor
75c2df61c9 feat: 实现基于0-1 BFS的最大欧式距离计算
添加0-1 BFS算法来计算网格中可达点的最小代价,并在此基础上计算满足条件的两点间最大欧式距离。主要功能包括:
- 实现0-1 BFS算法计算各点到起点的最小代价
- 遍历所有点对,筛选满足代价条件的点对
- 计算并输出最大欧式距离
2025-10-01 21:02:08 +08:00
Zengtudor
cbde29b00b refactor(P3956.cpp): 移除魔法颜色处理逻辑中的冗余代码
简化bfs函数中处理魔法颜色的代码块,删除未使用的变量和重复逻辑
2025-10-01 20:49:03 +08:00
Zengtudor
66ae25f60c feat: 添加P3956.cpp实现网格最短路径算法
实现一个基于优先队列的BFS算法,用于计算在特定规则下的网格最短路径。主要功能包括:
- 处理网格中的颜色变化成本
- 支持魔法格子特殊处理
- 使用四维数组记录不同状态的最短路径
2025-10-01 20:38:44 +08:00
2 changed files with 221 additions and 0 deletions

132
src/10/1/P3956.cpp Normal file
View File

@ -0,0 +1,132 @@
#include <iostream>
#include <vector>
#include <queue>
#include <cstring>
#include <climits>
using namespace std;
const int MAXM = 105;
const int INF = INT_MAX;
const int dx[4] = {-1, 0, 1, 0};
const int dy[4] = {0, 1, 0, -1};
struct Node {
int x, y;
int cost;
int lastColor;
bool used;
bool operator>(const Node& other) const {
return cost > other.cost;
}
};
int m, n;
int grid[MAXM][MAXM];
int dist[MAXM][MAXM][2][3];
void init() {
memset(grid, -1, sizeof(grid));
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= m; j++) {
for (int k = 0; k < 2; k++) {
for (int l = 0; l < 3; l++) {
dist[i][j][k][l] = INF;
}
}
}
}
}
int bfs() {
priority_queue<Node, vector<Node>, greater<Node>> pq;
Node start;
start.x = 1;
start.y = 1;
start.cost = 0;
start.lastColor = grid[1][1];
start.used = false;
dist[1][1][0][grid[1][1]] = 0;
pq.push(start);
while (!pq.empty()) {
Node current = pq.top();
pq.pop();
int x = current.x;
int y = current.y;
int cost = current.cost;
int lastColor = current.lastColor;
bool used = current.used;
if (cost > dist[x][y][used][lastColor]) {
continue;
}
if (x == m && y == m) {
return cost;
}
for (int i = 0; i < 4; i++) {
int nx = x + dx[i];
int ny = y + dy[i];
if (nx < 1 || nx > m || ny < 1 || ny > m) {
continue;
}
int nxtColor = grid[nx][ny];
if (nxtColor != -1) {
int addCost = 0;
if (lastColor != nxtColor) {
addCost = 1;
}
int newCost = cost + addCost;
int newLastColor = nxtColor;
bool newused = false;
if (newCost < dist[nx][ny][newused][newLastColor]) {
dist[nx][ny][newused][newLastColor] = newCost;
Node nxt;
nxt.x = nx;
nxt.y = ny;
nxt.cost = newCost;
nxt.lastColor = newLastColor;
nxt.used = newused;
pq.push(nxt);
}
}
else if (nxtColor == -1 && !used) {
int magicCost = 2;
for (int magicColor = 0; magicColor <= 1; magicColor++) {
}
}
}
}
return -1;
}
int main() {
cin >> m >> n;
init();
for (int i = 0; i < n; i++) {
int x, y, c;
cin >> x >> y >> c;
grid[x][y] = c;
}
int result = bfs();
cout << result << endl;
}

89
src/10/1/P4162.cpp Normal file
View File

@ -0,0 +1,89 @@
#include <cstdio>
#include <iostream>
#include <vector>
#include <deque>
#include <cmath>
#include <iomanip>
#include <algorithm>
using namespace std;
const int MAXN = 35;
const int dx[4] = {0, 1, 0, -1};
const int dy[4] = {1, 0, -1, 0};
int n, m, T;
char grid[MAXN][MAXN];
bool isValid(int x, int y) {
return x >= 0 && x < n && y >= 0 && y < m;
}
vector<vector<int>> bfs01(int sx, int sy) {
vector<vector<int>> dist(n, vector<int>(m, 0x3f3f3f3f));
vector<vector<bool>> visited(n, vector<bool>(m, false));
deque<pair<int, int>> dq;
int startcost = (grid[sx][sy] == '1') ? 1 : 0;
dist[sx][sy] = startcost;
dq.push_back({sx, sy});
while (!dq.empty()) {
auto [x, y] = dq.front();
dq.pop_front();
if (visited[x][y]) continue;
visited[x][y] = true;
for (int i = 0; i < 4; i++) {
int nx = x + dx[i];
int ny = y + dy[i];
if (!isValid(nx, ny)) continue;
int cost = (grid[nx][ny] == '1') ? 1 : 0;
if (dist[x][y] + cost < dist[nx][ny]) {
dist[nx][ny] = dist[x][y] + cost;
if (cost == 0) {
dq.push_front({nx, ny});
} else {
dq.push_back({nx, ny});
}
}
}
}
return dist;
}
double euladis(int x1, int y1, int x2, int y2) {
return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cin >> n >> m >> T;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grid[i][j];
}
}
double maxdis = 0.0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
auto dist = bfs01(i, j);
for (int x = 0; x < n; x++) {
for (int y = 0; y < m; y++) {
if (dist[x][y] <= T) {
maxdis = max(maxdis, euladis(i, j, x, y));
}
}
}
}
}
printf("%.6f\n", maxdis);
}