2015-07-05 18:05:44 +00:00
|
|
|
/*
|
2015-10-15 16:13:33 +00:00
|
|
|
pybind11/cast.h: Partial template specializations to cast between
|
2015-07-05 18:05:44 +00:00
|
|
|
C++ and Python types
|
|
|
|
|
2016-04-17 18:21:41 +00:00
|
|
|
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
2015-07-05 18:05:44 +00:00
|
|
|
|
|
|
|
All rights reserved. Use of this source code is governed by a
|
|
|
|
BSD-style license that can be found in the LICENSE file.
|
|
|
|
*/
|
|
|
|
|
2015-07-11 15:41:48 +00:00
|
|
|
#pragma once
|
2015-07-05 18:05:44 +00:00
|
|
|
|
2015-10-15 16:13:33 +00:00
|
|
|
#include "pytypes.h"
|
|
|
|
#include "typeid.h"
|
2016-01-17 21:36:36 +00:00
|
|
|
#include "descr.h"
|
2015-07-05 18:05:44 +00:00
|
|
|
#include <array>
|
2015-08-28 15:53:31 +00:00
|
|
|
#include <limits>
|
2015-07-05 18:05:44 +00:00
|
|
|
|
2015-10-15 16:13:33 +00:00
|
|
|
NAMESPACE_BEGIN(pybind11)
|
2015-07-05 18:05:44 +00:00
|
|
|
NAMESPACE_BEGIN(detail)
|
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
/// Additional type information which does not fit into the PyTypeObject
|
|
|
|
struct type_info {
|
|
|
|
PyTypeObject *type;
|
|
|
|
size_t type_size;
|
|
|
|
void (*init_holder)(PyObject *, const void *);
|
2016-09-11 11:00:40 +00:00
|
|
|
std::vector<PyObject *(*)(PyObject *, PyTypeObject *)> implicit_conversions;
|
|
|
|
std::vector<std::pair<const std::type_info *, void *(*)(void *)>> implicit_casts;
|
2016-10-23 14:27:13 +00:00
|
|
|
std::vector<bool (*)(PyObject *, void *&)> *direct_conversions;
|
2016-01-17 21:36:44 +00:00
|
|
|
buffer_info *(*get_buffer)(PyObject *, void *) = nullptr;
|
|
|
|
void *get_buffer_data = nullptr;
|
2016-09-11 11:00:40 +00:00
|
|
|
/** A simple type never occurs as a (direct or indirect) parent
|
|
|
|
* of a class that makes use of multiple inheritance */
|
|
|
|
bool simple_type = true;
|
2016-01-17 21:36:44 +00:00
|
|
|
};
|
2016-01-17 21:36:41 +00:00
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
PYBIND11_NOINLINE inline internals &get_internals() {
|
|
|
|
static internals *internals_ptr = nullptr;
|
|
|
|
if (internals_ptr)
|
|
|
|
return *internals_ptr;
|
|
|
|
handle builtins(PyEval_GetBuiltins());
|
2016-03-06 12:38:18 +00:00
|
|
|
const char *id = PYBIND11_INTERNALS_ID;
|
2016-10-23 12:50:08 +00:00
|
|
|
if (builtins.contains(id) && isinstance<capsule>(builtins[id])) {
|
|
|
|
internals_ptr = capsule(builtins[id]);
|
2016-01-17 21:36:44 +00:00
|
|
|
} else {
|
|
|
|
internals_ptr = new internals();
|
2016-04-25 01:26:15 +00:00
|
|
|
#if defined(WITH_THREAD)
|
|
|
|
PyEval_InitThreads();
|
|
|
|
PyThreadState *tstate = PyThreadState_Get();
|
|
|
|
internals_ptr->tstate = PyThread_create_key();
|
|
|
|
PyThread_set_key_value(internals_ptr->tstate, tstate);
|
|
|
|
internals_ptr->istate = tstate->interp;
|
|
|
|
#endif
|
2016-03-06 12:38:18 +00:00
|
|
|
builtins[id] = capsule(internals_ptr);
|
2016-06-17 21:35:59 +00:00
|
|
|
internals_ptr->registered_exception_translators.push_front(
|
|
|
|
[](std::exception_ptr p) -> void {
|
|
|
|
try {
|
|
|
|
if (p) std::rethrow_exception(p);
|
2016-09-10 09:58:02 +00:00
|
|
|
} catch (error_already_set &e) { e.restore(); return;
|
2016-09-10 12:43:28 +00:00
|
|
|
} catch (const builtin_exception &e) { e.set_error(); return;
|
2016-06-17 21:35:59 +00:00
|
|
|
} catch (const std::bad_alloc &e) { PyErr_SetString(PyExc_MemoryError, e.what()); return;
|
|
|
|
} catch (const std::domain_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
|
|
|
|
} catch (const std::invalid_argument &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
|
|
|
|
} catch (const std::length_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
|
|
|
|
} catch (const std::out_of_range &e) { PyErr_SetString(PyExc_IndexError, e.what()); return;
|
|
|
|
} catch (const std::range_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
|
|
|
|
} catch (const std::exception &e) { PyErr_SetString(PyExc_RuntimeError, e.what()); return;
|
|
|
|
} catch (...) {
|
|
|
|
PyErr_SetString(PyExc_RuntimeError, "Caught an unknown exception!");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
);
|
2016-01-17 21:36:44 +00:00
|
|
|
}
|
|
|
|
return *internals_ptr;
|
|
|
|
}
|
|
|
|
|
2016-09-11 11:00:40 +00:00
|
|
|
PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type) {
|
2016-01-17 21:36:44 +00:00
|
|
|
auto const &type_dict = get_internals().registered_types_py;
|
|
|
|
do {
|
|
|
|
auto it = type_dict.find(type);
|
|
|
|
if (it != type_dict.end())
|
|
|
|
return (detail::type_info *) it->second;
|
|
|
|
type = type->tp_base;
|
2016-09-11 11:00:40 +00:00
|
|
|
if (!type)
|
2016-04-30 17:56:10 +00:00
|
|
|
return nullptr;
|
2016-01-17 21:36:44 +00:00
|
|
|
} while (true);
|
|
|
|
}
|
|
|
|
|
2016-10-23 14:43:03 +00:00
|
|
|
PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_info &tp,
|
|
|
|
bool throw_if_missing = false) {
|
2016-01-17 21:36:44 +00:00
|
|
|
auto &types = get_internals().registered_types_cpp;
|
|
|
|
|
2016-01-29 10:39:32 +00:00
|
|
|
auto it = types.find(std::type_index(tp));
|
|
|
|
if (it != types.end())
|
2016-01-17 21:36:44 +00:00
|
|
|
return (detail::type_info *) it->second;
|
2016-09-11 11:00:40 +00:00
|
|
|
if (throw_if_missing) {
|
|
|
|
std::string tname = tp.name();
|
|
|
|
detail::clean_type_id(tname);
|
|
|
|
pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \"" + tname + "\"");
|
|
|
|
}
|
2016-01-17 21:36:44 +00:00
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
2016-09-11 11:00:40 +00:00
|
|
|
PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp, bool throw_if_missing) {
|
|
|
|
detail::type_info *type_info = get_type_info(tp, throw_if_missing);
|
2016-01-17 21:36:44 +00:00
|
|
|
return handle(type_info ? ((PyObject *) type_info->type) : nullptr);
|
|
|
|
}
|
|
|
|
|
2016-10-23 12:50:08 +00:00
|
|
|
PYBIND11_NOINLINE inline bool isinstance_generic(handle obj, const std::type_info &tp) {
|
|
|
|
const auto type = detail::get_type_handle(tp, false);
|
|
|
|
if (!type)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
const auto result = PyObject_IsInstance(obj.ptr(), type.ptr());
|
|
|
|
if (result == -1)
|
|
|
|
throw error_already_set();
|
|
|
|
return result != 0;
|
|
|
|
}
|
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
PYBIND11_NOINLINE inline std::string error_string() {
|
2016-09-07 20:10:16 +00:00
|
|
|
if (!PyErr_Occurred()) {
|
|
|
|
PyErr_SetString(PyExc_RuntimeError, "Unknown internal error occurred");
|
|
|
|
return "Unknown internal error occurred";
|
|
|
|
}
|
|
|
|
|
2016-09-10 07:32:17 +00:00
|
|
|
error_scope scope; // Preserve error state
|
2016-01-17 21:36:44 +00:00
|
|
|
|
2016-09-07 20:10:16 +00:00
|
|
|
std::string errorString;
|
2016-09-10 07:32:17 +00:00
|
|
|
if (scope.type) {
|
|
|
|
errorString += handle(scope.type).attr("__name__").cast<std::string>();
|
2016-01-17 21:36:44 +00:00
|
|
|
errorString += ": ";
|
|
|
|
}
|
2016-09-10 07:32:17 +00:00
|
|
|
if (scope.value)
|
2016-10-25 20:12:39 +00:00
|
|
|
errorString += (std::string) str(scope.value);
|
2016-01-17 21:36:44 +00:00
|
|
|
|
2016-11-12 07:57:30 +00:00
|
|
|
PyErr_NormalizeException(&scope.type, &scope.value, &scope.trace);
|
|
|
|
|
2016-11-24 11:31:06 +00:00
|
|
|
#if PY_MAJOR_VERSION >= 3
|
|
|
|
if (scope.trace != nullptr)
|
|
|
|
PyException_SetTraceback(scope.value, scope.trace);
|
|
|
|
#endif
|
|
|
|
|
2016-11-12 07:57:30 +00:00
|
|
|
if (scope.trace) {
|
2016-11-24 11:31:06 +00:00
|
|
|
PyTracebackObject *trace = (PyTracebackObject *) scope.trace;
|
|
|
|
|
|
|
|
/* Get the deepest trace possible */
|
|
|
|
while (trace->tb_next)
|
|
|
|
trace = trace->tb_next;
|
|
|
|
|
|
|
|
PyFrameObject *frame = trace->tb_frame;
|
|
|
|
errorString += "\n\nAt:\n";
|
|
|
|
while (frame) {
|
|
|
|
int lineno = PyFrame_GetLineNumber(frame);
|
|
|
|
errorString +=
|
|
|
|
" " + handle(frame->f_code->co_filename).cast<std::string>() +
|
|
|
|
"(" + std::to_string(lineno) + "): " +
|
|
|
|
handle(frame->f_code->co_name).cast<std::string>() + "\n";
|
|
|
|
frame = frame->f_back;
|
2016-11-12 07:57:30 +00:00
|
|
|
}
|
2016-11-24 11:31:06 +00:00
|
|
|
trace = trace->tb_next;
|
2016-11-12 07:57:30 +00:00
|
|
|
}
|
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
return errorString;
|
|
|
|
}
|
|
|
|
|
2016-08-09 21:57:59 +00:00
|
|
|
PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) {
|
|
|
|
auto &instances = get_internals().registered_instances;
|
|
|
|
auto range = instances.equal_range(ptr);
|
|
|
|
for (auto it = range.first; it != range.second; ++it) {
|
2016-09-11 11:00:40 +00:00
|
|
|
auto instance_type = detail::get_type_info(Py_TYPE(it->second));
|
2016-08-09 21:57:59 +00:00
|
|
|
if (instance_type && instance_type == type)
|
|
|
|
return handle((PyObject *) it->second);
|
|
|
|
}
|
|
|
|
return handle();
|
2016-01-17 21:36:44 +00:00
|
|
|
}
|
|
|
|
|
2016-04-25 13:02:43 +00:00
|
|
|
inline PyThreadState *get_thread_state_unchecked() {
|
|
|
|
#if PY_VERSION_HEX < 0x03000000
|
|
|
|
return _PyThreadState_Current;
|
|
|
|
#elif PY_VERSION_HEX < 0x03050000
|
|
|
|
return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current);
|
|
|
|
#elif PY_VERSION_HEX < 0x03050200
|
|
|
|
return (PyThreadState*) _PyThreadState_Current.value;
|
|
|
|
#else
|
|
|
|
return _PyThreadState_UncheckedGet();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2016-08-10 16:08:04 +00:00
|
|
|
// Forward declaration
|
|
|
|
inline void keep_alive_impl(handle nurse, handle patient);
|
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
class type_caster_generic {
|
|
|
|
public:
|
|
|
|
PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info)
|
2016-10-23 14:43:03 +00:00
|
|
|
: typeinfo(get_type_info(type_info)) { }
|
2015-07-05 18:05:44 +00:00
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
PYBIND11_NOINLINE bool load(handle src, bool convert) {
|
2016-09-30 11:43:19 +00:00
|
|
|
if (!src)
|
|
|
|
return false;
|
2016-09-11 11:00:40 +00:00
|
|
|
return load(src, convert, Py_TYPE(src.ptr()));
|
|
|
|
}
|
|
|
|
|
|
|
|
bool load(handle src, bool convert, PyTypeObject *tobj) {
|
2016-01-17 21:36:44 +00:00
|
|
|
if (!src || !typeinfo)
|
2015-07-05 18:05:44 +00:00
|
|
|
return false;
|
2016-08-29 01:38:47 +00:00
|
|
|
if (src.is_none()) {
|
2016-02-23 12:37:14 +00:00
|
|
|
value = nullptr;
|
|
|
|
return true;
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
2016-09-11 11:00:40 +00:00
|
|
|
|
|
|
|
if (typeinfo->simple_type) { /* Case 1: no multiple inheritance etc. involved */
|
|
|
|
/* Check if we can safely perform a reinterpret-style cast */
|
|
|
|
if (PyType_IsSubtype(tobj, typeinfo->type)) {
|
|
|
|
value = reinterpret_cast<instance<void> *>(src.ptr())->value;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
} else { /* Case 2: multiple inheritance */
|
|
|
|
/* Check if we can safely perform a reinterpret-style cast */
|
|
|
|
if (tobj == typeinfo->type) {
|
|
|
|
value = reinterpret_cast<instance<void> *>(src.ptr())->value;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If this is a python class, also check the parents recursively */
|
|
|
|
auto const &type_dict = get_internals().registered_types_py;
|
|
|
|
bool new_style_class = PyType_Check(tobj);
|
|
|
|
if (type_dict.find(tobj) == type_dict.end() && new_style_class && tobj->tp_bases) {
|
2016-10-28 01:08:15 +00:00
|
|
|
auto parents = reinterpret_borrow<tuple>(tobj->tp_bases);
|
2016-09-11 11:00:40 +00:00
|
|
|
for (handle parent : parents) {
|
|
|
|
bool result = load(src, convert, (PyTypeObject *) parent.ptr());
|
|
|
|
if (result)
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Try implicit casts */
|
|
|
|
for (auto &cast : typeinfo->implicit_casts) {
|
|
|
|
type_caster_generic sub_caster(*cast.first);
|
|
|
|
if (sub_caster.load(src, convert)) {
|
|
|
|
value = cast.second(sub_caster.value);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Perform an implicit conversion */
|
2015-07-05 18:05:44 +00:00
|
|
|
if (convert) {
|
|
|
|
for (auto &converter : typeinfo->implicit_conversions) {
|
2016-10-28 01:08:15 +00:00
|
|
|
temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type));
|
2016-01-17 21:36:44 +00:00
|
|
|
if (load(temp, false))
|
2015-07-05 18:05:44 +00:00
|
|
|
return true;
|
|
|
|
}
|
2016-10-23 14:27:13 +00:00
|
|
|
for (auto &converter : *typeinfo->direct_conversions) {
|
|
|
|
if (converter(src.ptr(), value))
|
|
|
|
return true;
|
|
|
|
}
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent,
|
|
|
|
const std::type_info *type_info,
|
2016-04-13 11:45:09 +00:00
|
|
|
const std::type_info *type_info_backup,
|
2016-01-17 21:36:44 +00:00
|
|
|
void *(*copy_constructor)(const void *),
|
2016-04-25 21:04:27 +00:00
|
|
|
void *(*move_constructor)(const void *),
|
2016-01-17 21:36:44 +00:00
|
|
|
const void *existing_holder = nullptr) {
|
2015-10-19 21:50:51 +00:00
|
|
|
void *src = const_cast<void *>(_src);
|
2016-01-17 21:36:44 +00:00
|
|
|
if (src == nullptr)
|
2016-09-08 13:53:18 +00:00
|
|
|
return none().inc_ref();
|
2016-01-17 21:36:44 +00:00
|
|
|
|
2016-08-09 21:57:59 +00:00
|
|
|
auto &internals = get_internals();
|
2016-01-17 21:36:44 +00:00
|
|
|
|
2016-01-29 10:39:32 +00:00
|
|
|
auto it = internals.registered_types_cpp.find(std::type_index(*type_info));
|
2016-04-13 11:45:09 +00:00
|
|
|
if (it == internals.registered_types_cpp.end()) {
|
|
|
|
type_info = type_info_backup;
|
|
|
|
it = internals.registered_types_cpp.find(std::type_index(*type_info));
|
|
|
|
}
|
|
|
|
|
2016-01-17 21:36:41 +00:00
|
|
|
if (it == internals.registered_types_cpp.end()) {
|
2015-12-28 07:45:14 +00:00
|
|
|
std::string tname = type_info->name();
|
|
|
|
detail::clean_type_id(tname);
|
|
|
|
std::string msg = "Unregistered type : " + tname;
|
2015-07-05 18:05:44 +00:00
|
|
|
PyErr_SetString(PyExc_TypeError, msg.c_str());
|
2016-01-17 21:36:44 +00:00
|
|
|
return handle();
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
2016-01-17 21:36:44 +00:00
|
|
|
|
2016-01-17 21:36:41 +00:00
|
|
|
auto tinfo = (const detail::type_info *) it->second;
|
2016-08-09 21:57:59 +00:00
|
|
|
|
|
|
|
auto it_instances = internals.registered_instances.equal_range(src);
|
2016-08-11 20:23:23 +00:00
|
|
|
for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) {
|
2016-09-11 11:00:40 +00:00
|
|
|
auto instance_type = detail::get_type_info(Py_TYPE(it_i->second));
|
2016-08-09 21:57:59 +00:00
|
|
|
if (instance_type && instance_type == tinfo)
|
2016-08-11 20:23:23 +00:00
|
|
|
return handle((PyObject *) it_i->second).inc_ref();
|
2016-08-09 21:57:59 +00:00
|
|
|
}
|
|
|
|
|
2016-10-28 01:08:15 +00:00
|
|
|
auto inst = reinterpret_steal<object>(PyType_GenericAlloc(tinfo->type, 0));
|
2016-01-17 21:36:44 +00:00
|
|
|
|
|
|
|
auto wrapper = (instance<void> *) inst.ptr();
|
|
|
|
|
Fix wrapper's 'value' and 'owned' if ctor missing
type_caster_generic::cast(): The values of
wrapper->value
wrapper->owned
are incorrect in the case that a return value policy of 'copy' is
requested but there is no copy-constructor. (Similarly 'move'.) In
particular, if the source object is a static instance, the destructor of
the 'object' 'inst' leads to class_::dealloc() which incorrectly
attempts to 'delete' the static instance.
This commit re-arranges the code to be clearer as to what the values of
'value' and 'owned' should be in the various cases. Behaviour is
different to previous code only in two situations:
policy = copy but no copy-ctor: Old code leaves 'value = src, owned =
true', which leads to trouble. New code leaves 'value = nullptr, owned
= false', which is correct.
policy = move but no move- or copy-ctor: old code leaves 'value = src,
owned = true', which leads to trouble. New code leaves 'value =
nullptr, owned = false', which is correct.
2016-10-20 20:09:25 +00:00
|
|
|
wrapper->value = nullptr;
|
|
|
|
wrapper->owned = false;
|
|
|
|
|
|
|
|
switch (policy) {
|
2016-10-22 17:08:44 +00:00
|
|
|
case return_value_policy::automatic:
|
|
|
|
case return_value_policy::take_ownership:
|
|
|
|
wrapper->value = src;
|
|
|
|
wrapper->owned = true;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case return_value_policy::automatic_reference:
|
|
|
|
case return_value_policy::reference:
|
|
|
|
wrapper->value = src;
|
|
|
|
wrapper->owned = false;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case return_value_policy::copy:
|
|
|
|
if (copy_constructor)
|
|
|
|
wrapper->value = copy_constructor(src);
|
|
|
|
else
|
|
|
|
throw cast_error("return_value_policy = copy, but the "
|
|
|
|
"object is non-copyable!");
|
|
|
|
wrapper->owned = true;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case return_value_policy::move:
|
|
|
|
if (move_constructor)
|
|
|
|
wrapper->value = move_constructor(src);
|
|
|
|
else if (copy_constructor)
|
|
|
|
wrapper->value = copy_constructor(src);
|
|
|
|
else
|
|
|
|
throw cast_error("return_value_policy = move, but the "
|
|
|
|
"object is neither movable nor copyable!");
|
|
|
|
wrapper->owned = true;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case return_value_policy::reference_internal:
|
|
|
|
wrapper->value = src;
|
|
|
|
wrapper->owned = false;
|
|
|
|
detail::keep_alive_impl(inst, parent);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
throw cast_error("unhandled return_value_policy: should not happen!");
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
2016-01-17 21:36:44 +00:00
|
|
|
|
|
|
|
tinfo->init_holder(inst.ptr(), existing_holder);
|
2016-08-09 21:57:59 +00:00
|
|
|
|
|
|
|
internals.registered_instances.emplace(wrapper->value, inst.ptr());
|
2016-01-17 21:36:44 +00:00
|
|
|
|
|
|
|
return inst.release();
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
const type_info *typeinfo = nullptr;
|
2015-10-19 21:50:51 +00:00
|
|
|
void *value = nullptr;
|
2015-07-05 18:05:44 +00:00
|
|
|
object temp;
|
|
|
|
};
|
|
|
|
|
2016-03-26 22:04:10 +00:00
|
|
|
/* Determine suitable casting operator */
|
|
|
|
template <typename T>
|
2016-04-18 19:22:22 +00:00
|
|
|
using cast_op_type = typename std::conditional<std::is_pointer<typename std::remove_reference<T>::type>::value,
|
2016-09-05 12:30:56 +00:00
|
|
|
typename std::add_pointer<intrinsic_t<T>>::type,
|
|
|
|
typename std::add_lvalue_reference<intrinsic_t<T>>::type>::type;
|
2016-03-26 22:04:10 +00:00
|
|
|
|
Fix stl_bind to support movable, non-copyable value types (#490)
This commit includes the following changes:
* Don't provide make_copy_constructor for non-copyable container
make_copy_constructor currently fails for various stl containers (e.g.
std::vector, std::unordered_map, std::deque, etc.) when the container's
value type (e.g. the "T" or the std::pair<K,T> for a map) is
non-copyable. This adds an override that, for types that look like
containers, also requires that the value_type be copyable.
* stl_bind.h: make bind_{vector,map} work for non-copy-constructible types
Most stl_bind modifiers require copying, so if the type isn't copy
constructible, we provide a read-only interface instead.
In practice, this means that if the type is non-copyable, it will be,
for all intents and purposes, read-only from the Python side (but
currently it simply fails to compile with such a container).
It is still possible for the caller to provide an interface manually
(by defining methods on the returned class_ object), but this isn't
something stl_bind can handle because the C++ code to construct values
is going to be highly dependent on the container value_type.
* stl_bind: copy only for arithmetic value types
For non-primitive types, we may well be copying some complex type, when
returning by reference is more appropriate. This commit returns by
internal reference for all but basic arithmetic types.
* Return by reference whenever possible
Only if we definitely can't--i.e. std::vector<bool>--because v[i]
returns something that isn't a T& do we copy; for everything else, we
return by reference.
For the map case, we can always return by reference (at least for the
default stl map/unordered_map).
2016-11-15 11:30:38 +00:00
|
|
|
// std::is_copy_constructible isn't quite enough: it lets std::vector<T> (and similar) through when
|
|
|
|
// T is non-copyable, but code containing such a copy constructor fails to actually compile.
|
|
|
|
template <typename T, typename SFINAE = void> struct is_copy_constructible : std::is_copy_constructible<T> {};
|
|
|
|
|
|
|
|
// Specialization for types that appear to be copy constructible but also look like stl containers
|
|
|
|
// (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if
|
|
|
|
// so, copy constructability depends on whether the value_type is copy constructible.
|
|
|
|
template <typename Container> struct is_copy_constructible<Container, enable_if_t<
|
|
|
|
std::is_copy_constructible<Container>::value &&
|
|
|
|
std::is_same<typename Container::value_type &, typename Container::reference>::value
|
|
|
|
>> : std::is_copy_constructible<typename Container::value_type> {};
|
|
|
|
|
2015-10-19 21:50:51 +00:00
|
|
|
/// Generic type caster for objects stored on the heap
|
2016-04-28 14:25:24 +00:00
|
|
|
template <typename type> class type_caster_base : public type_caster_generic {
|
2016-09-07 17:32:49 +00:00
|
|
|
using itype = intrinsic_t<type>;
|
2015-10-19 21:50:51 +00:00
|
|
|
public:
|
2016-01-17 21:36:36 +00:00
|
|
|
static PYBIND11_DESCR name() { return type_descr(_<type>()); }
|
2015-10-19 21:50:51 +00:00
|
|
|
|
2016-09-11 11:00:40 +00:00
|
|
|
type_caster_base() : type_caster_base(typeid(type)) { }
|
2016-10-16 20:27:42 +00:00
|
|
|
explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) { }
|
2015-10-19 21:50:51 +00:00
|
|
|
|
2016-09-07 17:32:49 +00:00
|
|
|
static handle cast(const itype &src, return_value_policy policy, handle parent) {
|
2016-04-14 12:26:13 +00:00
|
|
|
if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
|
2015-10-19 21:50:51 +00:00
|
|
|
policy = return_value_policy::copy;
|
2016-04-13 11:45:09 +00:00
|
|
|
return cast(&src, policy, parent);
|
2015-10-19 21:50:51 +00:00
|
|
|
}
|
|
|
|
|
2016-11-20 04:31:02 +00:00
|
|
|
static handle cast(itype &&src, return_value_policy, handle parent) {
|
|
|
|
return cast(&src, return_value_policy::move, parent);
|
2016-04-25 21:04:27 +00:00
|
|
|
}
|
|
|
|
|
2016-09-07 17:32:49 +00:00
|
|
|
static handle cast(const itype *src, return_value_policy policy, handle parent) {
|
2016-04-25 21:04:27 +00:00
|
|
|
return type_caster_generic::cast(
|
|
|
|
src, policy, parent, src ? &typeid(*src) : nullptr, &typeid(type),
|
2016-05-01 08:28:00 +00:00
|
|
|
make_copy_constructor(src), make_move_constructor(src));
|
2015-10-19 21:50:51 +00:00
|
|
|
}
|
|
|
|
|
2016-03-26 22:04:10 +00:00
|
|
|
template <typename T> using cast_op_type = pybind11::detail::cast_op_type<T>;
|
|
|
|
|
2016-09-07 17:32:49 +00:00
|
|
|
operator itype*() { return (type *) value; }
|
|
|
|
operator itype&() { if (!value) throw reference_cast_error(); return *((itype *) value); }
|
2016-05-01 08:28:00 +00:00
|
|
|
|
2015-10-19 21:50:51 +00:00
|
|
|
protected:
|
2016-05-01 08:28:00 +00:00
|
|
|
typedef void *(*Constructor)(const void *stream);
|
|
|
|
#if !defined(_MSC_VER)
|
|
|
|
/* Only enabled when the types are {copy,move}-constructible *and* when the type
|
|
|
|
does not have a private operator new implementaton. */
|
Fix stl_bind to support movable, non-copyable value types (#490)
This commit includes the following changes:
* Don't provide make_copy_constructor for non-copyable container
make_copy_constructor currently fails for various stl containers (e.g.
std::vector, std::unordered_map, std::deque, etc.) when the container's
value type (e.g. the "T" or the std::pair<K,T> for a map) is
non-copyable. This adds an override that, for types that look like
containers, also requires that the value_type be copyable.
* stl_bind.h: make bind_{vector,map} work for non-copy-constructible types
Most stl_bind modifiers require copying, so if the type isn't copy
constructible, we provide a read-only interface instead.
In practice, this means that if the type is non-copyable, it will be,
for all intents and purposes, read-only from the Python side (but
currently it simply fails to compile with such a container).
It is still possible for the caller to provide an interface manually
(by defining methods on the returned class_ object), but this isn't
something stl_bind can handle because the C++ code to construct values
is going to be highly dependent on the container value_type.
* stl_bind: copy only for arithmetic value types
For non-primitive types, we may well be copying some complex type, when
returning by reference is more appropriate. This commit returns by
internal reference for all but basic arithmetic types.
* Return by reference whenever possible
Only if we definitely can't--i.e. std::vector<bool>--because v[i]
returns something that isn't a T& do we copy; for everything else, we
return by reference.
For the map case, we can always return by reference (at least for the
default stl map/unordered_map).
2016-11-15 11:30:38 +00:00
|
|
|
template <typename T = type, typename = enable_if_t<is_copy_constructible<T>::value>> static auto make_copy_constructor(const T *value) -> decltype(new T(*value), Constructor(nullptr)) {
|
2016-05-01 08:28:00 +00:00
|
|
|
return [](const void *arg) -> void * { return new T(*((const T *) arg)); }; }
|
|
|
|
template <typename T = type> static auto make_move_constructor(const T *value) -> decltype(new T(std::move(*((T *) value))), Constructor(nullptr)) {
|
|
|
|
return [](const void *arg) -> void * { return (void *) new T(std::move(*((T *) arg))); }; }
|
|
|
|
#else
|
|
|
|
/* Visual Studio 2015's SFINAE implementation doesn't yet handle the above robustly in all situations.
|
|
|
|
Use a workaround that only tests for constructibility for now. */
|
Fix stl_bind to support movable, non-copyable value types (#490)
This commit includes the following changes:
* Don't provide make_copy_constructor for non-copyable container
make_copy_constructor currently fails for various stl containers (e.g.
std::vector, std::unordered_map, std::deque, etc.) when the container's
value type (e.g. the "T" or the std::pair<K,T> for a map) is
non-copyable. This adds an override that, for types that look like
containers, also requires that the value_type be copyable.
* stl_bind.h: make bind_{vector,map} work for non-copy-constructible types
Most stl_bind modifiers require copying, so if the type isn't copy
constructible, we provide a read-only interface instead.
In practice, this means that if the type is non-copyable, it will be,
for all intents and purposes, read-only from the Python side (but
currently it simply fails to compile with such a container).
It is still possible for the caller to provide an interface manually
(by defining methods on the returned class_ object), but this isn't
something stl_bind can handle because the C++ code to construct values
is going to be highly dependent on the container value_type.
* stl_bind: copy only for arithmetic value types
For non-primitive types, we may well be copying some complex type, when
returning by reference is more appropriate. This commit returns by
internal reference for all but basic arithmetic types.
* Return by reference whenever possible
Only if we definitely can't--i.e. std::vector<bool>--because v[i]
returns something that isn't a T& do we copy; for everything else, we
return by reference.
For the map case, we can always return by reference (at least for the
default stl map/unordered_map).
2016-11-15 11:30:38 +00:00
|
|
|
template <typename T = type, typename = enable_if_t<is_copy_constructible<T>::value>>
|
2016-05-01 08:28:00 +00:00
|
|
|
static Constructor make_copy_constructor(const T *value) {
|
|
|
|
return [](const void *arg) -> void * { return new T(*((const T *)arg)); }; }
|
2016-09-12 15:36:43 +00:00
|
|
|
template <typename T = type, typename = enable_if_t<std::is_move_constructible<T>::value>>
|
2016-05-01 08:28:00 +00:00
|
|
|
static Constructor make_move_constructor(const T *value) {
|
|
|
|
return [](const void *arg) -> void * { return (void *) new T(std::move(*((T *)arg))); }; }
|
|
|
|
#endif
|
Fix stl_bind to support movable, non-copyable value types (#490)
This commit includes the following changes:
* Don't provide make_copy_constructor for non-copyable container
make_copy_constructor currently fails for various stl containers (e.g.
std::vector, std::unordered_map, std::deque, etc.) when the container's
value type (e.g. the "T" or the std::pair<K,T> for a map) is
non-copyable. This adds an override that, for types that look like
containers, also requires that the value_type be copyable.
* stl_bind.h: make bind_{vector,map} work for non-copy-constructible types
Most stl_bind modifiers require copying, so if the type isn't copy
constructible, we provide a read-only interface instead.
In practice, this means that if the type is non-copyable, it will be,
for all intents and purposes, read-only from the Python side (but
currently it simply fails to compile with such a container).
It is still possible for the caller to provide an interface manually
(by defining methods on the returned class_ object), but this isn't
something stl_bind can handle because the C++ code to construct values
is going to be highly dependent on the container value_type.
* stl_bind: copy only for arithmetic value types
For non-primitive types, we may well be copying some complex type, when
returning by reference is more appropriate. This commit returns by
internal reference for all but basic arithmetic types.
* Return by reference whenever possible
Only if we definitely can't--i.e. std::vector<bool>--because v[i]
returns something that isn't a T& do we copy; for everything else, we
return by reference.
For the map case, we can always return by reference (at least for the
default stl map/unordered_map).
2016-11-15 11:30:38 +00:00
|
|
|
|
2016-05-01 08:28:00 +00:00
|
|
|
static Constructor make_copy_constructor(...) { return nullptr; }
|
|
|
|
static Constructor make_move_constructor(...) { return nullptr; }
|
2015-10-19 21:50:51 +00:00
|
|
|
};
|
|
|
|
|
2016-04-28 14:25:24 +00:00
|
|
|
template <typename type, typename SFINAE = void> class type_caster : public type_caster_base<type> { };
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
template <typename type> using make_caster = type_caster<intrinsic_t<type>>;
|
2016-04-28 14:25:24 +00:00
|
|
|
|
|
|
|
template <typename type> class type_caster<std::reference_wrapper<type>> : public type_caster_base<type> {
|
2016-04-20 15:00:57 +00:00
|
|
|
public:
|
|
|
|
static handle cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) {
|
2016-04-28 14:25:24 +00:00
|
|
|
return type_caster_base<type>::cast(&src.get(), policy, parent);
|
2016-04-20 15:00:57 +00:00
|
|
|
}
|
2016-04-21 10:21:14 +00:00
|
|
|
template <typename T> using cast_op_type = std::reference_wrapper<type>;
|
|
|
|
operator std::reference_wrapper<type>() { return std::ref(*((type *) this->value)); }
|
2016-04-20 15:00:57 +00:00
|
|
|
};
|
|
|
|
|
2015-10-18 14:48:30 +00:00
|
|
|
#define PYBIND11_TYPE_CASTER(type, py_name) \
|
2015-07-05 18:05:44 +00:00
|
|
|
protected: \
|
|
|
|
type value; \
|
|
|
|
public: \
|
2016-01-17 21:36:36 +00:00
|
|
|
static PYBIND11_DESCR name() { return type_descr(py_name); } \
|
2016-01-17 21:36:44 +00:00
|
|
|
static handle cast(const type *src, return_value_policy policy, handle parent) { \
|
2015-07-05 18:05:44 +00:00
|
|
|
return cast(*src, policy, parent); \
|
|
|
|
} \
|
|
|
|
operator type*() { return &value; } \
|
2016-03-26 22:04:10 +00:00
|
|
|
operator type&() { return value; } \
|
2016-04-18 08:34:27 +00:00
|
|
|
template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>
|
2015-07-05 18:05:44 +00:00
|
|
|
|
2015-12-16 11:11:01 +00:00
|
|
|
|
2015-11-30 11:30:28 +00:00
|
|
|
template <typename T>
|
2016-09-30 10:20:19 +00:00
|
|
|
struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value>> {
|
2015-11-30 11:30:28 +00:00
|
|
|
typedef typename std::conditional<sizeof(T) <= sizeof(long), long, long long>::type _py_type_0;
|
|
|
|
typedef typename std::conditional<std::is_signed<T>::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>::type _py_type_1;
|
|
|
|
typedef typename std::conditional<std::is_floating_point<T>::value, double, _py_type_1>::type py_type;
|
|
|
|
public:
|
2015-07-05 18:05:44 +00:00
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
bool load(handle src, bool) {
|
2015-11-30 11:30:28 +00:00
|
|
|
py_type py_value;
|
2015-07-05 18:05:44 +00:00
|
|
|
|
2016-05-10 14:59:01 +00:00
|
|
|
if (!src) {
|
|
|
|
return false;
|
|
|
|
} if (std::is_floating_point<T>::value) {
|
2016-01-17 21:36:44 +00:00
|
|
|
py_value = (py_type) PyFloat_AsDouble(src.ptr());
|
2015-11-30 11:30:28 +00:00
|
|
|
} else if (sizeof(T) <= sizeof(long)) {
|
2016-05-17 13:35:29 +00:00
|
|
|
if (PyFloat_Check(src.ptr()))
|
|
|
|
return false;
|
2015-11-30 11:30:28 +00:00
|
|
|
if (std::is_signed<T>::value)
|
2016-01-17 21:36:44 +00:00
|
|
|
py_value = (py_type) PyLong_AsLong(src.ptr());
|
2015-11-30 11:30:28 +00:00
|
|
|
else
|
2016-01-17 21:36:44 +00:00
|
|
|
py_value = (py_type) PyLong_AsUnsignedLong(src.ptr());
|
2015-11-30 11:30:28 +00:00
|
|
|
} else {
|
2016-05-17 13:35:29 +00:00
|
|
|
if (PyFloat_Check(src.ptr()))
|
|
|
|
return false;
|
2015-11-30 11:30:28 +00:00
|
|
|
if (std::is_signed<T>::value)
|
2016-01-17 21:36:44 +00:00
|
|
|
py_value = (py_type) PYBIND11_LONG_AS_LONGLONG(src.ptr());
|
2015-11-30 11:30:28 +00:00
|
|
|
else
|
2016-01-17 21:36:44 +00:00
|
|
|
py_value = (py_type) PYBIND11_LONG_AS_UNSIGNED_LONGLONG(src.ptr());
|
2015-11-30 11:30:28 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if ((py_value == (py_type) -1 && PyErr_Occurred()) ||
|
|
|
|
(std::is_integral<T>::value && sizeof(py_type) != sizeof(T) &&
|
|
|
|
(py_value < (py_type) std::numeric_limits<T>::min() ||
|
|
|
|
py_value > (py_type) std::numeric_limits<T>::max()))) {
|
2016-10-27 22:37:07 +00:00
|
|
|
#if PY_VERSION_HEX < 0x03000000
|
|
|
|
bool type_error = PyErr_ExceptionMatches(PyExc_SystemError);
|
|
|
|
#else
|
|
|
|
bool type_error = PyErr_ExceptionMatches(PyExc_TypeError);
|
|
|
|
#endif
|
2015-11-30 11:30:28 +00:00
|
|
|
PyErr_Clear();
|
2016-11-07 14:59:01 +00:00
|
|
|
if (type_error && PyNumber_Check(src.ptr())) {
|
2016-10-28 01:08:15 +00:00
|
|
|
auto tmp = reinterpret_borrow<object>(std::is_floating_point<T>::value
|
|
|
|
? PyNumber_Float(src.ptr())
|
|
|
|
: PyNumber_Long(src.ptr()));
|
2016-11-07 14:59:01 +00:00
|
|
|
PyErr_Clear();
|
|
|
|
return load(tmp, false);
|
|
|
|
}
|
2015-11-30 11:30:28 +00:00
|
|
|
return false;
|
|
|
|
}
|
2015-07-05 18:05:44 +00:00
|
|
|
|
2015-11-30 11:30:28 +00:00
|
|
|
value = (T) py_value;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
static handle cast(T src, return_value_policy /* policy */, handle /* parent */) {
|
2015-11-30 11:30:28 +00:00
|
|
|
if (std::is_floating_point<T>::value) {
|
|
|
|
return PyFloat_FromDouble((double) src);
|
|
|
|
} else if (sizeof(T) <= sizeof(long)) {
|
|
|
|
if (std::is_signed<T>::value)
|
|
|
|
return PyLong_FromLong((long) src);
|
|
|
|
else
|
|
|
|
return PyLong_FromUnsignedLong((unsigned long) src);
|
|
|
|
} else {
|
|
|
|
if (std::is_signed<T>::value)
|
|
|
|
return PyLong_FromLongLong((long long) src);
|
|
|
|
else
|
|
|
|
return PyLong_FromUnsignedLongLong((unsigned long long) src);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-07-06 04:40:54 +00:00
|
|
|
PYBIND11_TYPE_CASTER(T, _<std::is_integral<T>::value>("int", "float"));
|
2015-11-30 11:30:28 +00:00
|
|
|
};
|
2015-07-05 18:05:44 +00:00
|
|
|
|
2016-11-15 12:00:38 +00:00
|
|
|
template<typename T> struct void_caster {
|
2015-07-05 18:05:44 +00:00
|
|
|
public:
|
2016-01-17 21:36:44 +00:00
|
|
|
bool load(handle, bool) { return false; }
|
2016-11-15 12:00:38 +00:00
|
|
|
static handle cast(T, return_value_policy /* policy */, handle /* parent */) {
|
2016-09-08 13:53:18 +00:00
|
|
|
return none().inc_ref();
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
2016-11-15 12:00:38 +00:00
|
|
|
PYBIND11_TYPE_CASTER(T, _("None"));
|
2015-07-05 18:05:44 +00:00
|
|
|
};
|
|
|
|
|
2016-11-15 12:00:38 +00:00
|
|
|
template <> class type_caster<void_type> : public void_caster<void_type> {};
|
|
|
|
|
2016-03-26 16:51:09 +00:00
|
|
|
template <> class type_caster<void> : public type_caster<void_type> {
|
|
|
|
public:
|
|
|
|
using type_caster<void_type>::cast;
|
|
|
|
|
|
|
|
bool load(handle h, bool) {
|
2016-05-10 14:59:01 +00:00
|
|
|
if (!h) {
|
|
|
|
return false;
|
2016-08-29 01:38:47 +00:00
|
|
|
} else if (h.is_none()) {
|
2016-03-26 19:41:28 +00:00
|
|
|
value = nullptr;
|
|
|
|
return true;
|
|
|
|
}
|
2016-04-30 17:56:10 +00:00
|
|
|
|
|
|
|
/* Check if this is a capsule */
|
2016-10-23 12:50:08 +00:00
|
|
|
if (isinstance<capsule>(h)) {
|
2016-10-28 01:08:15 +00:00
|
|
|
value = reinterpret_borrow<capsule>(h);
|
2016-04-30 17:56:10 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check if this is a C++ type */
|
2016-09-11 11:00:40 +00:00
|
|
|
if (get_type_info((PyTypeObject *) h.get_type().ptr())) {
|
2016-04-30 17:56:10 +00:00
|
|
|
value = ((instance<void> *) h.ptr())->value;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Fail */
|
|
|
|
return false;
|
2016-03-26 16:51:09 +00:00
|
|
|
}
|
|
|
|
|
2016-04-30 17:13:18 +00:00
|
|
|
static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) {
|
2016-03-26 19:41:28 +00:00
|
|
|
if (ptr)
|
|
|
|
return capsule(ptr).release();
|
|
|
|
else
|
2016-09-08 13:53:18 +00:00
|
|
|
return none().inc_ref();
|
2016-03-26 16:51:09 +00:00
|
|
|
}
|
2016-03-26 19:41:28 +00:00
|
|
|
|
2016-03-26 23:19:32 +00:00
|
|
|
template <typename T> using cast_op_type = void*&;
|
|
|
|
operator void *&() { return value; }
|
2016-08-03 23:40:40 +00:00
|
|
|
static PYBIND11_DESCR name() { return type_descr(_("capsule")); }
|
2016-03-26 16:51:09 +00:00
|
|
|
private:
|
2016-03-26 22:04:10 +00:00
|
|
|
void *value = nullptr;
|
2016-03-26 16:51:09 +00:00
|
|
|
};
|
|
|
|
|
2015-12-16 10:34:39 +00:00
|
|
|
template <> class type_caster<std::nullptr_t> : public type_caster<void_type> { };
|
2015-10-01 16:37:26 +00:00
|
|
|
|
2015-07-05 18:05:44 +00:00
|
|
|
template <> class type_caster<bool> {
|
|
|
|
public:
|
2016-01-17 21:36:44 +00:00
|
|
|
bool load(handle src, bool) {
|
2016-05-10 14:59:01 +00:00
|
|
|
if (!src) return false;
|
|
|
|
else if (src.ptr() == Py_True) { value = true; return true; }
|
2016-01-17 21:36:44 +00:00
|
|
|
else if (src.ptr() == Py_False) { value = false; return true; }
|
2015-07-05 18:05:44 +00:00
|
|
|
else return false;
|
|
|
|
}
|
2016-01-17 21:36:44 +00:00
|
|
|
static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) {
|
|
|
|
return handle(src ? Py_True : Py_False).inc_ref();
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
2016-01-17 21:36:36 +00:00
|
|
|
PYBIND11_TYPE_CASTER(bool, _("bool"));
|
2015-07-05 18:05:44 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
template <> class type_caster<std::string> {
|
|
|
|
public:
|
2016-01-17 21:36:44 +00:00
|
|
|
bool load(handle src, bool) {
|
2016-01-17 21:36:37 +00:00
|
|
|
object temp;
|
2016-01-17 21:36:44 +00:00
|
|
|
handle load_src = src;
|
2016-05-10 14:59:01 +00:00
|
|
|
if (!src) {
|
|
|
|
return false;
|
|
|
|
} else if (PyUnicode_Check(load_src.ptr())) {
|
2016-10-28 01:08:15 +00:00
|
|
|
temp = reinterpret_steal<object>(PyUnicode_AsUTF8String(load_src.ptr()));
|
2016-01-17 21:36:37 +00:00
|
|
|
if (!temp) { PyErr_Clear(); return false; } // UnicodeEncodeError
|
2016-01-17 21:36:44 +00:00
|
|
|
load_src = temp;
|
2016-01-17 21:36:37 +00:00
|
|
|
}
|
|
|
|
char *buffer;
|
|
|
|
ssize_t length;
|
2016-01-17 21:36:44 +00:00
|
|
|
int err = PYBIND11_BYTES_AS_STRING_AND_SIZE(load_src.ptr(), &buffer, &length);
|
2016-01-17 21:36:37 +00:00
|
|
|
if (err == -1) { PyErr_Clear(); return false; } // TypeError
|
2016-05-29 11:40:40 +00:00
|
|
|
value = std::string(buffer, (size_t) length);
|
2016-03-26 22:37:51 +00:00
|
|
|
success = true;
|
2015-07-05 18:05:44 +00:00
|
|
|
return true;
|
|
|
|
}
|
2016-01-17 21:36:37 +00:00
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
static handle cast(const std::string &src, return_value_policy /* policy */, handle /* parent */) {
|
2016-05-29 11:40:40 +00:00
|
|
|
return PyUnicode_FromStringAndSize(src.c_str(), (ssize_t) src.length());
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
2016-01-17 21:36:37 +00:00
|
|
|
|
|
|
|
PYBIND11_TYPE_CASTER(std::string, _(PYBIND11_STRING_NAME));
|
2016-03-26 22:37:51 +00:00
|
|
|
protected:
|
|
|
|
bool success = false;
|
2015-07-05 18:05:44 +00:00
|
|
|
};
|
|
|
|
|
2016-09-04 22:23:55 +00:00
|
|
|
template <typename type, typename deleter> class type_caster<std::unique_ptr<type, deleter>> {
|
2016-04-06 15:38:18 +00:00
|
|
|
public:
|
2016-09-04 22:23:55 +00:00
|
|
|
static handle cast(std::unique_ptr<type, deleter> &&src, return_value_policy policy, handle parent) {
|
2016-04-28 14:25:24 +00:00
|
|
|
handle result = type_caster_base<type>::cast(src.get(), policy, parent);
|
2016-04-06 15:38:18 +00:00
|
|
|
if (result)
|
|
|
|
src.release();
|
|
|
|
return result;
|
|
|
|
}
|
2016-04-28 14:25:24 +00:00
|
|
|
static PYBIND11_DESCR name() { return type_caster_base<type>::name(); }
|
2016-04-06 15:38:18 +00:00
|
|
|
};
|
|
|
|
|
2016-03-02 05:59:39 +00:00
|
|
|
template <> class type_caster<std::wstring> {
|
2015-07-05 18:05:44 +00:00
|
|
|
public:
|
2016-03-26 22:38:46 +00:00
|
|
|
bool load(handle src, bool) {
|
|
|
|
object temp;
|
|
|
|
handle load_src = src;
|
2016-05-10 14:59:01 +00:00
|
|
|
if (!src) {
|
|
|
|
return false;
|
|
|
|
} else if (!PyUnicode_Check(load_src.ptr())) {
|
2016-10-28 01:08:15 +00:00
|
|
|
temp = reinterpret_steal<object>(PyUnicode_FromObject(load_src.ptr()));
|
2016-03-26 22:38:46 +00:00
|
|
|
if (!temp) { PyErr_Clear(); return false; }
|
|
|
|
load_src = temp;
|
|
|
|
}
|
2016-03-08 18:40:32 +00:00
|
|
|
wchar_t *buffer = nullptr;
|
|
|
|
ssize_t length = -1;
|
|
|
|
#if PY_MAJOR_VERSION >= 3
|
|
|
|
buffer = PyUnicode_AsWideCharString(load_src.ptr(), &length);
|
|
|
|
#else
|
2016-10-28 01:08:15 +00:00
|
|
|
temp = reinterpret_steal<object>(
|
2016-03-08 18:40:32 +00:00
|
|
|
sizeof(wchar_t) == sizeof(short)
|
|
|
|
? PyUnicode_AsUTF16String(load_src.ptr())
|
2016-10-28 01:08:15 +00:00
|
|
|
: PyUnicode_AsUTF32String(load_src.ptr()));
|
2016-03-08 18:40:32 +00:00
|
|
|
if (temp) {
|
|
|
|
int err = PYBIND11_BYTES_AS_STRING_AND_SIZE(temp.ptr(), (char **) &buffer, &length);
|
|
|
|
if (err == -1) { buffer = nullptr; } // TypeError
|
2016-05-29 11:40:40 +00:00
|
|
|
length = length / (ssize_t) sizeof(wchar_t) - 1; ++buffer; // Skip BOM
|
2016-01-17 21:36:37 +00:00
|
|
|
}
|
2016-03-08 18:40:32 +00:00
|
|
|
#endif
|
|
|
|
if (!buffer) { PyErr_Clear(); return false; }
|
2016-05-29 11:40:40 +00:00
|
|
|
value = std::wstring(buffer, (size_t) length);
|
2016-03-26 22:38:46 +00:00
|
|
|
success = true;
|
|
|
|
return true;
|
|
|
|
}
|
2016-03-02 05:59:39 +00:00
|
|
|
|
2016-03-26 22:38:46 +00:00
|
|
|
static handle cast(const std::wstring &src, return_value_policy /* policy */, handle /* parent */) {
|
2016-05-29 11:40:40 +00:00
|
|
|
return PyUnicode_FromWideChar(src.c_str(), (ssize_t) src.length());
|
2016-03-26 22:38:46 +00:00
|
|
|
}
|
2015-07-05 18:05:44 +00:00
|
|
|
|
2016-03-26 22:38:46 +00:00
|
|
|
PYBIND11_TYPE_CASTER(std::wstring, _(PYBIND11_STRING_NAME));
|
2016-03-26 22:37:51 +00:00
|
|
|
protected:
|
|
|
|
bool success = false;
|
2016-03-02 05:59:39 +00:00
|
|
|
};
|
|
|
|
|
2016-03-08 18:40:32 +00:00
|
|
|
template <> class type_caster<char> : public type_caster<std::string> {
|
2015-07-05 18:05:44 +00:00
|
|
|
public:
|
2016-03-26 22:38:46 +00:00
|
|
|
bool load(handle src, bool convert) {
|
2016-08-29 01:38:47 +00:00
|
|
|
if (src.is_none()) return true;
|
2016-03-26 22:37:51 +00:00
|
|
|
return type_caster<std::string>::load(src, convert);
|
|
|
|
}
|
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
static handle cast(const char *src, return_value_policy /* policy */, handle /* parent */) {
|
2016-09-08 13:53:18 +00:00
|
|
|
if (src == nullptr) return none().inc_ref();
|
2015-07-05 18:05:44 +00:00
|
|
|
return PyUnicode_FromString(src);
|
|
|
|
}
|
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
static handle cast(char src, return_value_policy /* policy */, handle /* parent */) {
|
2015-07-05 18:05:44 +00:00
|
|
|
char str[2] = { src, '\0' };
|
|
|
|
return PyUnicode_DecodeLatin1(str, 1, nullptr);
|
|
|
|
}
|
|
|
|
|
2016-03-26 22:37:51 +00:00
|
|
|
operator char*() { return success ? (char *) value.c_str() : nullptr; }
|
2016-03-26 22:38:46 +00:00
|
|
|
operator char&() { return value[0]; }
|
2016-03-26 22:04:10 +00:00
|
|
|
|
2016-01-17 21:36:37 +00:00
|
|
|
static PYBIND11_DESCR name() { return type_descr(_(PYBIND11_STRING_NAME)); }
|
2015-07-05 18:05:44 +00:00
|
|
|
};
|
|
|
|
|
2016-03-08 18:40:32 +00:00
|
|
|
template <> class type_caster<wchar_t> : public type_caster<std::wstring> {
|
2016-03-02 07:07:08 +00:00
|
|
|
public:
|
2016-03-26 22:38:46 +00:00
|
|
|
bool load(handle src, bool convert) {
|
2016-08-29 01:38:47 +00:00
|
|
|
if (src.is_none()) return true;
|
2016-03-26 22:37:51 +00:00
|
|
|
return type_caster<std::wstring>::load(src, convert);
|
|
|
|
}
|
|
|
|
|
2016-03-26 22:38:46 +00:00
|
|
|
static handle cast(const wchar_t *src, return_value_policy /* policy */, handle /* parent */) {
|
2016-09-08 13:53:18 +00:00
|
|
|
if (src == nullptr) return none().inc_ref();
|
2016-05-29 11:40:40 +00:00
|
|
|
return PyUnicode_FromWideChar(src, (ssize_t) wcslen(src));
|
2016-03-26 22:38:46 +00:00
|
|
|
}
|
2016-03-02 07:07:08 +00:00
|
|
|
|
2016-03-26 22:38:46 +00:00
|
|
|
static handle cast(wchar_t src, return_value_policy /* policy */, handle /* parent */) {
|
|
|
|
wchar_t wstr[2] = { src, L'\0' };
|
|
|
|
return PyUnicode_FromWideChar(wstr, 1);
|
|
|
|
}
|
2016-03-02 07:07:08 +00:00
|
|
|
|
2016-03-26 22:37:51 +00:00
|
|
|
operator wchar_t*() { return success ? (wchar_t *) value.c_str() : nullptr; }
|
2016-03-26 22:38:46 +00:00
|
|
|
operator wchar_t&() { return value[0]; }
|
2016-03-02 07:07:08 +00:00
|
|
|
|
2016-03-26 22:38:46 +00:00
|
|
|
static PYBIND11_DESCR name() { return type_descr(_(PYBIND11_STRING_NAME)); }
|
2016-03-02 07:07:08 +00:00
|
|
|
};
|
|
|
|
|
2015-07-05 18:05:44 +00:00
|
|
|
template <typename T1, typename T2> class type_caster<std::pair<T1, T2>> {
|
|
|
|
typedef std::pair<T1, T2> type;
|
|
|
|
public:
|
2016-01-17 21:36:44 +00:00
|
|
|
bool load(handle src, bool convert) {
|
2016-05-10 14:59:01 +00:00
|
|
|
if (!src)
|
|
|
|
return false;
|
|
|
|
else if (!PyTuple_Check(src.ptr()) || PyTuple_Size(src.ptr()) != 2)
|
2015-07-05 18:05:44 +00:00
|
|
|
return false;
|
2016-01-17 21:36:44 +00:00
|
|
|
return first.load(PyTuple_GET_ITEM(src.ptr(), 0), convert) &&
|
|
|
|
second.load(PyTuple_GET_ITEM(src.ptr(), 1), convert);
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
static handle cast(const type &src, return_value_policy policy, handle parent) {
|
2016-10-28 01:08:15 +00:00
|
|
|
auto o1 = reinterpret_steal<object>(make_caster<T1>::cast(src.first, policy, parent));
|
|
|
|
auto o2 = reinterpret_steal<object>(make_caster<T2>::cast(src.second, policy, parent));
|
2015-12-30 20:03:57 +00:00
|
|
|
if (!o1 || !o2)
|
2016-01-17 21:36:44 +00:00
|
|
|
return handle();
|
|
|
|
tuple result(2);
|
|
|
|
PyTuple_SET_ITEM(result.ptr(), 0, o1.release().ptr());
|
|
|
|
PyTuple_SET_ITEM(result.ptr(), 1, o2.release().ptr());
|
|
|
|
return result.release();
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
2016-01-17 21:36:36 +00:00
|
|
|
static PYBIND11_DESCR name() {
|
|
|
|
return type_descr(
|
2016-09-05 12:30:56 +00:00
|
|
|
_("Tuple[") + make_caster<T1>::name() + _(", ") + make_caster<T2>::name() + _("]")
|
|
|
|
);
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
2016-03-26 22:04:10 +00:00
|
|
|
template <typename T> using cast_op_type = type;
|
|
|
|
|
2015-07-05 18:05:44 +00:00
|
|
|
operator type() {
|
2016-09-05 12:30:56 +00:00
|
|
|
return type(first.operator typename make_caster<T1>::template cast_op_type<T1>(),
|
|
|
|
second.operator typename make_caster<T2>::template cast_op_type<T2>());
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
protected:
|
2016-09-05 12:30:56 +00:00
|
|
|
make_caster<T1> first;
|
|
|
|
make_caster<T2> second;
|
2015-07-05 18:05:44 +00:00
|
|
|
};
|
|
|
|
|
2015-07-30 13:29:00 +00:00
|
|
|
template <typename... Tuple> class type_caster<std::tuple<Tuple...>> {
|
2015-07-05 18:05:44 +00:00
|
|
|
typedef std::tuple<Tuple...> type;
|
2016-09-05 12:30:56 +00:00
|
|
|
typedef std::tuple<intrinsic_t<Tuple>...> itype;
|
2016-05-10 14:59:01 +00:00
|
|
|
typedef std::tuple<args> args_type;
|
|
|
|
typedef std::tuple<args, kwargs> args_kwargs_type;
|
2015-07-05 18:05:44 +00:00
|
|
|
public:
|
|
|
|
enum { size = sizeof...(Tuple) };
|
|
|
|
|
2016-05-10 14:59:01 +00:00
|
|
|
static constexpr const bool has_kwargs = std::is_same<itype, args_kwargs_type>::value;
|
|
|
|
static constexpr const bool has_args = has_kwargs || std::is_same<itype, args_type>::value;
|
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
bool load(handle src, bool convert) {
|
2016-05-10 14:59:01 +00:00
|
|
|
if (!src || !PyTuple_Check(src.ptr()) || PyTuple_GET_SIZE(src.ptr()) != size)
|
|
|
|
return false;
|
2015-07-26 14:33:49 +00:00
|
|
|
return load(src, convert, typename make_index_sequence<sizeof...(Tuple)>::type());
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
2016-09-12 15:36:43 +00:00
|
|
|
template <typename T = itype, enable_if_t<
|
2016-05-10 14:59:01 +00:00
|
|
|
!std::is_same<T, args_type>::value &&
|
2016-09-12 15:36:43 +00:00
|
|
|
!std::is_same<T, args_kwargs_type>::value, int> = 0>
|
2016-05-10 14:59:01 +00:00
|
|
|
bool load_args(handle args, handle, bool convert) {
|
|
|
|
return load(args, convert, typename make_index_sequence<sizeof...(Tuple)>::type());
|
|
|
|
}
|
|
|
|
|
2016-09-12 15:36:43 +00:00
|
|
|
template <typename T = itype, enable_if_t<std::is_same<T, args_type>::value, int> = 0>
|
2016-05-10 14:59:01 +00:00
|
|
|
bool load_args(handle args, handle, bool convert) {
|
|
|
|
std::get<0>(value).load(args, convert);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2016-09-12 15:36:43 +00:00
|
|
|
template <typename T = itype, enable_if_t<std::is_same<T, args_kwargs_type>::value, int> = 0>
|
2016-05-10 14:59:01 +00:00
|
|
|
bool load_args(handle args, handle kwargs, bool convert) {
|
|
|
|
std::get<0>(value).load(args, convert);
|
|
|
|
std::get<1>(value).load(kwargs, convert);
|
|
|
|
return true;
|
|
|
|
}
|
2016-05-26 12:29:31 +00:00
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
static handle cast(const type &src, return_value_policy policy, handle parent) {
|
2015-07-26 14:33:49 +00:00
|
|
|
return cast(src, policy, parent, typename make_index_sequence<size>::type());
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
2016-08-03 23:40:40 +00:00
|
|
|
static PYBIND11_DESCR element_names() {
|
2016-09-05 12:30:56 +00:00
|
|
|
return detail::concat(make_caster<Tuple>::name()...);
|
2016-08-03 23:40:40 +00:00
|
|
|
}
|
2016-09-06 04:02:29 +00:00
|
|
|
|
2016-01-17 21:36:36 +00:00
|
|
|
static PYBIND11_DESCR name() {
|
2016-08-03 23:40:40 +00:00
|
|
|
return type_descr(_("Tuple[") + element_names() + _("]"));
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
2016-09-12 15:36:43 +00:00
|
|
|
template <typename ReturnValue, typename Func> enable_if_t<!std::is_void<ReturnValue>::value, ReturnValue> call(Func &&f) {
|
2015-07-29 15:51:54 +00:00
|
|
|
return call<ReturnValue>(std::forward<Func>(f), typename make_index_sequence<sizeof...(Tuple)>::type());
|
2015-07-26 14:33:49 +00:00
|
|
|
}
|
|
|
|
|
2016-09-12 15:36:43 +00:00
|
|
|
template <typename ReturnValue, typename Func> enable_if_t<std::is_void<ReturnValue>::value, void_type> call(Func &&f) {
|
2015-07-29 15:51:54 +00:00
|
|
|
call<ReturnValue>(std::forward<Func>(f), typename make_index_sequence<sizeof...(Tuple)>::type());
|
2015-07-30 13:29:00 +00:00
|
|
|
return void_type();
|
2015-07-26 14:33:49 +00:00
|
|
|
}
|
|
|
|
|
2016-03-26 22:04:10 +00:00
|
|
|
template <typename T> using cast_op_type = type;
|
|
|
|
|
2015-07-05 18:05:44 +00:00
|
|
|
operator type() {
|
2015-07-26 14:33:49 +00:00
|
|
|
return cast(typename make_index_sequence<sizeof...(Tuple)>::type());
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
2015-07-26 14:33:49 +00:00
|
|
|
|
2015-07-05 18:05:44 +00:00
|
|
|
protected:
|
2015-07-29 15:51:54 +00:00
|
|
|
template <typename ReturnValue, typename Func, size_t ... Index> ReturnValue call(Func &&f, index_sequence<Index...>) {
|
2016-03-26 22:04:10 +00:00
|
|
|
return f(std::get<Index>(value)
|
2016-09-05 12:30:56 +00:00
|
|
|
.operator typename make_caster<Tuple>::template cast_op_type<Tuple>()...);
|
2015-07-26 14:33:49 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
template <size_t ... Index> type cast(index_sequence<Index...>) {
|
2016-03-26 22:04:10 +00:00
|
|
|
return type(std::get<Index>(value)
|
2016-09-05 12:30:56 +00:00
|
|
|
.operator typename make_caster<Tuple>::template cast_op_type<Tuple>()...);
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
template <size_t ... Indices> bool load(handle src, bool convert, index_sequence<Indices...>) {
|
|
|
|
std::array<bool, size> success {{
|
2016-05-10 14:59:01 +00:00
|
|
|
std::get<Indices>(value).load(PyTuple_GET_ITEM(src.ptr(), Indices), convert)...
|
2015-07-05 18:05:44 +00:00
|
|
|
}};
|
2015-08-24 13:31:24 +00:00
|
|
|
(void) convert; /* avoid a warning when the tuple is empty */
|
2016-01-17 21:36:44 +00:00
|
|
|
for (bool r : success)
|
2015-07-05 18:05:44 +00:00
|
|
|
if (!r)
|
|
|
|
return false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Implementation: Convert a C++ tuple into a Python tuple */
|
2016-01-17 21:36:44 +00:00
|
|
|
template <size_t ... Indices> static handle cast(const type &src, return_value_policy policy, handle parent, index_sequence<Indices...>) {
|
|
|
|
std::array<object, size> entries {{
|
2016-10-28 01:08:15 +00:00
|
|
|
reinterpret_steal<object>(make_caster<Tuple>::cast(std::get<Indices>(src), policy, parent))...
|
2015-07-05 18:05:44 +00:00
|
|
|
}};
|
2016-01-17 21:36:44 +00:00
|
|
|
for (const auto &entry: entries)
|
|
|
|
if (!entry)
|
|
|
|
return handle();
|
|
|
|
tuple result(size);
|
2015-12-30 20:03:57 +00:00
|
|
|
int counter = 0;
|
2016-01-17 21:36:44 +00:00
|
|
|
for (auto & entry: entries)
|
|
|
|
PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr());
|
|
|
|
return result.release();
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
2016-09-05 12:30:56 +00:00
|
|
|
std::tuple<make_caster<Tuple>...> value;
|
2015-07-05 18:05:44 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
/// Type caster for holder types like std::shared_ptr, etc.
|
2016-04-28 14:25:24 +00:00
|
|
|
template <typename type, typename holder_type> class type_caster_holder : public type_caster_base<type> {
|
2015-07-05 18:05:44 +00:00
|
|
|
public:
|
2016-09-11 11:00:40 +00:00
|
|
|
using base = type_caster_base<type>;
|
|
|
|
using base::base;
|
|
|
|
using base::cast;
|
|
|
|
using base::typeinfo;
|
|
|
|
using base::value;
|
|
|
|
using base::temp;
|
2015-11-24 22:05:58 +00:00
|
|
|
|
2016-09-11 11:00:40 +00:00
|
|
|
PYBIND11_NOINLINE bool load(handle src, bool convert) {
|
|
|
|
return load(src, convert, Py_TYPE(src.ptr()));
|
|
|
|
}
|
|
|
|
|
|
|
|
bool load(handle src, bool convert, PyTypeObject *tobj) {
|
|
|
|
if (!src || !typeinfo)
|
2015-07-05 18:05:44 +00:00
|
|
|
return false;
|
2016-09-11 11:00:40 +00:00
|
|
|
if (src.is_none()) {
|
2016-03-03 13:05:06 +00:00
|
|
|
value = nullptr;
|
|
|
|
return true;
|
2016-09-11 11:00:40 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (typeinfo->simple_type) { /* Case 1: no multiple inheritance etc. involved */
|
|
|
|
/* Check if we can safely perform a reinterpret-style cast */
|
|
|
|
if (PyType_IsSubtype(tobj, typeinfo->type)) {
|
|
|
|
auto inst = (instance<type, holder_type> *) src.ptr();
|
|
|
|
value = (void *) inst->value;
|
|
|
|
holder = inst->holder;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
} else { /* Case 2: multiple inheritance */
|
|
|
|
/* Check if we can safely perform a reinterpret-style cast */
|
|
|
|
if (tobj == typeinfo->type) {
|
|
|
|
auto inst = (instance<type, holder_type> *) src.ptr();
|
|
|
|
value = (void *) inst->value;
|
|
|
|
holder = inst->holder;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If this is a python class, also check the parents recursively */
|
|
|
|
auto const &type_dict = get_internals().registered_types_py;
|
|
|
|
bool new_style_class = PyType_Check(tobj);
|
|
|
|
if (type_dict.find(tobj) == type_dict.end() && new_style_class && tobj->tp_bases) {
|
2016-10-28 01:08:15 +00:00
|
|
|
auto parents = reinterpret_borrow<tuple>(tobj->tp_bases);
|
2016-09-11 11:00:40 +00:00
|
|
|
for (handle parent : parents) {
|
|
|
|
bool result = load(src, convert, (PyTypeObject *) parent.ptr());
|
|
|
|
if (result)
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (try_implicit_casts(src, convert))
|
|
|
|
return true;
|
2016-01-17 21:36:40 +00:00
|
|
|
}
|
2016-01-17 21:36:44 +00:00
|
|
|
|
2016-01-17 21:36:40 +00:00
|
|
|
if (convert) {
|
|
|
|
for (auto &converter : typeinfo->implicit_conversions) {
|
2016-10-28 01:08:15 +00:00
|
|
|
temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type));
|
2016-01-17 21:36:44 +00:00
|
|
|
if (load(temp, false))
|
2016-01-17 21:36:40 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
2016-09-11 11:00:40 +00:00
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T = holder_type, detail::enable_if_t<!std::is_constructible<T, const T &, type*>::value, int> = 0>
|
|
|
|
bool try_implicit_casts(handle, bool) { return false; }
|
|
|
|
|
|
|
|
template <typename T = holder_type, detail::enable_if_t<std::is_constructible<T, const T &, type*>::value, int> = 0>
|
|
|
|
bool try_implicit_casts(handle src, bool convert) {
|
|
|
|
for (auto &cast : typeinfo->implicit_casts) {
|
|
|
|
type_caster_holder sub_caster(*cast.first);
|
|
|
|
if (sub_caster.load(src, convert)) {
|
|
|
|
value = cast.second(sub_caster.value);
|
|
|
|
holder = holder_type(sub_caster.holder, (type *) value);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
2016-01-17 21:36:40 +00:00
|
|
|
return false;
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
2015-11-24 22:05:58 +00:00
|
|
|
|
2015-07-05 18:05:44 +00:00
|
|
|
explicit operator type*() { return this->value; }
|
|
|
|
explicit operator type&() { return *(this->value); }
|
|
|
|
explicit operator holder_type*() { return &holder; }
|
2015-11-12 22:27:20 +00:00
|
|
|
|
2016-02-18 17:38:27 +00:00
|
|
|
// Workaround for Intel compiler bug
|
|
|
|
// see pybind11 issue 94
|
|
|
|
#if defined(__ICC) || defined(__INTEL_COMPILER)
|
|
|
|
operator holder_type&() { return holder; }
|
|
|
|
#else
|
|
|
|
explicit operator holder_type&() { return holder; }
|
|
|
|
#endif
|
|
|
|
|
2016-04-30 21:01:06 +00:00
|
|
|
static handle cast(const holder_type &src, return_value_policy, handle) {
|
2016-01-17 21:36:40 +00:00
|
|
|
return type_caster_generic::cast(
|
2016-04-30 21:01:06 +00:00
|
|
|
src.get(), return_value_policy::take_ownership, handle(),
|
2016-04-13 11:45:09 +00:00
|
|
|
src.get() ? &typeid(*src.get()) : nullptr, &typeid(type),
|
2016-04-30 21:01:06 +00:00
|
|
|
nullptr, nullptr, &src);
|
2015-11-12 22:27:20 +00:00
|
|
|
}
|
|
|
|
|
2015-07-05 18:05:44 +00:00
|
|
|
protected:
|
|
|
|
holder_type holder;
|
|
|
|
};
|
|
|
|
|
2016-10-18 11:56:33 +00:00
|
|
|
/// Specialize for the common std::shared_ptr, so users don't need to
|
|
|
|
template <typename T>
|
|
|
|
class type_caster<std::shared_ptr<T>> : public type_caster_holder<T, std::shared_ptr<T>> { };
|
|
|
|
|
|
|
|
/// Create a specialization for custom holder types (silently ignores std::shared_ptr)
|
|
|
|
#define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type) \
|
|
|
|
namespace pybind11 { namespace detail { \
|
|
|
|
template <typename type> \
|
|
|
|
class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \
|
|
|
|
: public type_caster_holder<type, holder_type> { }; \
|
|
|
|
}}
|
|
|
|
|
2016-09-06 16:27:00 +00:00
|
|
|
// PYBIND11_DECLARE_HOLDER_TYPE holder types:
|
Allow arbitrary class_ template option ordering
The current pybind11::class_<Type, Holder, Trampoline> fixed template
ordering results in a requirement to repeat the Holder with its default
value (std::unique_ptr<Type>) argument, which is a little bit annoying:
it needs to be specified not because we want to override the default,
but rather because we need to specify the third argument.
This commit removes this limitation by making the class_ template take
the type name plus a parameter pack of options. It then extracts the
first valid holder type and the first subclass type for holder_type and
trampoline type_alias, respectively. (If unfound, both fall back to
their current defaults, `std::unique_ptr<type>` and `type`,
respectively). If any unmatched template arguments are provided, a
static assertion fails.
What this means is that you can specify or omit the arguments in any
order:
py::class_<A, PyA> c1(m, "A");
py::class_<B, PyB, std::shared_ptr<B>> c2(m, "B");
py::class_<C, std::shared_ptr<C>, PyB> c3(m, "C");
It also allows future class attributes (such as base types in the next
commit) to be passed as class template types rather than needing to use
a py::base<> wrapper.
2016-09-06 16:17:06 +00:00
|
|
|
template <typename base, typename holder> struct is_holder_type :
|
2016-09-06 16:27:00 +00:00
|
|
|
std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {};
|
|
|
|
// Specialization for always-supported unique_ptr holders:
|
|
|
|
template <typename base, typename deleter> struct is_holder_type<base, std::unique_ptr<base, deleter>> :
|
|
|
|
std::true_type {};
|
Allow arbitrary class_ template option ordering
The current pybind11::class_<Type, Holder, Trampoline> fixed template
ordering results in a requirement to repeat the Holder with its default
value (std::unique_ptr<Type>) argument, which is a little bit annoying:
it needs to be specified not because we want to override the default,
but rather because we need to specify the third argument.
This commit removes this limitation by making the class_ template take
the type name plus a parameter pack of options. It then extracts the
first valid holder type and the first subclass type for holder_type and
trampoline type_alias, respectively. (If unfound, both fall back to
their current defaults, `std::unique_ptr<type>` and `type`,
respectively). If any unmatched template arguments are provided, a
static assertion fails.
What this means is that you can specify or omit the arguments in any
order:
py::class_<A, PyA> c1(m, "A");
py::class_<B, PyB, std::shared_ptr<B>> c2(m, "B");
py::class_<C, std::shared_ptr<C>, PyB> c3(m, "C");
It also allows future class attributes (such as base types in the next
commit) to be passed as class template types rather than needing to use
a py::base<> wrapper.
2016-09-06 16:17:06 +00:00
|
|
|
|
2016-01-17 21:36:38 +00:00
|
|
|
template <typename T> struct handle_type_name { static PYBIND11_DESCR name() { return _<T>(); } };
|
|
|
|
template <> struct handle_type_name<bytes> { static PYBIND11_DESCR name() { return _(PYBIND11_BYTES_NAME); } };
|
2016-05-10 14:59:01 +00:00
|
|
|
template <> struct handle_type_name<args> { static PYBIND11_DESCR name() { return _("*args"); } };
|
|
|
|
template <> struct handle_type_name<kwargs> { static PYBIND11_DESCR name() { return _("**kwargs"); } };
|
2016-01-17 21:36:38 +00:00
|
|
|
|
2015-12-16 11:11:01 +00:00
|
|
|
template <typename type>
|
2016-10-23 12:50:08 +00:00
|
|
|
struct pyobject_caster {
|
|
|
|
template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
|
|
|
|
bool load(handle src, bool /* convert */) { value = src; return static_cast<bool>(value); }
|
2015-12-16 11:11:01 +00:00
|
|
|
|
2016-09-12 15:36:43 +00:00
|
|
|
template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
|
2016-10-23 12:50:08 +00:00
|
|
|
bool load(handle src, bool /* convert */) {
|
|
|
|
if (!isinstance<type>(src))
|
|
|
|
return false;
|
2016-10-28 01:08:15 +00:00
|
|
|
value = reinterpret_borrow<type>(src);
|
2016-10-23 12:50:08 +00:00
|
|
|
return true;
|
|
|
|
}
|
2015-12-16 11:11:01 +00:00
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
|
|
|
|
return src.inc_ref();
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
2016-01-17 21:36:38 +00:00
|
|
|
PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name());
|
2015-07-05 18:05:44 +00:00
|
|
|
};
|
|
|
|
|
2016-10-23 12:50:08 +00:00
|
|
|
template <typename T>
|
|
|
|
class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> { };
|
|
|
|
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
// Our conditions for enabling moving are quite restrictive:
|
|
|
|
// At compile time:
|
|
|
|
// - T needs to be a non-const, non-pointer, non-reference type
|
|
|
|
// - type_caster<T>::operator T&() must exist
|
|
|
|
// - the type must be move constructible (obviously)
|
|
|
|
// At run-time:
|
|
|
|
// - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it
|
|
|
|
// must have ref_count() == 1)h
|
|
|
|
// If any of the above are not satisfied, we fall back to copying.
|
|
|
|
template <typename T, typename SFINAE = void> struct move_is_plain_type : std::false_type {};
|
2016-09-12 15:36:43 +00:00
|
|
|
template <typename T> struct move_is_plain_type<T, enable_if_t<
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
!std::is_void<T>::value && !std::is_pointer<T>::value && !std::is_reference<T>::value && !std::is_const<T>::value
|
2016-09-12 15:36:43 +00:00
|
|
|
>> : std::true_type { };
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
template <typename T, typename SFINAE = void> struct move_always : std::false_type {};
|
2016-09-12 15:36:43 +00:00
|
|
|
template <typename T> struct move_always<T, enable_if_t<
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
move_is_plain_type<T>::value &&
|
|
|
|
!std::is_copy_constructible<T>::value && std::is_move_constructible<T>::value &&
|
|
|
|
std::is_same<decltype(std::declval<type_caster<T>>().operator T&()), T&>::value
|
2016-09-12 15:36:43 +00:00
|
|
|
>> : std::true_type { };
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
template <typename T, typename SFINAE = void> struct move_if_unreferenced : std::false_type {};
|
2016-09-12 15:36:43 +00:00
|
|
|
template <typename T> struct move_if_unreferenced<T, enable_if_t<
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
move_is_plain_type<T>::value &&
|
|
|
|
!move_always<T>::value && std::is_move_constructible<T>::value &&
|
|
|
|
std::is_same<decltype(std::declval<type_caster<T>>().operator T&()), T&>::value
|
2016-09-12 15:36:43 +00:00
|
|
|
>> : std::true_type { };
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
template <typename T> using move_never = std::integral_constant<bool, !move_always<T>::value && !move_if_unreferenced<T>::value>;
|
|
|
|
|
2016-09-07 17:38:32 +00:00
|
|
|
// Detect whether returning a `type` from a cast on type's type_caster is going to result in a
|
|
|
|
// reference or pointer to a local variable of the type_caster. Basically, only
|
|
|
|
// non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe;
|
|
|
|
// everything else returns a reference/pointer to a local variable.
|
|
|
|
template <typename type> using cast_is_temporary_value_reference = bool_constant<
|
|
|
|
(std::is_reference<type>::value || std::is_pointer<type>::value) &&
|
|
|
|
!std::is_base_of<type_caster_generic, make_caster<type>>::value
|
|
|
|
>;
|
|
|
|
|
2016-09-11 16:17:41 +00:00
|
|
|
// Basic python -> C++ casting; throws if casting fails
|
2016-09-12 20:21:40 +00:00
|
|
|
template <typename T, typename SFINAE> type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) {
|
2016-07-01 14:07:24 +00:00
|
|
|
if (!conv.load(handle, true)) {
|
|
|
|
#if defined(NDEBUG)
|
|
|
|
throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)");
|
|
|
|
#else
|
|
|
|
throw cast_error("Unable to cast Python instance of type " +
|
2016-10-25 20:12:39 +00:00
|
|
|
(std::string) str(handle.get_type()) + " to C++ type '" + type_id<T>() + "''");
|
2016-07-01 14:07:24 +00:00
|
|
|
#endif
|
|
|
|
}
|
2016-09-08 18:49:43 +00:00
|
|
|
return conv;
|
|
|
|
}
|
2016-09-11 16:17:41 +00:00
|
|
|
// Wrapper around the above that also constructs and returns a type_caster
|
|
|
|
template <typename T> make_caster<T> load_type(const handle &handle) {
|
|
|
|
make_caster<T> conv;
|
|
|
|
load_type(conv, handle);
|
|
|
|
return conv;
|
|
|
|
}
|
2016-09-08 18:49:43 +00:00
|
|
|
|
|
|
|
NAMESPACE_END(detail)
|
|
|
|
|
2016-10-28 01:08:15 +00:00
|
|
|
// pytype -> C++ type
|
2016-10-25 20:12:39 +00:00
|
|
|
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
|
|
|
|
T cast(const handle &handle) {
|
2016-09-08 18:49:43 +00:00
|
|
|
static_assert(!detail::cast_is_temporary_value_reference<T>::value,
|
|
|
|
"Unable to cast type to reference: value is local to type caster");
|
|
|
|
using type_caster = detail::make_caster<T>;
|
|
|
|
return detail::load_type<T>(handle).operator typename type_caster::template cast_op_type<T>();
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
2016-10-28 01:08:15 +00:00
|
|
|
// pytype -> pytype (calls converting constructor)
|
2016-10-25 20:12:39 +00:00
|
|
|
template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0>
|
2016-10-28 01:08:15 +00:00
|
|
|
T cast(const handle &handle) { return T(reinterpret_borrow<object>(handle)); }
|
2016-10-25 20:12:39 +00:00
|
|
|
|
2016-10-28 01:08:15 +00:00
|
|
|
// C++ type -> py::object
|
2016-10-25 20:12:39 +00:00
|
|
|
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
|
|
|
|
object cast(const T &value, return_value_policy policy = return_value_policy::automatic_reference,
|
|
|
|
handle parent = handle()) {
|
2015-07-05 18:05:44 +00:00
|
|
|
if (policy == return_value_policy::automatic)
|
|
|
|
policy = std::is_pointer<T>::value ? return_value_policy::take_ownership : return_value_policy::copy;
|
2016-04-14 12:26:13 +00:00
|
|
|
else if (policy == return_value_policy::automatic_reference)
|
|
|
|
policy = std::is_pointer<T>::value ? return_value_policy::reference : return_value_policy::copy;
|
2016-10-28 01:08:15 +00:00
|
|
|
return reinterpret_steal<object>(detail::make_caster<T>::cast(value, policy, parent));
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
2016-05-03 11:28:40 +00:00
|
|
|
template <typename T> T handle::cast() const { return pybind11::cast<T>(*this); }
|
2015-12-26 18:01:28 +00:00
|
|
|
template <> inline void handle::cast() const { return; }
|
2015-07-05 18:05:44 +00:00
|
|
|
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
template <typename T>
|
2016-09-08 18:49:43 +00:00
|
|
|
detail::enable_if_t<detail::move_always<T>::value || detail::move_if_unreferenced<T>::value, T> move(object &&obj) {
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
if (obj.ref_count() > 1)
|
|
|
|
#if defined(NDEBUG)
|
|
|
|
throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references"
|
|
|
|
" (compile in debug mode for details)");
|
|
|
|
#else
|
2016-10-25 20:12:39 +00:00
|
|
|
throw cast_error("Unable to move from Python " + (std::string) str(obj.get_type()) +
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
" instance to C++ " + type_id<T>() + " instance: instance has multiple references");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Move into a temporary and return that, because the reference may be a local value of `conv`
|
2016-09-08 18:49:43 +00:00
|
|
|
T ret = std::move(detail::load_type<T>(obj).operator T&());
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Calling cast() on an rvalue calls pybind::cast with the object rvalue, which does:
|
|
|
|
// - If we have to move (because T has no copy constructor), do it. This will fail if the moved
|
|
|
|
// object has multiple references, but trying to copy will fail to compile.
|
|
|
|
// - If both movable and copyable, check ref count: if 1, move; otherwise copy
|
|
|
|
// - Otherwise (not movable), copy.
|
2016-09-08 18:49:43 +00:00
|
|
|
template <typename T> detail::enable_if_t<detail::move_always<T>::value, T> cast(object &&object) {
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
return move<T>(std::move(object));
|
|
|
|
}
|
2016-09-08 18:49:43 +00:00
|
|
|
template <typename T> detail::enable_if_t<detail::move_if_unreferenced<T>::value, T> cast(object &&object) {
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
if (object.ref_count() > 1)
|
|
|
|
return cast<T>(object);
|
|
|
|
else
|
|
|
|
return move<T>(std::move(object));
|
|
|
|
}
|
2016-09-08 18:49:43 +00:00
|
|
|
template <typename T> detail::enable_if_t<detail::move_never<T>::value, T> cast(object &&object) {
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
return cast<T>(object);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T> T object::cast() const & { return pybind11::cast<T>(*this); }
|
|
|
|
template <typename T> T object::cast() && { return pybind11::cast<T>(std::move(*this)); }
|
|
|
|
template <> inline void object::cast() const & { return; }
|
|
|
|
template <> inline void object::cast() && { return; }
|
|
|
|
|
2016-09-08 18:49:43 +00:00
|
|
|
NAMESPACE_BEGIN(detail)
|
|
|
|
|
2016-09-11 16:17:41 +00:00
|
|
|
struct overload_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the OVERLOAD_INT macro
|
|
|
|
template <typename ret_type> using overload_caster_t = conditional_t<
|
|
|
|
cast_is_temporary_value_reference<ret_type>::value, make_caster<ret_type>, overload_unused>;
|
2016-09-08 18:49:43 +00:00
|
|
|
|
|
|
|
// Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then
|
|
|
|
// store the result in the given variable. For other types, this is a no-op.
|
2016-09-11 16:17:41 +00:00
|
|
|
template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o, make_caster<T> &caster) {
|
|
|
|
return load_type(caster, o).operator typename make_caster<T>::template cast_op_type<T>();
|
2016-09-08 18:49:43 +00:00
|
|
|
}
|
2016-09-11 16:17:41 +00:00
|
|
|
template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&, overload_unused &) {
|
2016-09-08 18:49:43 +00:00
|
|
|
pybind11_fail("Internal error: cast_ref fallback invoked"); }
|
|
|
|
|
|
|
|
// Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even
|
|
|
|
// though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in
|
|
|
|
// cases where pybind11::cast is valid.
|
|
|
|
template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&o) {
|
|
|
|
return pybind11::cast<T>(std::move(o)); }
|
|
|
|
template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) {
|
|
|
|
pybind11_fail("Internal error: cast_safe fallback invoked"); }
|
|
|
|
template <> inline void cast_safe<void>(object &&) {}
|
|
|
|
|
|
|
|
NAMESPACE_END(detail)
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
|
2016-04-14 12:26:13 +00:00
|
|
|
template <return_value_policy policy = return_value_policy::automatic_reference,
|
2016-05-03 11:28:40 +00:00
|
|
|
typename... Args> tuple make_tuple(Args&&... args_) {
|
2015-07-05 18:05:44 +00:00
|
|
|
const size_t size = sizeof...(Args);
|
2016-01-17 21:36:44 +00:00
|
|
|
std::array<object, size> args {
|
2016-10-28 01:08:15 +00:00
|
|
|
{ reinterpret_steal<object>(detail::make_caster<Args>::cast(
|
|
|
|
std::forward<Args>(args_), policy, nullptr))... }
|
2015-07-05 18:05:44 +00:00
|
|
|
};
|
2016-07-01 18:35:35 +00:00
|
|
|
for (auto &arg_value : args) {
|
|
|
|
if (!arg_value) {
|
|
|
|
#if defined(NDEBUG)
|
|
|
|
throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)");
|
|
|
|
#else
|
|
|
|
throw cast_error("make_tuple(): unable to convert arguments of types '" +
|
|
|
|
(std::string) type_id<std::tuple<Args...>>() + "' to Python object");
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
2016-04-12 22:56:17 +00:00
|
|
|
tuple result(size);
|
2015-07-05 18:05:44 +00:00
|
|
|
int counter = 0;
|
2016-01-17 21:36:44 +00:00
|
|
|
for (auto &arg_value : args)
|
2016-04-12 22:56:17 +00:00
|
|
|
PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr());
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2016-09-05 22:49:21 +00:00
|
|
|
/// Annotation for keyword arguments
|
|
|
|
struct arg {
|
|
|
|
constexpr explicit arg(const char *name) : name(name) { }
|
|
|
|
template <typename T> arg_v operator=(T &&value) const;
|
|
|
|
|
|
|
|
const char *name;
|
|
|
|
};
|
|
|
|
|
|
|
|
/// Annotation for keyword arguments with values
|
|
|
|
struct arg_v : arg {
|
|
|
|
template <typename T>
|
|
|
|
arg_v(const char *name, T &&x, const char *descr = nullptr)
|
|
|
|
: arg(name),
|
2016-10-28 01:08:15 +00:00
|
|
|
value(reinterpret_steal<object>(
|
|
|
|
detail::make_caster<T>::cast(x, return_value_policy::automatic, {})
|
|
|
|
)),
|
2016-09-05 22:49:21 +00:00
|
|
|
descr(descr)
|
|
|
|
#if !defined(NDEBUG)
|
|
|
|
, type(type_id<T>())
|
|
|
|
#endif
|
|
|
|
{ }
|
|
|
|
|
|
|
|
object value;
|
|
|
|
const char *descr;
|
|
|
|
#if !defined(NDEBUG)
|
|
|
|
std::string type;
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
arg_v arg::operator=(T &&value) const { return {name, std::forward<T>(value)}; }
|
|
|
|
|
2016-09-11 11:00:40 +00:00
|
|
|
/// Alias for backward compatibility -- to be removed in version 2.0
|
2016-09-05 22:49:21 +00:00
|
|
|
template <typename /*unused*/> using arg_t = arg_v;
|
|
|
|
|
|
|
|
inline namespace literals {
|
|
|
|
/// String literal version of arg
|
|
|
|
constexpr arg operator"" _a(const char *name, size_t) { return arg(name); }
|
|
|
|
}
|
|
|
|
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
NAMESPACE_BEGIN(detail)
|
|
|
|
NAMESPACE_BEGIN(constexpr_impl)
|
|
|
|
/// Implementation details for constexpr functions
|
|
|
|
constexpr int first(int i) { return i; }
|
|
|
|
template <typename T, typename... Ts>
|
|
|
|
constexpr int first(int i, T v, Ts... vs) { return v ? i : first(i + 1, vs...); }
|
|
|
|
|
|
|
|
constexpr int last(int /*i*/, int result) { return result; }
|
|
|
|
template <typename T, typename... Ts>
|
|
|
|
constexpr int last(int i, int result, T v, Ts... vs) { return last(i + 1, v ? i : result, vs...); }
|
|
|
|
NAMESPACE_END(constexpr_impl)
|
|
|
|
|
|
|
|
/// Return the index of the first type in Ts which satisfies Predicate<T>
|
|
|
|
template <template<typename> class Predicate, typename... Ts>
|
|
|
|
constexpr int constexpr_first() { return constexpr_impl::first(0, Predicate<Ts>::value...); }
|
|
|
|
|
|
|
|
/// Return the index of the last type in Ts which satisfies Predicate<T>
|
|
|
|
template <template<typename> class Predicate, typename... Ts>
|
|
|
|
constexpr int constexpr_last() { return constexpr_impl::last(0, -1, Predicate<Ts>::value...); }
|
|
|
|
|
|
|
|
/// Helper class which collects only positional arguments for a Python function call.
|
|
|
|
/// A fancier version below can collect any argument, but this one is optimal for simple calls.
|
|
|
|
template <return_value_policy policy>
|
|
|
|
class simple_collector {
|
|
|
|
public:
|
|
|
|
template <typename... Ts>
|
2016-10-16 20:27:42 +00:00
|
|
|
explicit simple_collector(Ts &&...values)
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
: m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) { }
|
|
|
|
|
|
|
|
const tuple &args() const & { return m_args; }
|
|
|
|
dict kwargs() const { return {}; }
|
|
|
|
|
|
|
|
tuple args() && { return std::move(m_args); }
|
|
|
|
|
|
|
|
/// Call a Python function and pass the collected arguments
|
|
|
|
object call(PyObject *ptr) const {
|
2016-10-28 01:08:15 +00:00
|
|
|
PyObject *result = PyObject_CallObject(ptr, m_args.ptr());
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
if (!result)
|
|
|
|
throw error_already_set();
|
2016-10-28 01:08:15 +00:00
|
|
|
return reinterpret_steal<object>(result);
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
tuple m_args;
|
|
|
|
};
|
|
|
|
|
|
|
|
/// Helper class which collects positional, keyword, * and ** arguments for a Python function call
|
|
|
|
template <return_value_policy policy>
|
|
|
|
class unpacking_collector {
|
|
|
|
public:
|
|
|
|
template <typename... Ts>
|
2016-10-16 20:27:42 +00:00
|
|
|
explicit unpacking_collector(Ts &&...values) {
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
// Tuples aren't (easily) resizable so a list is needed for collection,
|
|
|
|
// but the actual function call strictly requires a tuple.
|
|
|
|
auto args_list = list();
|
|
|
|
int _[] = { 0, (process(args_list, std::forward<Ts>(values)), 0)... };
|
|
|
|
ignore_unused(_);
|
|
|
|
|
2016-10-25 20:12:39 +00:00
|
|
|
m_args = std::move(args_list);
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
const tuple &args() const & { return m_args; }
|
|
|
|
const dict &kwargs() const & { return m_kwargs; }
|
|
|
|
|
|
|
|
tuple args() && { return std::move(m_args); }
|
|
|
|
dict kwargs() && { return std::move(m_kwargs); }
|
|
|
|
|
|
|
|
/// Call a Python function and pass the collected arguments
|
|
|
|
object call(PyObject *ptr) const {
|
2016-10-28 01:08:15 +00:00
|
|
|
PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr());
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
if (!result)
|
|
|
|
throw error_already_set();
|
2016-10-28 01:08:15 +00:00
|
|
|
return reinterpret_steal<object>(result);
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
template <typename T>
|
|
|
|
void process(list &args_list, T &&x) {
|
2016-10-28 01:08:15 +00:00
|
|
|
auto o = reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(x), policy, {}));
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
if (!o) {
|
|
|
|
#if defined(NDEBUG)
|
|
|
|
argument_cast_error();
|
|
|
|
#else
|
|
|
|
argument_cast_error(std::to_string(args_list.size()), type_id<T>());
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
args_list.append(o);
|
|
|
|
}
|
|
|
|
|
|
|
|
void process(list &args_list, detail::args_proxy ap) {
|
2016-10-08 13:30:00 +00:00
|
|
|
for (const auto &a : ap)
|
2016-09-08 15:02:04 +00:00
|
|
|
args_list.append(a);
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
}
|
|
|
|
|
2016-09-05 22:49:21 +00:00
|
|
|
void process(list &/*args_list*/, arg_v a) {
|
2016-09-20 23:06:32 +00:00
|
|
|
if (m_kwargs.contains(a.name)) {
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
#if defined(NDEBUG)
|
|
|
|
multiple_values_error();
|
|
|
|
#else
|
|
|
|
multiple_values_error(a.name);
|
|
|
|
#endif
|
|
|
|
}
|
2016-09-05 22:49:21 +00:00
|
|
|
if (!a.value) {
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
#if defined(NDEBUG)
|
|
|
|
argument_cast_error();
|
|
|
|
#else
|
2016-09-05 22:49:21 +00:00
|
|
|
argument_cast_error(a.name, a.type);
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
#endif
|
|
|
|
}
|
2016-09-05 22:49:21 +00:00
|
|
|
m_kwargs[a.name] = a.value;
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void process(list &/*args_list*/, detail::kwargs_proxy kp) {
|
2016-10-08 13:30:00 +00:00
|
|
|
if (!kp)
|
|
|
|
return;
|
2016-10-28 01:08:15 +00:00
|
|
|
for (const auto &k : reinterpret_borrow<dict>(kp)) {
|
2016-09-20 23:06:32 +00:00
|
|
|
if (m_kwargs.contains(k.first)) {
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
#if defined(NDEBUG)
|
|
|
|
multiple_values_error();
|
|
|
|
#else
|
2016-10-25 20:12:39 +00:00
|
|
|
multiple_values_error(str(k.first));
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
#endif
|
|
|
|
}
|
|
|
|
m_kwargs[k.first] = k.second;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
[[noreturn]] static void multiple_values_error() {
|
|
|
|
throw type_error("Got multiple values for keyword argument "
|
|
|
|
"(compile in debug mode for details)");
|
|
|
|
}
|
|
|
|
|
|
|
|
[[noreturn]] static void multiple_values_error(std::string name) {
|
|
|
|
throw type_error("Got multiple values for keyword argument '" + name + "'");
|
|
|
|
}
|
|
|
|
|
|
|
|
[[noreturn]] static void argument_cast_error() {
|
|
|
|
throw cast_error("Unable to convert call argument to Python object "
|
|
|
|
"(compile in debug mode for details)");
|
|
|
|
}
|
|
|
|
|
|
|
|
[[noreturn]] static void argument_cast_error(std::string name, std::string type) {
|
|
|
|
throw cast_error("Unable to convert call argument '" + name
|
|
|
|
+ "' of type '" + type + "' to Python object");
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
tuple m_args;
|
|
|
|
dict m_kwargs;
|
|
|
|
};
|
|
|
|
|
|
|
|
/// Collect only positional arguments for a Python function call
|
|
|
|
template <return_value_policy policy, typename... Args,
|
|
|
|
typename = enable_if_t<all_of_t<is_positional, Args...>::value>>
|
|
|
|
simple_collector<policy> collect_arguments(Args &&...args) {
|
2016-10-16 20:27:42 +00:00
|
|
|
return simple_collector<policy>(std::forward<Args>(args)...);
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Collect all arguments, including keywords and unpacking (only instantiated when needed)
|
|
|
|
template <return_value_policy policy, typename... Args,
|
|
|
|
typename = enable_if_t<!all_of_t<is_positional, Args...>::value>>
|
|
|
|
unpacking_collector<policy> collect_arguments(Args &&...args) {
|
|
|
|
// Following argument order rules for generalized unpacking according to PEP 448
|
|
|
|
static_assert(
|
|
|
|
constexpr_last<is_positional, Args...>() < constexpr_first<is_keyword_or_ds, Args...>()
|
|
|
|
&& constexpr_last<is_s_unpacking, Args...>() < constexpr_first<is_ds_unpacking, Args...>(),
|
|
|
|
"Invalid function call: positional args must precede keywords and ** unpacking; "
|
|
|
|
"* unpacking must precede ** unpacking"
|
|
|
|
);
|
2016-10-16 20:27:42 +00:00
|
|
|
return unpacking_collector<policy>(std::forward<Args>(args)...);
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
}
|
|
|
|
|
2016-09-08 14:36:01 +00:00
|
|
|
template <typename Derived>
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
template <return_value_policy policy, typename... Args>
|
2016-09-08 14:36:01 +00:00
|
|
|
object object_api<Derived>::operator()(Args &&...args) const {
|
|
|
|
return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr());
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
2016-09-08 14:36:01 +00:00
|
|
|
template <typename Derived>
|
|
|
|
template <return_value_policy policy, typename... Args>
|
|
|
|
object object_api<Derived>::call(Args &&...args) const {
|
2016-06-22 12:29:13 +00:00
|
|
|
return operator()<policy>(std::forward<Args>(args)...);
|
2016-05-08 12:34:09 +00:00
|
|
|
}
|
|
|
|
|
2016-09-08 14:36:01 +00:00
|
|
|
NAMESPACE_END(detail)
|
|
|
|
|
2016-04-28 14:25:24 +00:00
|
|
|
#define PYBIND11_MAKE_OPAQUE(Type) \
|
|
|
|
namespace pybind11 { namespace detail { \
|
|
|
|
template<> class type_caster<Type> : public type_caster_base<Type> { }; \
|
|
|
|
}}
|
|
|
|
|
2015-10-15 16:13:33 +00:00
|
|
|
NAMESPACE_END(pybind11)
|