Merge pull request #322 from jagerman/document-inherited-virtuals

Added advanced doc section on virtual methods + inheritance
This commit is contained in:
Wenzel Jakob 2016-08-08 15:24:42 +02:00 committed by GitHub
commit 72270777a3
4 changed files with 390 additions and 3 deletions

View File

@ -232,7 +232,7 @@ code).
class Dog : public Animal {
public:
std::string go(int n_times) {
std::string go(int n_times) override {
std::string result;
for (int i=0; i<n_times; ++i)
result += "woof! ";
@ -283,7 +283,7 @@ helper class that is defined as follows:
using Animal::Animal;
/* Trampoline (need one for each virtual function) */
std::string go(int n_times) {
std::string go(int n_times) override {
PYBIND11_OVERLOAD_PURE(
std::string, /* Return type */
Animal, /* Parent class */
@ -328,6 +328,11 @@ by specifying it as the *third* template argument to :class:`class_`. The
second argument with the unique pointer is simply the default holder type used
by pybind11. Following this, we are able to define a constructor as usual.
Note, however, that the above is sufficient for allowing python classes to
extend ``Animal``, but not ``Dog``: see ref:`virtual_and_inheritance` for the
necessary steps required to providing proper overload support for inherited
classes.
The Python session below shows how to override ``Animal::go`` and invoke it via
a virtual method call.
@ -353,6 +358,117 @@ Please take a look at the :ref:`macro_notes` before using this feature.
example that demonstrates how to override virtual functions using pybind11
in more detail.
.. _virtual_and_inheritance:
Combining virtual functions and inheritance
===========================================
When combining virtual methods with inheritance, you need to be sure to provide
an override for each method for which you want to allow overrides from derived
python classes. For example, suppose we extend the above ``Animal``/``Dog``
example as follows:
.. code-block:: cpp
class Animal {
public:
virtual std::string go(int n_times) = 0;
virtual std::string name() { return "unknown"; }
};
class Dog : public class Animal {
public:
std::string go(int n_times) override {
std::string result;
for (int i=0; i<n_times; ++i)
result += bark() + " ";
return result;
}
virtual std::string bark() { return "woof!"; }
};
then the trampoline class for ``Animal`` must, as described in the previous
section, override ``go()`` and ``name()``, but in order to allow python code to
inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that
overrides both the added ``bark()`` method *and* the ``go()`` and ``name()``
methods inherited from ``Animal`` (even though ``Dog`` doesn't directly
override the ``name()`` method):
.. code-block:: cpp
class PyAnimal : public Animal {
public:
using Animal::Animal; // Inherit constructors
std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Animal, go, n_times); }
std::string name() override { PYBIND11_OVERLOAD(std::string, Animal, name, ); }
};
class PyDog : public Dog {
public:
using Dog::Dog; // Inherit constructors
std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Dog, go, n_times); }
std::string name() override { PYBIND11_OVERLOAD(std::string, Dog, name, ); }
std::string bark() override { PYBIND11_OVERLOAD(std::string, Dog, bark, ); }
};
A registered class derived from a pybind11-registered class with virtual
methods requires a similar trampoline class, *even if* it doesn't explicitly
declare or override any virtual methods itself:
.. code-block:: cpp
class Husky : public Dog {};
class PyHusky : public Husky {
using Dog::Dog; // Inherit constructors
std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Husky, go, n_times); }
std::string name() override { PYBIND11_OVERLOAD(std::string, Husky, name, ); }
std::string bark() override { PYBIND11_OVERLOAD(std::string, Husky, bark, ); }
};
There is, however, a technique that can be used to avoid this duplication
(which can be especially helpful for a base class with several virtual
methods). The technique involves using template trampoline classes, as
follows:
.. code-block:: cpp
template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
using AnimalBase::AnimalBase; // Inherit constructors
std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, AnimalBase, go, n_times); }
std::string name() override { PYBIND11_OVERLOAD(std::string, AnimalBase, name, ); }
};
template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
// Override PyAnimal's pure virtual go() with a non-pure one:
std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, DogBase, go, n_times); }
std::string bark() override { PYBIND11_OVERLOAD(std::string, DogBase, bark, ); }
};
This technique has the advantage of requiring just one trampoline method to be
declared per virtual method and pure virtual method override. It does,
however, require the compiler to generate at least as many methods (and
possibly more, if both pure virtual and overridden pure virtual methods are
exposed, as above).
The classes are then registered with pybind11 using:
.. code-block:: cpp
py::class_<Animal, std::unique_ptr<Animal>, PyAnimal<>> animal(m, "Animal");
py::class_<Dog, std::unique_ptr<Dog>, PyDog<>> dog(m, "Dog");
py::class_<Husky, std::unique_ptr<Husky>, PyDog<Husky>> husky(m, "Husky");
// ... add animal, dog, husky definitions
Note that ``Husky`` did not require a dedicated trampoline template class at
all, since it neither declares any new virtual methods nor provides any pure
virtual method implementations.
With either the repeated-virtuals or templated trampoline methods in place, you
can now create a python class that inherits from ``Dog``:
.. code-block:: python
class ShihTzu(Dog):
def bark(self):
return "yip!"
.. seealso::
See the file :file:`example-virtual-functions.cpp` for complete examples
using both the duplication and templated trampoline approaches.
.. _macro_notes:

View File

@ -81,6 +81,154 @@ void runExampleVirtVirtual(ExampleVirt *ex) {
ex->pure_virtual();
}
// Inheriting virtual methods. We do two versions here: the repeat-everything version and the
// templated trampoline versions mentioned in docs/advanced.rst.
//
// These base classes are exactly the same, but we technically need distinct
// classes for this example code because we need to be able to bind them
// properly (pybind11, sensibly, doesn't allow us to bind the same C++ class to
// multiple python classes).
class A_Repeat {
#define A_METHODS \
public: \
virtual int unlucky_number() = 0; \
virtual void say_something(unsigned times) { \
for (unsigned i = 0; i < times; i++) std::cout << "hi"; \
std::cout << std::endl; \
}
A_METHODS
};
class B_Repeat : public A_Repeat {
#define B_METHODS \
public: \
int unlucky_number() override { return 13; } \
void say_something(unsigned times) override { \
std::cout << "B says hi " << times << " times" << std::endl; \
} \
virtual double lucky_number() { return 7.0; }
B_METHODS
};
class C_Repeat : public B_Repeat {
#define C_METHODS \
public: \
int unlucky_number() override { return 4444; } \
double lucky_number() override { return 888; }
C_METHODS
};
class D_Repeat : public C_Repeat {
#define D_METHODS // Nothing overridden.
D_METHODS
};
// Base classes for templated inheritance trampolines. Identical to the repeat-everything version:
class A_Tpl { A_METHODS };
class B_Tpl : public A_Tpl { B_METHODS };
class C_Tpl : public B_Tpl { C_METHODS };
class D_Tpl : public C_Tpl { D_METHODS };
// Inheritance approach 1: each trampoline gets every virtual method (11 in total)
class PyA_Repeat : public A_Repeat {
public:
using A_Repeat::A_Repeat;
int unlucky_number() override { PYBIND11_OVERLOAD_PURE(int, A_Repeat, unlucky_number, ); }
void say_something(unsigned times) override { PYBIND11_OVERLOAD(void, A_Repeat, say_something, times); }
};
class PyB_Repeat : public B_Repeat {
public:
using B_Repeat::B_Repeat;
int unlucky_number() override { PYBIND11_OVERLOAD(int, B_Repeat, unlucky_number, ); }
void say_something(unsigned times) override { PYBIND11_OVERLOAD(void, B_Repeat, say_something, times); }
double lucky_number() override { PYBIND11_OVERLOAD(double, B_Repeat, lucky_number, ); }
};
class PyC_Repeat : public C_Repeat {
public:
using C_Repeat::C_Repeat;
int unlucky_number() override { PYBIND11_OVERLOAD(int, C_Repeat, unlucky_number, ); }
void say_something(unsigned times) override { PYBIND11_OVERLOAD(void, C_Repeat, say_something, times); }
double lucky_number() override { PYBIND11_OVERLOAD(double, C_Repeat, lucky_number, ); }
};
class PyD_Repeat : public D_Repeat {
public:
using D_Repeat::D_Repeat;
int unlucky_number() override { PYBIND11_OVERLOAD(int, D_Repeat, unlucky_number, ); }
void say_something(unsigned times) override { PYBIND11_OVERLOAD(void, D_Repeat, say_something, times); }
double lucky_number() override { PYBIND11_OVERLOAD(double, D_Repeat, lucky_number, ); }
};
// Inheritance approach 2: templated trampoline classes.
//
// Advantages:
// - we have only 2 (template) class and 4 method declarations (one per virtual method, plus one for
// any override of a pure virtual method), versus 4 classes and 6 methods (MI) or 4 classes and 11
// methods (repeat).
// - Compared to MI, we also don't have to change the non-trampoline inheritance to virtual, and can
// properly inherit constructors.
//
// Disadvantage:
// - the compiler must still generate and compile 14 different methods (more, even, than the 11
// required for the repeat approach) instead of the 6 required for MI. (If there was no pure
// method (or no pure method override), the number would drop down to the same 11 as the repeat
// approach).
template <class Base = A_Tpl>
class PyA_Tpl : public Base {
public:
using Base::Base; // Inherit constructors
int unlucky_number() override { PYBIND11_OVERLOAD_PURE(int, Base, unlucky_number, ); }
void say_something(unsigned times) override { PYBIND11_OVERLOAD(void, Base, say_something, times); }
};
template <class Base = B_Tpl>
class PyB_Tpl : public PyA_Tpl<Base> {
public:
using PyA_Tpl<Base>::PyA_Tpl; // Inherit constructors (via PyA_Tpl's inherited constructors)
int unlucky_number() override { PYBIND11_OVERLOAD(int, Base, unlucky_number, ); }
double lucky_number() { PYBIND11_OVERLOAD(double, Base, lucky_number, ); }
};
// Since C_Tpl and D_Tpl don't declare any new virtual methods, we don't actually need these (we can
// use PyB_Tpl<C_Tpl> and PyB_Tpl<D_Tpl> for the trampoline classes instead):
/*
template <class Base = C_Tpl> class PyC_Tpl : public PyB_Tpl<Base> {
public:
using PyB_Tpl<Base>::PyB_Tpl;
};
template <class Base = D_Tpl> class PyD_Tpl : public PyC_Tpl<Base> {
public:
using PyC_Tpl<Base>::PyC_Tpl;
};
*/
void initialize_inherited_virtuals(py::module &m) {
// Method 1: repeat
py::class_<A_Repeat, std::unique_ptr<A_Repeat>, PyA_Repeat>(m, "A_Repeat")
.def(py::init<>())
.def("unlucky_number", &A_Repeat::unlucky_number)
.def("say_something", &A_Repeat::say_something);
py::class_<B_Repeat, std::unique_ptr<B_Repeat>, PyB_Repeat>(m, "B_Repeat", py::base<A_Repeat>())
.def(py::init<>())
.def("lucky_number", &B_Repeat::lucky_number);
py::class_<C_Repeat, std::unique_ptr<C_Repeat>, PyC_Repeat>(m, "C_Repeat", py::base<B_Repeat>())
.def(py::init<>());
py::class_<D_Repeat, std::unique_ptr<D_Repeat>, PyD_Repeat>(m, "D_Repeat", py::base<C_Repeat>())
.def(py::init<>());
// Method 2: Templated trampolines
py::class_<A_Tpl, std::unique_ptr<A_Tpl>, PyA_Tpl<>>(m, "A_Tpl")
.def(py::init<>())
.def("unlucky_number", &A_Tpl::unlucky_number)
.def("say_something", &A_Tpl::say_something);
py::class_<B_Tpl, std::unique_ptr<B_Tpl>, PyB_Tpl<>>(m, "B_Tpl", py::base<A_Tpl>())
.def(py::init<>())
.def("lucky_number", &B_Tpl::lucky_number);
py::class_<C_Tpl, std::unique_ptr<C_Tpl>, PyB_Tpl<C_Tpl>>(m, "C_Tpl", py::base<B_Tpl>())
.def(py::init<>());
py::class_<D_Tpl, std::unique_ptr<D_Tpl>, PyB_Tpl<D_Tpl>>(m, "D_Tpl", py::base<C_Tpl>())
.def(py::init<>());
};
void init_ex_virtual_functions(py::module &m) {
/* Important: indicate the trampoline class PyExampleVirt using the third
argument to py::class_. The second argument with the unique pointer
@ -95,4 +243,6 @@ void init_ex_virtual_functions(py::module &m) {
m.def("runExampleVirt", &runExampleVirt);
m.def("runExampleVirtBool", &runExampleVirtBool);
m.def("runExampleVirtVirtual", &runExampleVirtVirtual);
initialize_inherited_virtuals(m);
}

View File

@ -4,7 +4,7 @@ import sys
sys.path.append('.')
from example import ExampleVirt, runExampleVirt, runExampleVirtVirtual, runExampleVirtBool
from example import A_Repeat, B_Repeat, C_Repeat, D_Repeat, A_Tpl, B_Tpl, C_Tpl, D_Tpl
class ExtendedExampleVirt(ExampleVirt):
def __init__(self, state):
@ -34,3 +34,56 @@ ex12p = ExtendedExampleVirt(10)
print(runExampleVirt(ex12p, 20))
print(runExampleVirtBool(ex12p))
runExampleVirtVirtual(ex12p)
sys.stdout.flush()
class VI_AR(A_Repeat):
def unlucky_number(self):
return 99
class VI_AT(A_Tpl):
def unlucky_number(self):
return 999
class VI_CR(C_Repeat):
def lucky_number(self):
return C_Repeat.lucky_number(self) + 1.25
class VI_CT(C_Tpl):
pass
class VI_CCR(VI_CR):
def lucky_number(self):
return VI_CR.lucky_number(self) * 10
class VI_CCT(VI_CT):
def lucky_number(self):
return VI_CT.lucky_number(self) * 1000
class VI_DR(D_Repeat):
def unlucky_number(self):
return 123
def lucky_number(self):
return 42.0
class VI_DT(D_Tpl):
def say_something(self, times):
print("VI_DT says:" + (' quack' * times))
def unlucky_number(self):
return 1234
def lucky_number(self):
return -4.25
classes = [
# A_Repeat, A_Tpl, # abstract (they have a pure virtual unlucky_number)
VI_AR, VI_AT,
B_Repeat, B_Tpl,
C_Repeat, C_Tpl,
VI_CR, VI_CT, VI_CCR, VI_CCT,
D_Repeat, D_Tpl, VI_DR, VI_DT
]
for cl in classes:
print("\n%s:" % cl.__name__)
obj = cl()
obj.say_something(3)
print("Unlucky = %d" % obj.unlucky_number())
if hasattr(obj, "lucky_number"):
print("Lucky = %.2f" % obj.lucky_number())

View File

@ -9,5 +9,73 @@ Original implementation of ExampleVirt::run(state=11, value=21)
ExtendedExampleVirt::run_bool()
False
ExtendedExampleVirt::pure_virtual(): Hello world
VI_AR:
hihihi
Unlucky = 99
VI_AT:
hihihi
Unlucky = 999
B_Repeat:
B says hi 3 times
Unlucky = 13
Lucky = 7.00
B_Tpl:
B says hi 3 times
Unlucky = 13
Lucky = 7.00
C_Repeat:
B says hi 3 times
Unlucky = 4444
Lucky = 888.00
C_Tpl:
B says hi 3 times
Unlucky = 4444
Lucky = 888.00
VI_CR:
B says hi 3 times
Unlucky = 4444
Lucky = 889.25
VI_CT:
B says hi 3 times
Unlucky = 4444
Lucky = 888.00
VI_CCR:
B says hi 3 times
Unlucky = 4444
Lucky = 8892.50
VI_CCT:
B says hi 3 times
Unlucky = 4444
Lucky = 888000.00
D_Repeat:
B says hi 3 times
Unlucky = 4444
Lucky = 888.00
D_Tpl:
B says hi 3 times
Unlucky = 4444
Lucky = 888.00
VI_DR:
B says hi 3 times
Unlucky = 123
Lucky = 42.00
VI_DT:
VI_DT says: quack quack quack
Unlucky = 1234
Lucky = -4.25
Destructing ExampleVirt..
Destructing ExampleVirt..