* feat: setup.py redesign and helpers
* refactor: simpler design with two outputs
* refactor: helper file update and Windows support
* fix: review points from @YannickJadoul
* refactor: fixes to naming and more docs
* feat: more customization points
* feat: add entry point pybind11-config
* refactor: Try Extension-focused method
* refactor: rename alt/inplace to global
* fix: allow usage with git modules, better docs
* feat: global as an extra (@YannickJadoul's suggestion)
* feat: single version location
* fix: remove the requirement that setuptools must be imported first
* fix: some review points from @wjacob
* fix: use .in, add procedure to docs
* refactor: avoid monkeypatch copy
* docs: minor typos corrected
* fix: minor points from @YannickJadoul
* fix: typo on Windows C++ mode
* fix: MSVC 15 update 3+ have c++14 flag
See <https://docs.microsoft.com/en-us/cpp/build/reference/std-specify-language-standard-version?view=vs-2019>
* docs: discuss making SDists by hand
* ci: use pep517.build instead of manual setup.py
* refactor: more comments from @YannickJadoul
* docs: updates from @ktbarrett
* fix: change to newly recommended tool instead of pep517.build
This was intended as a proof of concept; build seems to be the correct replacement.
See https://github.com/pypa/pep517/pull/83
* docs: updates from @wjakob
* refactor: dual version locations
* docs: typo spotted by @wjakob
* tests: keep source dir clean
* ci: make first build inplace
* ci: drop dev setting (wasn't doing anything)
* tests: warn if source directory is dirty
* add uninstall target for cmake
* only add target when built as master project
Co-authored-by: Henry Schreiner <HenrySchreinerIII@gmail.com>
Co-authored-by: Henry Schreiner <HenrySchreinerIII@gmail.com>
It is useful not only to remember the python libs and includes but
also the interpreter version in cache.
If users call pybind11 throught `add_subdirectories` they will
otherwise have no access to the selected interpreter version.
The interpreter version is useful for downstream projects, e.g.
to select default `lib/pythonX.Y/site-packages/` install paths.
This allows you to use:
cls.def(py::init(&factory_function));
where `factory_function` returns a pointer, holder, or value of the
class type (or a derived type). Various compile-time checks
(static_asserts) are performed to ensure the function is valid, and
various run-time type checks where necessary.
Some other details of this feature:
- The `py::init` name doesn't conflict with the templated no-argument
`py::init<...>()`, but keeps the naming consistent: the existing
templated, no-argument one wraps constructors, the no-template,
function-argument one wraps factory functions.
- If returning a CppClass (whether by value or pointer) when an CppAlias
is required (i.e. python-side inheritance and a declared alias), a
dynamic_cast to the alias is attempted (for the pointer version); if
it fails, or if returned by value, an Alias(Class &&) constructor
is invoked. If this constructor doesn't exist, a runtime error occurs.
- for holder returns when an alias is required, we try a dynamic_cast of
the wrapped pointer to the alias to see if it is already an alias
instance; if it isn't, we raise an error.
- `py::init(class_factory, alias_factory)` is also available that takes
two factories: the first is called when an alias is not needed, the
second when it is.
- Reimplement factory instance clearing. The previous implementation
failed under python-side multiple inheritance: *each* inherited
type's factory init would clear the instance instead of only setting
its own type value. The new implementation here clears just the
relevant value pointer.
- dealloc is updated to explicitly set the leftover value pointer to
nullptr and the `holder_constructed` flag to false so that it can be
used to clear preallocated value without needing to rebuild the
instance internals data.
- Added various tests to test out new allocation/deallocation code.
- With preallocation now done lazily, init factory holders can
completely avoid the extra overhead of needing an extra
allocation/deallocation.
- Updated documentation to make factory constructors the default
advanced constructor style.
- If an `__init__` is called a second time, we have two choices: we can
throw away the first instance, replacing it with the second; or we can
ignore the second call. The latter is slightly easier, so do that.
Embedding may well be used in places where hidden visibility isn't
desired. It should be relatively safe to allow it there; any potential
conflict would come in if modules are loaded into that embedded
interpreter, but as long as the modules are compiled with hidden
visibility they shouldn't conflict.
There could still be warnings if the embedded code attempts to export
classes with internal (hidden) pybind members, but that seems a
legitimate warning (and already has a FAQ entry).
This updates the compilation to always apply hidden visibility to
resolve the issues with default visibility causing problems under debug
compilations. Moreover using the cmake property makes it easier for a
caller to override if absolutely needed for some reason.
For `pybind11_add_module` we use cmake to set the property; for the
targets, we append to compilation option to non-MSVC compilers.
When Pybind11 is used via `add_subdirectory`, when targets are installed
from the parent project, CMake wants all of the dependencies built by
the project in the same export set. Projects may now set
`PYBIND11_EXPORT_NAME` to have Pybind11 put it targets into the
project's export set. If so, do not install Pybind11's export file.
All targets provided by pybind11:
* pybind11::module - the existing target for creating extension modules
* pybind11::embed - new target for embedding the interpreter
* pybind11::pybind11 - common "base" target (headers only)
Upcoming changes to buffer_info make it need some things declared in
common.h; it also feels a bit misplaced in common.h (which is arguably
too large already), so move it out. (Separating this and the subsequent
changes into separate commits to make the changes easier to distinguish
from the move.)
* Arch-indep CMake packaging
Since pybind11 is a header-only library, the CMake packaging does not have to carry any architecture specific checks. Without this patch, the detection of pybind11 will fail on 32-bit architectures if the project was built on a 64-bit machine and vice-versa. This fix is similar to what is applied to `Eigen` and other header-only C++ libraries.
* Make tests buildable independently
This makes "tests" buildable as a separate project that uses
find_package(pybind11 CONFIG) when invoked independently.
This also moves the WERROR option into tests/CMakeLists.txt, as that's
the only place it is used.
* Use Eigen 3.3.1's cmake target, if available
This changes the eigen finding code to attempt to use Eigen's
system-installed Eigen3Config first. In Eigen 3.3.1, it exports a cmake
Eigen3::Eigen target to get dependencies from (rather than setting the
include path directly).
If it fails, we fall back to the trying to load allowing modules (i.e.
allowing our tools/FindEigen3.cmake). If we either fallback, or the
eigen version is older than 3.3.1 (or , we still set the include
directory manually; otherwise, for CONFIG + new Eigen, we get it via
the target.
This is also needed to allow 'tests' to be built independently, when
the find_package(Eigen3) is going to find via the system-installed
Eigen3Config.cmake.
* Add a install-then-build test, using clang on linux
This tests that `make install` to the actual system, followed by a build
of the tests (without the main pybind11 repository available) works as
expected.
To also expand the testing variety a bit, it also builds using
clang-3.9 instead of gcc.
* Don't try loading Eigen3Config in cmake < 3.0
It could FATAL_ERROR as the newer cmake includes a cmake 3.0 required
line.
If doing an independent, out-of-tree "tests" build, the regular
find_package(Eigen3) is likely to fail with the same error, but I think
we can just let that be: if you want a recent Eigen with proper cmake
loading support *and* want to do an independent tests build, you'll
need at least cmake 3.0.
Instead of creating a new unique metaclass for each type, the builtin
`property` type is subclassed to support static properties. The new
setter/getters always pass types instead of instances in their `self`
argument. A metaclass is still required to support this behavior, but
it doesn't store any data anymore, so a new one doesn't need to be
created for each class. There is now only one common metaclass which
is shared by all pybind11 types.
* Avoid C-style const casts
Replace C-style casts that discard `const` with `const_cast` (and, where
necessary, `reinterpret_cast` as well).
* Warn about C-style const-discarding casts
Change pybind11_enable_warnings to also enable `-Wcast-qual` (warn if a
C-style cast discards `const`) by default. The previous commit should
have gotten rid of all of these (at least, all the ones that tripped in
my build, which included the tests), and this should discourage more
from newly appearing.
Fixes#567.
If pybind's CMakeLists gets loaded via an include_directory from another
CMakeLists with a higher minimum version (e.g. 3.0), the project()
command without a version produces a CMP0048 warning.
This commit explicitly requests the new behaviour if the policy exists,
as it won't cause problems (we set VERSION later).
Add a BUILD_INTERFACE and a pybind11::pybind11 alias for the interface
library to match the installed target.
Add new cmake tests for add_subdirectory and consolidates the
.cpp and .py files needed for the cmake build tests:
Before:
tests
|-- test_installed_module
| |-- CMakeLists.txt
| |-- main.cpp
| \-- test.py
\-- test_installed_target
|-- CMakeLists.txt
|-- main.cpp
\-- test.py
After:
tests
\-- test_cmake_build
|-- installed_module/CMakeLists.txt
|-- installed_target/CMakeLists.txt
|-- subdirectory_module/CMakeLists.txt
|-- subdirectory_target/CMakeLists.txt
|-- main.cpp
\-- test.py
This build makes sure everything still works without optional
dependencies (numpy/scipy/eigen) and also tests the automatic
discovery functions in CMake (Python version, C++ standard).
[skip appveyor]
Use simple asserts and pytest's powerful introspection to make testing
simpler. This merges the old .py/.ref file pairs into simple .py files
where the expected values are right next to the code being tested.
This commit does not touch the C++ part of the code and replicates the
Python tests exactly like the old .ref-file-based approach.
- new pybind11::base<> attribute to indicate a subclass relationship
- unified infrastructure for parsing variadic arguments in class_ and cpp_function
- use 'handle' and 'object' more consistently everywhere
This modification taps into some newer C++14 features (if present) to
generate function signatures considerably more efficiently at compile
time rather than at run time.
With this change, pybind11 binaries are now *2.1 times* smaller compared
to the Boost.Python baseline in the benchmark. Compilation times get a
nice improvement as well.
Visual Studio 2015 unfortunately doesn't implement 'constexpr' well
enough yet to support this change and uses a runtime fallback.