stl casters were using a value cast to (Value) or (Key), but that isn't
always appropriate. This changes it to use the appropriate value
converter's cast_op_type.
C++ exceptions are destructed in the context of the code that catches
them. At this point, the Python GIL may not be held, which could lead
to crashes with the previous implementation.
PyErr_Fetch and PyErr_Restore should always occur in pairs, which was
not the case for the previous implementation. To clear the exception,
the new approach uses PyErr_Restore && PyErr_Clear instead of simply
decreasing the reference counts of the exception objects.
Fixes#509.
The move policy was already set for rvalues in PR #473, but this only
applied to directly cast user-defined types. The problem is that STL
containers cast values indirectly and the rvalue information is lost.
Therefore the move policy was not set correctly. This commit fixes it.
This also makes an additional adjustment to remove the `copy` policy
exception: rvalues now always use the `move` policy. This is also safe
for copy-only rvalues because the `move` policy has an internal fallback
to copying.
Following commit 90d278, the object code generated by the python
bindings of nanogui (github.com/wjakob/nanogui) went up by a whopping
12%. It turns out that that project has quite a few enums where we don't
really care about arithmetic operators.
This commit thus partially reverts the effects of #503 by introducing
an additional attribute py::arithmetic() that must be specified if the
arithmetic operators are desired.
* `array_t(const object &)` now throws on error
* `array_t::ensure()` is intended for casters —- old constructor is
deprecated
* `array` and `array_t` get default constructors (empty array)
* `array` gets a converting constructor
* `py::isinstance<array_T<T>>()` checks the type (but not flags)
There is only one special thing which must remain: `array_t` gets
its own `type_caster` specialization which uses `ensure` instead
of a simple check.
The pytype converting constructors are convenient and safe for user
code, but for library internals the additional type checks and possible
conversions are sometimes not desired. `reinterpret_borrow<T>()` and
`reinterpret_steal<T>()` serve as the low-level unsafe counterparts
of `cast<T>()`.
This deprecates the `object(handle, bool)` constructor.
Renamed `borrowed` parameter to `is_borrowed` to avoid shadowing
warnings on MSVC.
* Deprecate the `py::object::str()` member function since `py::str(obj)`
is now equivalent and preferred
* Make `py::repr()` a free function
* Make sure obj.cast<T>() works as expected when T is a Python type
`obj.cast<T>()` should be the same as `T(obj)`, i.e. it should convert
the given object to a different Python type. However, `obj.cast<T>()`
usually calls `type_caster::load()` which only checks the type without
doing any actual conversion. That causes a very unexpected `cast_error`.
This commit makes it so that `obj.cast<T>()` and `T(obj)` are the same
when T is a Python type.
* Simplify pytypes converting constructor implementation
It's not necessary to maintain a full set of converting constructors
and assignment operators + const& and &&. A single converting const&
constructor will work and there is no impact on binary size. On the
other hand, the conversion functions can be significantly simplified.
Allows checking the Python types before creating an object instead of
after. For example:
```c++
auto l = list(ptr, true);
if (l.check())
// ...
```
The above is replaced with:
```c++
if (isinstance<list>(ptr)) {
auto l = reinterpret_borrow(ptr);
// ...
}
```
This deprecates `py::object::check()`. `py::isinstance()` covers the
same use case, but it can also check for user-defined types:
```c++
class Pet { ... };
py::class_<Pet>(...);
m.def("is_pet", [](py::object obj) {
return py::isinstance<Pet>(obj); // works as expected
});
```
This commit includes the following changes:
* Don't provide make_copy_constructor for non-copyable container
make_copy_constructor currently fails for various stl containers (e.g.
std::vector, std::unordered_map, std::deque, etc.) when the container's
value type (e.g. the "T" or the std::pair<K,T> for a map) is
non-copyable. This adds an override that, for types that look like
containers, also requires that the value_type be copyable.
* stl_bind.h: make bind_{vector,map} work for non-copy-constructible types
Most stl_bind modifiers require copying, so if the type isn't copy
constructible, we provide a read-only interface instead.
In practice, this means that if the type is non-copyable, it will be,
for all intents and purposes, read-only from the Python side (but
currently it simply fails to compile with such a container).
It is still possible for the caller to provide an interface manually
(by defining methods on the returned class_ object), but this isn't
something stl_bind can handle because the C++ code to construct values
is going to be highly dependent on the container value_type.
* stl_bind: copy only for arithmetic value types
For non-primitive types, we may well be copying some complex type, when
returning by reference is more appropriate. This commit returns by
internal reference for all but basic arithmetic types.
* Return by reference whenever possible
Only if we definitely can't--i.e. std::vector<bool>--because v[i]
returns something that isn't a T& do we copy; for everything else, we
return by reference.
For the map case, we can always return by reference (at least for the
default stl map/unordered_map).
If we need to initialize a holder around an unowned instance, and the
holder type is non-copyable (i.e. a unique_ptr), we currently construct
the holder type around the value pointer, but then never actually
destruct the holder: the holder destructor is called only for the
instance that actually has `inst->owned = true` set.
This seems no pointer, however, in creating such a holder around an
unowned instance: we never actually intend to use anything that the
unique_ptr gives us: and, in fact, do not want the unique_ptr (because
if it ever actually got destroyed, it would cause destruction of the
wrapped pointer, despite the fact that that wrapped pointer isn't
owned).
This commit changes the logic to only create a unique_ptr holder if we
actually own the instance, and to destruct via the constructed holder
whenever we have a constructed holder--which will now only be the case
for owned-unique-holder or shared-holder types.
Other changes include:
* Added test for non-movable holder constructor/destructor counts
The three alive assertions now pass, before #478 they fail with counts
of 2/2/1 respectively, because of the unique_ptr that we don't want and
don't destroy (because we don't *want* its destructor to run).
* Return cstats reference; fix ConstructStats doc
Small cleanup to the #478 test code, and fix to the ConstructStats
documentation (the static method definition should use `reference` not
`reference_internal`).
* Rename inst->constructed to inst->holder_constructed
This makes it clearer exactly what it's referring to.
There are now more places than just descr.h that make use of these.
The new macro isn't quite the same: the old one only tested for a
couple features, while the new one checks for the __cplusplus version
(but doesn't even try to enable C++14 for MSVC/ICC).
g++ 7 adds <optional>, but including it in C++14 mode isn't allowed
(just as including <experimental/optional> isn't allowed in C++11 mode).
(This wasn't triggered in g++-6 because it doesn't provide <optional>
yet.)
* Add type caster for std::experimental::optional
* Add tests for std::experimental::optional
* Support both <optional> / <experimental/optional>
* Mention std{::experimental,}::optional in the docs
* Make reference(_internal) the default return value policy for properties
Before this, all `def_property*` functions used `automatic` as their
default return value policy. This commit makes it so that:
* Non-static properties use `reference_interal` by default, thus
matching `def_readonly` and `def_readwrite`.
* Static properties use `reference` by default, thus matching
`def_readonly_static` and `def_readwrite_static`.
In case `cpp_function` is passed to any `def_property*`, its policy will
be used instead of any defaults. User-defined arguments in `extras`
still have top priority and will override both the default policies and
the ones from `cpp_function`.
Resolves#436.
* Almost always use return_value_policy::move for rvalues
For functions which return rvalues or rvalue references, the only viable
return value policies are `copy` and `move`. `reference(_internal)` and
`take_ownership` would take the address of a temporary which is always
an error.
This commit prevents possible user errors by overriding the bad rvalue
policies with `move`. Besides `move`, only `copy` is allowed, and only
if it's explicitly selected by the user.
This is also a necessary safety feature to support the new default
return value policies for properties: `reference(_internal)`.
The current integer caster was unnecessarily strict and rejected
various kinds of NumPy integer types when calling C++ functions
expecting normal integers. This relaxes the current behavior.
Currently pybind11 doesn't check when you define a new object (e.g. a
class, function, or exception) that overwrites an existing one. If the
thing being overwritten is a class, this leads to a segfault (because
pybind still thinks the type is defined, even though Python no longer
has the type). In other cases this is harmless (e.g. replacing a
function with an exception), but even in that case it's most likely a
bug.
This code doesn't prevent you from actively doing something harmful,
like deliberately overwriting a previous definition, but detects
overwriting with a run-time error if it occurs in the standard
class/function/exception/def registration interfaces.
All of the additions are in non-template code; the result is actually a
tiny decrease in .so size compared to master without the new test code
(977304 to 977272 bytes), and about 4K higher with the new tests.