mirror of
https://github.com/pybind/pybind11.git
synced 2024-11-27 07:32:02 +00:00
b4e1ab8caa
* Docs: Demonstrate non-enum internal types in example Previously example only demonstrated internal enumeration type. To show that it works for other internal types the same way the example was updated with an additional struct Pet::Attributes type. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
543 lines
16 KiB
ReStructuredText
543 lines
16 KiB
ReStructuredText
.. _classes:
|
|
|
|
Object-oriented code
|
|
####################
|
|
|
|
Creating bindings for a custom type
|
|
===================================
|
|
|
|
Let's now look at a more complex example where we'll create bindings for a
|
|
custom C++ data structure named ``Pet``. Its definition is given below:
|
|
|
|
.. code-block:: cpp
|
|
|
|
struct Pet {
|
|
Pet(const std::string &name) : name(name) { }
|
|
void setName(const std::string &name_) { name = name_; }
|
|
const std::string &getName() const { return name; }
|
|
|
|
std::string name;
|
|
};
|
|
|
|
The binding code for ``Pet`` looks as follows:
|
|
|
|
.. code-block:: cpp
|
|
|
|
#include <pybind11/pybind11.h>
|
|
|
|
namespace py = pybind11;
|
|
|
|
PYBIND11_MODULE(example, m) {
|
|
py::class_<Pet>(m, "Pet")
|
|
.def(py::init<const std::string &>())
|
|
.def("setName", &Pet::setName)
|
|
.def("getName", &Pet::getName);
|
|
}
|
|
|
|
:class:`class_` creates bindings for a C++ *class* or *struct*-style data
|
|
structure. :func:`init` is a convenience function that takes the types of a
|
|
constructor's parameters as template arguments and wraps the corresponding
|
|
constructor (see the :ref:`custom_constructors` section for details). An
|
|
interactive Python session demonstrating this example is shown below:
|
|
|
|
.. code-block:: pycon
|
|
|
|
% python
|
|
>>> import example
|
|
>>> p = example.Pet("Molly")
|
|
>>> print(p)
|
|
<example.Pet object at 0x10cd98060>
|
|
>>> p.getName()
|
|
u'Molly'
|
|
>>> p.setName("Charly")
|
|
>>> p.getName()
|
|
u'Charly'
|
|
|
|
.. seealso::
|
|
|
|
Static member functions can be bound in the same way using
|
|
:func:`class_::def_static`.
|
|
|
|
Keyword and default arguments
|
|
=============================
|
|
It is possible to specify keyword and default arguments using the syntax
|
|
discussed in the previous chapter. Refer to the sections :ref:`keyword_args`
|
|
and :ref:`default_args` for details.
|
|
|
|
Binding lambda functions
|
|
========================
|
|
|
|
Note how ``print(p)`` produced a rather useless summary of our data structure in the example above:
|
|
|
|
.. code-block:: pycon
|
|
|
|
>>> print(p)
|
|
<example.Pet object at 0x10cd98060>
|
|
|
|
To address this, we could bind a utility function that returns a human-readable
|
|
summary to the special method slot named ``__repr__``. Unfortunately, there is no
|
|
suitable functionality in the ``Pet`` data structure, and it would be nice if
|
|
we did not have to change it. This can easily be accomplished by binding a
|
|
Lambda function instead:
|
|
|
|
.. code-block:: cpp
|
|
|
|
py::class_<Pet>(m, "Pet")
|
|
.def(py::init<const std::string &>())
|
|
.def("setName", &Pet::setName)
|
|
.def("getName", &Pet::getName)
|
|
.def("__repr__",
|
|
[](const Pet &a) {
|
|
return "<example.Pet named '" + a.name + "'>";
|
|
}
|
|
);
|
|
|
|
Both stateless [#f1]_ and stateful lambda closures are supported by pybind11.
|
|
With the above change, the same Python code now produces the following output:
|
|
|
|
.. code-block:: pycon
|
|
|
|
>>> print(p)
|
|
<example.Pet named 'Molly'>
|
|
|
|
.. [#f1] Stateless closures are those with an empty pair of brackets ``[]`` as the capture object.
|
|
|
|
.. _properties:
|
|
|
|
Instance and static fields
|
|
==========================
|
|
|
|
We can also directly expose the ``name`` field using the
|
|
:func:`class_::def_readwrite` method. A similar :func:`class_::def_readonly`
|
|
method also exists for ``const`` fields.
|
|
|
|
.. code-block:: cpp
|
|
|
|
py::class_<Pet>(m, "Pet")
|
|
.def(py::init<const std::string &>())
|
|
.def_readwrite("name", &Pet::name)
|
|
// ... remainder ...
|
|
|
|
This makes it possible to write
|
|
|
|
.. code-block:: pycon
|
|
|
|
>>> p = example.Pet("Molly")
|
|
>>> p.name
|
|
u'Molly'
|
|
>>> p.name = "Charly"
|
|
>>> p.name
|
|
u'Charly'
|
|
|
|
Now suppose that ``Pet::name`` was a private internal variable
|
|
that can only be accessed via setters and getters.
|
|
|
|
.. code-block:: cpp
|
|
|
|
class Pet {
|
|
public:
|
|
Pet(const std::string &name) : name(name) { }
|
|
void setName(const std::string &name_) { name = name_; }
|
|
const std::string &getName() const { return name; }
|
|
private:
|
|
std::string name;
|
|
};
|
|
|
|
In this case, the method :func:`class_::def_property`
|
|
(:func:`class_::def_property_readonly` for read-only data) can be used to
|
|
provide a field-like interface within Python that will transparently call
|
|
the setter and getter functions:
|
|
|
|
.. code-block:: cpp
|
|
|
|
py::class_<Pet>(m, "Pet")
|
|
.def(py::init<const std::string &>())
|
|
.def_property("name", &Pet::getName, &Pet::setName)
|
|
// ... remainder ...
|
|
|
|
Write only properties can be defined by passing ``nullptr`` as the
|
|
input for the read function.
|
|
|
|
.. seealso::
|
|
|
|
Similar functions :func:`class_::def_readwrite_static`,
|
|
:func:`class_::def_readonly_static` :func:`class_::def_property_static`,
|
|
and :func:`class_::def_property_readonly_static` are provided for binding
|
|
static variables and properties. Please also see the section on
|
|
:ref:`static_properties` in the advanced part of the documentation.
|
|
|
|
Dynamic attributes
|
|
==================
|
|
|
|
Native Python classes can pick up new attributes dynamically:
|
|
|
|
.. code-block:: pycon
|
|
|
|
>>> class Pet:
|
|
... name = "Molly"
|
|
...
|
|
>>> p = Pet()
|
|
>>> p.name = "Charly" # overwrite existing
|
|
>>> p.age = 2 # dynamically add a new attribute
|
|
|
|
By default, classes exported from C++ do not support this and the only writable
|
|
attributes are the ones explicitly defined using :func:`class_::def_readwrite`
|
|
or :func:`class_::def_property`.
|
|
|
|
.. code-block:: cpp
|
|
|
|
py::class_<Pet>(m, "Pet")
|
|
.def(py::init<>())
|
|
.def_readwrite("name", &Pet::name);
|
|
|
|
Trying to set any other attribute results in an error:
|
|
|
|
.. code-block:: pycon
|
|
|
|
>>> p = example.Pet()
|
|
>>> p.name = "Charly" # OK, attribute defined in C++
|
|
>>> p.age = 2 # fail
|
|
AttributeError: 'Pet' object has no attribute 'age'
|
|
|
|
To enable dynamic attributes for C++ classes, the :class:`py::dynamic_attr` tag
|
|
must be added to the :class:`py::class_` constructor:
|
|
|
|
.. code-block:: cpp
|
|
|
|
py::class_<Pet>(m, "Pet", py::dynamic_attr())
|
|
.def(py::init<>())
|
|
.def_readwrite("name", &Pet::name);
|
|
|
|
Now everything works as expected:
|
|
|
|
.. code-block:: pycon
|
|
|
|
>>> p = example.Pet()
|
|
>>> p.name = "Charly" # OK, overwrite value in C++
|
|
>>> p.age = 2 # OK, dynamically add a new attribute
|
|
>>> p.__dict__ # just like a native Python class
|
|
{'age': 2}
|
|
|
|
Note that there is a small runtime cost for a class with dynamic attributes.
|
|
Not only because of the addition of a ``__dict__``, but also because of more
|
|
expensive garbage collection tracking which must be activated to resolve
|
|
possible circular references. Native Python classes incur this same cost by
|
|
default, so this is not anything to worry about. By default, pybind11 classes
|
|
are more efficient than native Python classes. Enabling dynamic attributes
|
|
just brings them on par.
|
|
|
|
.. _inheritance:
|
|
|
|
Inheritance and automatic downcasting
|
|
=====================================
|
|
|
|
Suppose now that the example consists of two data structures with an
|
|
inheritance relationship:
|
|
|
|
.. code-block:: cpp
|
|
|
|
struct Pet {
|
|
Pet(const std::string &name) : name(name) { }
|
|
std::string name;
|
|
};
|
|
|
|
struct Dog : Pet {
|
|
Dog(const std::string &name) : Pet(name) { }
|
|
std::string bark() const { return "woof!"; }
|
|
};
|
|
|
|
There are two different ways of indicating a hierarchical relationship to
|
|
pybind11: the first specifies the C++ base class as an extra template
|
|
parameter of the :class:`class_`:
|
|
|
|
.. code-block:: cpp
|
|
|
|
py::class_<Pet>(m, "Pet")
|
|
.def(py::init<const std::string &>())
|
|
.def_readwrite("name", &Pet::name);
|
|
|
|
// Method 1: template parameter:
|
|
py::class_<Dog, Pet /* <- specify C++ parent type */>(m, "Dog")
|
|
.def(py::init<const std::string &>())
|
|
.def("bark", &Dog::bark);
|
|
|
|
Alternatively, we can also assign a name to the previously bound ``Pet``
|
|
:class:`class_` object and reference it when binding the ``Dog`` class:
|
|
|
|
.. code-block:: cpp
|
|
|
|
py::class_<Pet> pet(m, "Pet");
|
|
pet.def(py::init<const std::string &>())
|
|
.def_readwrite("name", &Pet::name);
|
|
|
|
// Method 2: pass parent class_ object:
|
|
py::class_<Dog>(m, "Dog", pet /* <- specify Python parent type */)
|
|
.def(py::init<const std::string &>())
|
|
.def("bark", &Dog::bark);
|
|
|
|
Functionality-wise, both approaches are equivalent. Afterwards, instances will
|
|
expose fields and methods of both types:
|
|
|
|
.. code-block:: pycon
|
|
|
|
>>> p = example.Dog("Molly")
|
|
>>> p.name
|
|
u'Molly'
|
|
>>> p.bark()
|
|
u'woof!'
|
|
|
|
The C++ classes defined above are regular non-polymorphic types with an
|
|
inheritance relationship. This is reflected in Python:
|
|
|
|
.. code-block:: cpp
|
|
|
|
// Return a base pointer to a derived instance
|
|
m.def("pet_store", []() { return std::unique_ptr<Pet>(new Dog("Molly")); });
|
|
|
|
.. code-block:: pycon
|
|
|
|
>>> p = example.pet_store()
|
|
>>> type(p) # `Dog` instance behind `Pet` pointer
|
|
Pet # no pointer downcasting for regular non-polymorphic types
|
|
>>> p.bark()
|
|
AttributeError: 'Pet' object has no attribute 'bark'
|
|
|
|
The function returned a ``Dog`` instance, but because it's a non-polymorphic
|
|
type behind a base pointer, Python only sees a ``Pet``. In C++, a type is only
|
|
considered polymorphic if it has at least one virtual function and pybind11
|
|
will automatically recognize this:
|
|
|
|
.. code-block:: cpp
|
|
|
|
struct PolymorphicPet {
|
|
virtual ~PolymorphicPet() = default;
|
|
};
|
|
|
|
struct PolymorphicDog : PolymorphicPet {
|
|
std::string bark() const { return "woof!"; }
|
|
};
|
|
|
|
// Same binding code
|
|
py::class_<PolymorphicPet>(m, "PolymorphicPet");
|
|
py::class_<PolymorphicDog, PolymorphicPet>(m, "PolymorphicDog")
|
|
.def(py::init<>())
|
|
.def("bark", &PolymorphicDog::bark);
|
|
|
|
// Again, return a base pointer to a derived instance
|
|
m.def("pet_store2", []() { return std::unique_ptr<PolymorphicPet>(new PolymorphicDog); });
|
|
|
|
.. code-block:: pycon
|
|
|
|
>>> p = example.pet_store2()
|
|
>>> type(p)
|
|
PolymorphicDog # automatically downcast
|
|
>>> p.bark()
|
|
u'woof!'
|
|
|
|
Given a pointer to a polymorphic base, pybind11 performs automatic downcasting
|
|
to the actual derived type. Note that this goes beyond the usual situation in
|
|
C++: we don't just get access to the virtual functions of the base, we get the
|
|
concrete derived type including functions and attributes that the base type may
|
|
not even be aware of.
|
|
|
|
.. seealso::
|
|
|
|
For more information about polymorphic behavior see :ref:`overriding_virtuals`.
|
|
|
|
|
|
Overloaded methods
|
|
==================
|
|
|
|
Sometimes there are several overloaded C++ methods with the same name taking
|
|
different kinds of input arguments:
|
|
|
|
.. code-block:: cpp
|
|
|
|
struct Pet {
|
|
Pet(const std::string &name, int age) : name(name), age(age) { }
|
|
|
|
void set(int age_) { age = age_; }
|
|
void set(const std::string &name_) { name = name_; }
|
|
|
|
std::string name;
|
|
int age;
|
|
};
|
|
|
|
Attempting to bind ``Pet::set`` will cause an error since the compiler does not
|
|
know which method the user intended to select. We can disambiguate by casting
|
|
them to function pointers. Binding multiple functions to the same Python name
|
|
automatically creates a chain of function overloads that will be tried in
|
|
sequence.
|
|
|
|
.. code-block:: cpp
|
|
|
|
py::class_<Pet>(m, "Pet")
|
|
.def(py::init<const std::string &, int>())
|
|
.def("set", static_cast<void (Pet::*)(int)>(&Pet::set), "Set the pet's age")
|
|
.def("set", static_cast<void (Pet::*)(const std::string &)>(&Pet::set), "Set the pet's name");
|
|
|
|
The overload signatures are also visible in the method's docstring:
|
|
|
|
.. code-block:: pycon
|
|
|
|
>>> help(example.Pet)
|
|
|
|
class Pet(__builtin__.object)
|
|
| Methods defined here:
|
|
|
|
|
| __init__(...)
|
|
| Signature : (Pet, str, int) -> NoneType
|
|
|
|
|
| set(...)
|
|
| 1. Signature : (Pet, int) -> NoneType
|
|
|
|
|
| Set the pet's age
|
|
|
|
|
| 2. Signature : (Pet, str) -> NoneType
|
|
|
|
|
| Set the pet's name
|
|
|
|
If you have a C++14 compatible compiler [#cpp14]_, you can use an alternative
|
|
syntax to cast the overloaded function:
|
|
|
|
.. code-block:: cpp
|
|
|
|
py::class_<Pet>(m, "Pet")
|
|
.def("set", py::overload_cast<int>(&Pet::set), "Set the pet's age")
|
|
.def("set", py::overload_cast<const std::string &>(&Pet::set), "Set the pet's name");
|
|
|
|
Here, ``py::overload_cast`` only requires the parameter types to be specified.
|
|
The return type and class are deduced. This avoids the additional noise of
|
|
``void (Pet::*)()`` as seen in the raw cast. If a function is overloaded based
|
|
on constness, the ``py::const_`` tag should be used:
|
|
|
|
.. code-block:: cpp
|
|
|
|
struct Widget {
|
|
int foo(int x, float y);
|
|
int foo(int x, float y) const;
|
|
};
|
|
|
|
py::class_<Widget>(m, "Widget")
|
|
.def("foo_mutable", py::overload_cast<int, float>(&Widget::foo))
|
|
.def("foo_const", py::overload_cast<int, float>(&Widget::foo, py::const_));
|
|
|
|
If you prefer the ``py::overload_cast`` syntax but have a C++11 compatible compiler only,
|
|
you can use ``py::detail::overload_cast_impl`` with an additional set of parentheses:
|
|
|
|
.. code-block:: cpp
|
|
|
|
template <typename... Args>
|
|
using overload_cast_ = pybind11::detail::overload_cast_impl<Args...>;
|
|
|
|
py::class_<Pet>(m, "Pet")
|
|
.def("set", overload_cast_<int>()(&Pet::set), "Set the pet's age")
|
|
.def("set", overload_cast_<const std::string &>()(&Pet::set), "Set the pet's name");
|
|
|
|
.. [#cpp14] A compiler which supports the ``-std=c++14`` flag
|
|
or Visual Studio 2015 Update 2 and newer.
|
|
|
|
.. note::
|
|
|
|
To define multiple overloaded constructors, simply declare one after the
|
|
other using the ``.def(py::init<...>())`` syntax. The existing machinery
|
|
for specifying keyword and default arguments also works.
|
|
|
|
Enumerations and internal types
|
|
===============================
|
|
|
|
Let's now suppose that the example class contains internal types like enumerations, e.g.:
|
|
|
|
.. code-block:: cpp
|
|
|
|
struct Pet {
|
|
enum Kind {
|
|
Dog = 0,
|
|
Cat
|
|
};
|
|
|
|
struct Attributes {
|
|
float age = 0;
|
|
};
|
|
|
|
Pet(const std::string &name, Kind type) : name(name), type(type) { }
|
|
|
|
std::string name;
|
|
Kind type;
|
|
Attributes attr;
|
|
};
|
|
|
|
The binding code for this example looks as follows:
|
|
|
|
.. code-block:: cpp
|
|
|
|
py::class_<Pet> pet(m, "Pet");
|
|
|
|
pet.def(py::init<const std::string &, Pet::Kind>())
|
|
.def_readwrite("name", &Pet::name)
|
|
.def_readwrite("type", &Pet::type)
|
|
.def_readwrite("attr", &Pet::attr);
|
|
|
|
py::enum_<Pet::Kind>(pet, "Kind")
|
|
.value("Dog", Pet::Kind::Dog)
|
|
.value("Cat", Pet::Kind::Cat)
|
|
.export_values();
|
|
|
|
py::class_<Pet::Attributes> attributes(pet, "Attributes")
|
|
.def(py::init<>())
|
|
.def_readwrite("age", &Pet::Attributes::age);
|
|
|
|
|
|
To ensure that the nested types ``Kind`` and ``Attributes`` are created within the scope of ``Pet``, the
|
|
``pet`` :class:`class_` instance must be supplied to the :class:`enum_` and :class:`class_`
|
|
constructor. The :func:`enum_::export_values` function exports the enum entries
|
|
into the parent scope, which should be skipped for newer C++11-style strongly
|
|
typed enums.
|
|
|
|
.. code-block:: pycon
|
|
|
|
>>> p = Pet("Lucy", Pet.Cat)
|
|
>>> p.type
|
|
Kind.Cat
|
|
>>> int(p.type)
|
|
1L
|
|
|
|
The entries defined by the enumeration type are exposed in the ``__members__`` property:
|
|
|
|
.. code-block:: pycon
|
|
|
|
>>> Pet.Kind.__members__
|
|
{'Dog': Kind.Dog, 'Cat': Kind.Cat}
|
|
|
|
The ``name`` property returns the name of the enum value as a unicode string.
|
|
|
|
.. note::
|
|
|
|
It is also possible to use ``str(enum)``, however these accomplish different
|
|
goals. The following shows how these two approaches differ.
|
|
|
|
.. code-block:: pycon
|
|
|
|
>>> p = Pet("Lucy", Pet.Cat)
|
|
>>> pet_type = p.type
|
|
>>> pet_type
|
|
Pet.Cat
|
|
>>> str(pet_type)
|
|
'Pet.Cat'
|
|
>>> pet_type.name
|
|
'Cat'
|
|
|
|
.. note::
|
|
|
|
When the special tag ``py::arithmetic()`` is specified to the ``enum_``
|
|
constructor, pybind11 creates an enumeration that also supports rudimentary
|
|
arithmetic and bit-level operations like comparisons, and, or, xor, negation,
|
|
etc.
|
|
|
|
.. code-block:: cpp
|
|
|
|
py::enum_<Pet::Kind>(pet, "Kind", py::arithmetic())
|
|
...
|
|
|
|
By default, these are omitted to conserve space.
|