2015-07-05 18:05:44 +00:00
|
|
|
/*
|
2015-10-15 16:13:33 +00:00
|
|
|
pybind11/cast.h: Partial template specializations to cast between
|
2015-07-05 18:05:44 +00:00
|
|
|
C++ and Python types
|
|
|
|
|
2016-04-17 18:21:41 +00:00
|
|
|
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
|
2015-07-05 18:05:44 +00:00
|
|
|
|
|
|
|
All rights reserved. Use of this source code is governed by a
|
|
|
|
BSD-style license that can be found in the LICENSE file.
|
|
|
|
*/
|
|
|
|
|
2015-07-11 15:41:48 +00:00
|
|
|
#pragma once
|
2015-07-05 18:05:44 +00:00
|
|
|
|
2015-10-15 16:13:33 +00:00
|
|
|
#include "pytypes.h"
|
|
|
|
#include "typeid.h"
|
2016-01-17 21:36:36 +00:00
|
|
|
#include "descr.h"
|
2015-07-05 18:05:44 +00:00
|
|
|
#include <array>
|
2015-08-28 15:53:31 +00:00
|
|
|
#include <limits>
|
2015-07-05 18:05:44 +00:00
|
|
|
|
2015-10-15 16:13:33 +00:00
|
|
|
NAMESPACE_BEGIN(pybind11)
|
2015-07-05 18:05:44 +00:00
|
|
|
NAMESPACE_BEGIN(detail)
|
2017-02-13 17:11:24 +00:00
|
|
|
inline PyTypeObject *make_static_property_type();
|
|
|
|
inline PyTypeObject *make_default_metaclass();
|
2015-07-05 18:05:44 +00:00
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
/// Additional type information which does not fit into the PyTypeObject
|
|
|
|
struct type_info {
|
|
|
|
PyTypeObject *type;
|
|
|
|
size_t type_size;
|
2017-03-21 00:15:20 +00:00
|
|
|
void *(*operator_new)(size_t);
|
2016-01-17 21:36:44 +00:00
|
|
|
void (*init_holder)(PyObject *, const void *);
|
2017-02-15 20:10:25 +00:00
|
|
|
void (*dealloc)(PyObject *);
|
2016-09-11 11:00:40 +00:00
|
|
|
std::vector<PyObject *(*)(PyObject *, PyTypeObject *)> implicit_conversions;
|
|
|
|
std::vector<std::pair<const std::type_info *, void *(*)(void *)>> implicit_casts;
|
2016-10-23 14:27:13 +00:00
|
|
|
std::vector<bool (*)(PyObject *, void *&)> *direct_conversions;
|
2016-01-17 21:36:44 +00:00
|
|
|
buffer_info *(*get_buffer)(PyObject *, void *) = nullptr;
|
|
|
|
void *get_buffer_data = nullptr;
|
2016-09-11 11:00:40 +00:00
|
|
|
/** A simple type never occurs as a (direct or indirect) parent
|
|
|
|
* of a class that makes use of multiple inheritance */
|
|
|
|
bool simple_type = true;
|
2017-01-31 15:52:11 +00:00
|
|
|
/* for base vs derived holder_type checks */
|
|
|
|
bool default_holder = true;
|
2016-01-17 21:36:44 +00:00
|
|
|
};
|
2016-01-17 21:36:41 +00:00
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
PYBIND11_NOINLINE inline internals &get_internals() {
|
|
|
|
static internals *internals_ptr = nullptr;
|
|
|
|
if (internals_ptr)
|
|
|
|
return *internals_ptr;
|
|
|
|
handle builtins(PyEval_GetBuiltins());
|
2016-03-06 12:38:18 +00:00
|
|
|
const char *id = PYBIND11_INTERNALS_ID;
|
2016-10-23 12:50:08 +00:00
|
|
|
if (builtins.contains(id) && isinstance<capsule>(builtins[id])) {
|
|
|
|
internals_ptr = capsule(builtins[id]);
|
2016-01-17 21:36:44 +00:00
|
|
|
} else {
|
|
|
|
internals_ptr = new internals();
|
2016-04-25 01:26:15 +00:00
|
|
|
#if defined(WITH_THREAD)
|
|
|
|
PyEval_InitThreads();
|
|
|
|
PyThreadState *tstate = PyThreadState_Get();
|
|
|
|
internals_ptr->tstate = PyThread_create_key();
|
|
|
|
PyThread_set_key_value(internals_ptr->tstate, tstate);
|
|
|
|
internals_ptr->istate = tstate->interp;
|
|
|
|
#endif
|
2016-03-06 12:38:18 +00:00
|
|
|
builtins[id] = capsule(internals_ptr);
|
2016-06-17 21:35:59 +00:00
|
|
|
internals_ptr->registered_exception_translators.push_front(
|
|
|
|
[](std::exception_ptr p) -> void {
|
|
|
|
try {
|
|
|
|
if (p) std::rethrow_exception(p);
|
2016-09-10 09:58:02 +00:00
|
|
|
} catch (error_already_set &e) { e.restore(); return;
|
2016-09-10 12:43:28 +00:00
|
|
|
} catch (const builtin_exception &e) { e.set_error(); return;
|
2016-06-17 21:35:59 +00:00
|
|
|
} catch (const std::bad_alloc &e) { PyErr_SetString(PyExc_MemoryError, e.what()); return;
|
|
|
|
} catch (const std::domain_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
|
|
|
|
} catch (const std::invalid_argument &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
|
|
|
|
} catch (const std::length_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
|
|
|
|
} catch (const std::out_of_range &e) { PyErr_SetString(PyExc_IndexError, e.what()); return;
|
|
|
|
} catch (const std::range_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
|
|
|
|
} catch (const std::exception &e) { PyErr_SetString(PyExc_RuntimeError, e.what()); return;
|
|
|
|
} catch (...) {
|
|
|
|
PyErr_SetString(PyExc_RuntimeError, "Caught an unknown exception!");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
);
|
2017-02-13 17:11:24 +00:00
|
|
|
internals_ptr->static_property_type = make_static_property_type();
|
|
|
|
internals_ptr->default_metaclass = make_default_metaclass();
|
2016-01-17 21:36:44 +00:00
|
|
|
}
|
|
|
|
return *internals_ptr;
|
|
|
|
}
|
|
|
|
|
2016-09-11 11:00:40 +00:00
|
|
|
PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type) {
|
2016-01-17 21:36:44 +00:00
|
|
|
auto const &type_dict = get_internals().registered_types_py;
|
|
|
|
do {
|
|
|
|
auto it = type_dict.find(type);
|
|
|
|
if (it != type_dict.end())
|
|
|
|
return (detail::type_info *) it->second;
|
|
|
|
type = type->tp_base;
|
2016-09-11 11:00:40 +00:00
|
|
|
if (!type)
|
2016-04-30 17:56:10 +00:00
|
|
|
return nullptr;
|
2016-01-17 21:36:44 +00:00
|
|
|
} while (true);
|
|
|
|
}
|
|
|
|
|
2016-10-23 14:43:03 +00:00
|
|
|
PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_info &tp,
|
|
|
|
bool throw_if_missing = false) {
|
2016-01-17 21:36:44 +00:00
|
|
|
auto &types = get_internals().registered_types_cpp;
|
|
|
|
|
2016-01-29 10:39:32 +00:00
|
|
|
auto it = types.find(std::type_index(tp));
|
|
|
|
if (it != types.end())
|
2016-01-17 21:36:44 +00:00
|
|
|
return (detail::type_info *) it->second;
|
2016-09-11 11:00:40 +00:00
|
|
|
if (throw_if_missing) {
|
|
|
|
std::string tname = tp.name();
|
|
|
|
detail::clean_type_id(tname);
|
|
|
|
pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \"" + tname + "\"");
|
|
|
|
}
|
2016-01-17 21:36:44 +00:00
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
2016-09-11 11:00:40 +00:00
|
|
|
PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp, bool throw_if_missing) {
|
|
|
|
detail::type_info *type_info = get_type_info(tp, throw_if_missing);
|
2016-01-17 21:36:44 +00:00
|
|
|
return handle(type_info ? ((PyObject *) type_info->type) : nullptr);
|
|
|
|
}
|
|
|
|
|
2016-10-23 12:50:08 +00:00
|
|
|
PYBIND11_NOINLINE inline bool isinstance_generic(handle obj, const std::type_info &tp) {
|
2016-12-16 14:00:46 +00:00
|
|
|
handle type = detail::get_type_handle(tp, false);
|
2016-10-23 12:50:08 +00:00
|
|
|
if (!type)
|
|
|
|
return false;
|
2016-12-16 14:00:46 +00:00
|
|
|
return isinstance(obj, type);
|
2016-10-23 12:50:08 +00:00
|
|
|
}
|
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
PYBIND11_NOINLINE inline std::string error_string() {
|
2016-09-07 20:10:16 +00:00
|
|
|
if (!PyErr_Occurred()) {
|
|
|
|
PyErr_SetString(PyExc_RuntimeError, "Unknown internal error occurred");
|
|
|
|
return "Unknown internal error occurred";
|
|
|
|
}
|
|
|
|
|
2016-09-10 07:32:17 +00:00
|
|
|
error_scope scope; // Preserve error state
|
2016-01-17 21:36:44 +00:00
|
|
|
|
2016-09-07 20:10:16 +00:00
|
|
|
std::string errorString;
|
2016-09-10 07:32:17 +00:00
|
|
|
if (scope.type) {
|
|
|
|
errorString += handle(scope.type).attr("__name__").cast<std::string>();
|
2016-01-17 21:36:44 +00:00
|
|
|
errorString += ": ";
|
|
|
|
}
|
2016-09-10 07:32:17 +00:00
|
|
|
if (scope.value)
|
2016-10-25 20:12:39 +00:00
|
|
|
errorString += (std::string) str(scope.value);
|
2016-01-17 21:36:44 +00:00
|
|
|
|
2016-11-12 07:57:30 +00:00
|
|
|
PyErr_NormalizeException(&scope.type, &scope.value, &scope.trace);
|
|
|
|
|
2016-11-24 11:31:06 +00:00
|
|
|
#if PY_MAJOR_VERSION >= 3
|
|
|
|
if (scope.trace != nullptr)
|
|
|
|
PyException_SetTraceback(scope.value, scope.trace);
|
|
|
|
#endif
|
|
|
|
|
2016-12-16 14:00:46 +00:00
|
|
|
#if !defined(PYPY_VERSION)
|
2016-11-12 07:57:30 +00:00
|
|
|
if (scope.trace) {
|
2016-11-24 11:31:06 +00:00
|
|
|
PyTracebackObject *trace = (PyTracebackObject *) scope.trace;
|
|
|
|
|
|
|
|
/* Get the deepest trace possible */
|
|
|
|
while (trace->tb_next)
|
|
|
|
trace = trace->tb_next;
|
|
|
|
|
|
|
|
PyFrameObject *frame = trace->tb_frame;
|
|
|
|
errorString += "\n\nAt:\n";
|
|
|
|
while (frame) {
|
|
|
|
int lineno = PyFrame_GetLineNumber(frame);
|
|
|
|
errorString +=
|
|
|
|
" " + handle(frame->f_code->co_filename).cast<std::string>() +
|
|
|
|
"(" + std::to_string(lineno) + "): " +
|
|
|
|
handle(frame->f_code->co_name).cast<std::string>() + "\n";
|
|
|
|
frame = frame->f_back;
|
2016-11-12 07:57:30 +00:00
|
|
|
}
|
2016-11-24 11:31:06 +00:00
|
|
|
trace = trace->tb_next;
|
2016-11-12 07:57:30 +00:00
|
|
|
}
|
2016-12-16 14:00:46 +00:00
|
|
|
#endif
|
2016-11-12 07:57:30 +00:00
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
return errorString;
|
|
|
|
}
|
|
|
|
|
2016-08-09 21:57:59 +00:00
|
|
|
PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) {
|
|
|
|
auto &instances = get_internals().registered_instances;
|
|
|
|
auto range = instances.equal_range(ptr);
|
|
|
|
for (auto it = range.first; it != range.second; ++it) {
|
2016-09-11 11:00:40 +00:00
|
|
|
auto instance_type = detail::get_type_info(Py_TYPE(it->second));
|
2016-08-09 21:57:59 +00:00
|
|
|
if (instance_type && instance_type == type)
|
|
|
|
return handle((PyObject *) it->second);
|
|
|
|
}
|
|
|
|
return handle();
|
2016-01-17 21:36:44 +00:00
|
|
|
}
|
|
|
|
|
2016-04-25 13:02:43 +00:00
|
|
|
inline PyThreadState *get_thread_state_unchecked() {
|
2016-12-16 14:00:46 +00:00
|
|
|
#if defined(PYPY_VERSION)
|
|
|
|
return PyThreadState_GET();
|
|
|
|
#elif PY_VERSION_HEX < 0x03000000
|
2016-04-25 13:02:43 +00:00
|
|
|
return _PyThreadState_Current;
|
|
|
|
#elif PY_VERSION_HEX < 0x03050000
|
|
|
|
return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current);
|
|
|
|
#elif PY_VERSION_HEX < 0x03050200
|
|
|
|
return (PyThreadState*) _PyThreadState_Current.value;
|
|
|
|
#else
|
|
|
|
return _PyThreadState_UncheckedGet();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2016-08-10 16:08:04 +00:00
|
|
|
// Forward declaration
|
|
|
|
inline void keep_alive_impl(handle nurse, handle patient);
|
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
class type_caster_generic {
|
|
|
|
public:
|
|
|
|
PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info)
|
2016-10-23 14:43:03 +00:00
|
|
|
: typeinfo(get_type_info(type_info)) { }
|
2015-07-05 18:05:44 +00:00
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
PYBIND11_NOINLINE bool load(handle src, bool convert) {
|
2016-09-30 11:43:19 +00:00
|
|
|
if (!src)
|
|
|
|
return false;
|
2016-09-11 11:00:40 +00:00
|
|
|
return load(src, convert, Py_TYPE(src.ptr()));
|
|
|
|
}
|
|
|
|
|
|
|
|
bool load(handle src, bool convert, PyTypeObject *tobj) {
|
2016-01-17 21:36:44 +00:00
|
|
|
if (!src || !typeinfo)
|
2015-07-05 18:05:44 +00:00
|
|
|
return false;
|
2016-08-29 01:38:47 +00:00
|
|
|
if (src.is_none()) {
|
2016-02-23 12:37:14 +00:00
|
|
|
value = nullptr;
|
|
|
|
return true;
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
2016-09-11 11:00:40 +00:00
|
|
|
|
|
|
|
if (typeinfo->simple_type) { /* Case 1: no multiple inheritance etc. involved */
|
|
|
|
/* Check if we can safely perform a reinterpret-style cast */
|
|
|
|
if (PyType_IsSubtype(tobj, typeinfo->type)) {
|
|
|
|
value = reinterpret_cast<instance<void> *>(src.ptr())->value;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
} else { /* Case 2: multiple inheritance */
|
|
|
|
/* Check if we can safely perform a reinterpret-style cast */
|
|
|
|
if (tobj == typeinfo->type) {
|
|
|
|
value = reinterpret_cast<instance<void> *>(src.ptr())->value;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If this is a python class, also check the parents recursively */
|
|
|
|
auto const &type_dict = get_internals().registered_types_py;
|
2016-12-16 14:00:46 +00:00
|
|
|
bool new_style_class = PyType_Check((PyObject *) tobj);
|
2016-09-11 11:00:40 +00:00
|
|
|
if (type_dict.find(tobj) == type_dict.end() && new_style_class && tobj->tp_bases) {
|
2016-10-28 01:08:15 +00:00
|
|
|
auto parents = reinterpret_borrow<tuple>(tobj->tp_bases);
|
2016-09-11 11:00:40 +00:00
|
|
|
for (handle parent : parents) {
|
|
|
|
bool result = load(src, convert, (PyTypeObject *) parent.ptr());
|
|
|
|
if (result)
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Try implicit casts */
|
|
|
|
for (auto &cast : typeinfo->implicit_casts) {
|
|
|
|
type_caster_generic sub_caster(*cast.first);
|
|
|
|
if (sub_caster.load(src, convert)) {
|
|
|
|
value = cast.second(sub_caster.value);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Perform an implicit conversion */
|
2015-07-05 18:05:44 +00:00
|
|
|
if (convert) {
|
|
|
|
for (auto &converter : typeinfo->implicit_conversions) {
|
2016-10-28 01:08:15 +00:00
|
|
|
temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type));
|
2016-01-17 21:36:44 +00:00
|
|
|
if (load(temp, false))
|
2015-07-05 18:05:44 +00:00
|
|
|
return true;
|
|
|
|
}
|
2016-10-23 14:27:13 +00:00
|
|
|
for (auto &converter : *typeinfo->direct_conversions) {
|
|
|
|
if (converter(src.ptr(), value))
|
|
|
|
return true;
|
|
|
|
}
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent,
|
|
|
|
const std::type_info *type_info,
|
2016-04-13 11:45:09 +00:00
|
|
|
const std::type_info *type_info_backup,
|
2016-01-17 21:36:44 +00:00
|
|
|
void *(*copy_constructor)(const void *),
|
2016-04-25 21:04:27 +00:00
|
|
|
void *(*move_constructor)(const void *),
|
2016-01-17 21:36:44 +00:00
|
|
|
const void *existing_holder = nullptr) {
|
2015-10-19 21:50:51 +00:00
|
|
|
void *src = const_cast<void *>(_src);
|
2016-01-17 21:36:44 +00:00
|
|
|
if (src == nullptr)
|
2016-09-08 13:53:18 +00:00
|
|
|
return none().inc_ref();
|
2016-01-17 21:36:44 +00:00
|
|
|
|
2016-08-09 21:57:59 +00:00
|
|
|
auto &internals = get_internals();
|
2016-01-17 21:36:44 +00:00
|
|
|
|
2016-01-29 10:39:32 +00:00
|
|
|
auto it = internals.registered_types_cpp.find(std::type_index(*type_info));
|
2016-04-13 11:45:09 +00:00
|
|
|
if (it == internals.registered_types_cpp.end()) {
|
|
|
|
type_info = type_info_backup;
|
|
|
|
it = internals.registered_types_cpp.find(std::type_index(*type_info));
|
|
|
|
}
|
|
|
|
|
2016-01-17 21:36:41 +00:00
|
|
|
if (it == internals.registered_types_cpp.end()) {
|
2015-12-28 07:45:14 +00:00
|
|
|
std::string tname = type_info->name();
|
|
|
|
detail::clean_type_id(tname);
|
|
|
|
std::string msg = "Unregistered type : " + tname;
|
2015-07-05 18:05:44 +00:00
|
|
|
PyErr_SetString(PyExc_TypeError, msg.c_str());
|
2016-01-17 21:36:44 +00:00
|
|
|
return handle();
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
2016-01-17 21:36:44 +00:00
|
|
|
|
2016-01-17 21:36:41 +00:00
|
|
|
auto tinfo = (const detail::type_info *) it->second;
|
2016-08-09 21:57:59 +00:00
|
|
|
|
|
|
|
auto it_instances = internals.registered_instances.equal_range(src);
|
2016-08-11 20:23:23 +00:00
|
|
|
for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) {
|
2016-09-11 11:00:40 +00:00
|
|
|
auto instance_type = detail::get_type_info(Py_TYPE(it_i->second));
|
2016-08-09 21:57:59 +00:00
|
|
|
if (instance_type && instance_type == tinfo)
|
2016-08-11 20:23:23 +00:00
|
|
|
return handle((PyObject *) it_i->second).inc_ref();
|
2016-08-09 21:57:59 +00:00
|
|
|
}
|
|
|
|
|
2016-10-28 01:08:15 +00:00
|
|
|
auto inst = reinterpret_steal<object>(PyType_GenericAlloc(tinfo->type, 0));
|
2016-01-17 21:36:44 +00:00
|
|
|
|
|
|
|
auto wrapper = (instance<void> *) inst.ptr();
|
|
|
|
|
Fix wrapper's 'value' and 'owned' if ctor missing
type_caster_generic::cast(): The values of
wrapper->value
wrapper->owned
are incorrect in the case that a return value policy of 'copy' is
requested but there is no copy-constructor. (Similarly 'move'.) In
particular, if the source object is a static instance, the destructor of
the 'object' 'inst' leads to class_::dealloc() which incorrectly
attempts to 'delete' the static instance.
This commit re-arranges the code to be clearer as to what the values of
'value' and 'owned' should be in the various cases. Behaviour is
different to previous code only in two situations:
policy = copy but no copy-ctor: Old code leaves 'value = src, owned =
true', which leads to trouble. New code leaves 'value = nullptr, owned
= false', which is correct.
policy = move but no move- or copy-ctor: old code leaves 'value = src,
owned = true', which leads to trouble. New code leaves 'value =
nullptr, owned = false', which is correct.
2016-10-20 20:09:25 +00:00
|
|
|
wrapper->value = nullptr;
|
|
|
|
wrapper->owned = false;
|
|
|
|
|
|
|
|
switch (policy) {
|
2016-10-22 17:08:44 +00:00
|
|
|
case return_value_policy::automatic:
|
|
|
|
case return_value_policy::take_ownership:
|
|
|
|
wrapper->value = src;
|
|
|
|
wrapper->owned = true;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case return_value_policy::automatic_reference:
|
|
|
|
case return_value_policy::reference:
|
|
|
|
wrapper->value = src;
|
|
|
|
wrapper->owned = false;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case return_value_policy::copy:
|
|
|
|
if (copy_constructor)
|
|
|
|
wrapper->value = copy_constructor(src);
|
|
|
|
else
|
|
|
|
throw cast_error("return_value_policy = copy, but the "
|
|
|
|
"object is non-copyable!");
|
|
|
|
wrapper->owned = true;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case return_value_policy::move:
|
|
|
|
if (move_constructor)
|
|
|
|
wrapper->value = move_constructor(src);
|
|
|
|
else if (copy_constructor)
|
|
|
|
wrapper->value = copy_constructor(src);
|
|
|
|
else
|
|
|
|
throw cast_error("return_value_policy = move, but the "
|
|
|
|
"object is neither movable nor copyable!");
|
|
|
|
wrapper->owned = true;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case return_value_policy::reference_internal:
|
|
|
|
wrapper->value = src;
|
|
|
|
wrapper->owned = false;
|
|
|
|
detail::keep_alive_impl(inst, parent);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
throw cast_error("unhandled return_value_policy: should not happen!");
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
2016-01-17 21:36:44 +00:00
|
|
|
|
|
|
|
tinfo->init_holder(inst.ptr(), existing_holder);
|
2016-08-09 21:57:59 +00:00
|
|
|
|
|
|
|
internals.registered_instances.emplace(wrapper->value, inst.ptr());
|
2016-01-17 21:36:44 +00:00
|
|
|
|
|
|
|
return inst.release();
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
const type_info *typeinfo = nullptr;
|
2015-10-19 21:50:51 +00:00
|
|
|
void *value = nullptr;
|
2015-07-05 18:05:44 +00:00
|
|
|
object temp;
|
|
|
|
};
|
|
|
|
|
2016-03-26 22:04:10 +00:00
|
|
|
/* Determine suitable casting operator */
|
|
|
|
template <typename T>
|
2016-04-18 19:22:22 +00:00
|
|
|
using cast_op_type = typename std::conditional<std::is_pointer<typename std::remove_reference<T>::type>::value,
|
2016-09-05 12:30:56 +00:00
|
|
|
typename std::add_pointer<intrinsic_t<T>>::type,
|
|
|
|
typename std::add_lvalue_reference<intrinsic_t<T>>::type>::type;
|
2016-03-26 22:04:10 +00:00
|
|
|
|
Fix stl_bind to support movable, non-copyable value types (#490)
This commit includes the following changes:
* Don't provide make_copy_constructor for non-copyable container
make_copy_constructor currently fails for various stl containers (e.g.
std::vector, std::unordered_map, std::deque, etc.) when the container's
value type (e.g. the "T" or the std::pair<K,T> for a map) is
non-copyable. This adds an override that, for types that look like
containers, also requires that the value_type be copyable.
* stl_bind.h: make bind_{vector,map} work for non-copy-constructible types
Most stl_bind modifiers require copying, so if the type isn't copy
constructible, we provide a read-only interface instead.
In practice, this means that if the type is non-copyable, it will be,
for all intents and purposes, read-only from the Python side (but
currently it simply fails to compile with such a container).
It is still possible for the caller to provide an interface manually
(by defining methods on the returned class_ object), but this isn't
something stl_bind can handle because the C++ code to construct values
is going to be highly dependent on the container value_type.
* stl_bind: copy only for arithmetic value types
For non-primitive types, we may well be copying some complex type, when
returning by reference is more appropriate. This commit returns by
internal reference for all but basic arithmetic types.
* Return by reference whenever possible
Only if we definitely can't--i.e. std::vector<bool>--because v[i]
returns something that isn't a T& do we copy; for everything else, we
return by reference.
For the map case, we can always return by reference (at least for the
default stl map/unordered_map).
2016-11-15 11:30:38 +00:00
|
|
|
// std::is_copy_constructible isn't quite enough: it lets std::vector<T> (and similar) through when
|
|
|
|
// T is non-copyable, but code containing such a copy constructor fails to actually compile.
|
|
|
|
template <typename T, typename SFINAE = void> struct is_copy_constructible : std::is_copy_constructible<T> {};
|
|
|
|
|
|
|
|
// Specialization for types that appear to be copy constructible but also look like stl containers
|
|
|
|
// (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if
|
|
|
|
// so, copy constructability depends on whether the value_type is copy constructible.
|
|
|
|
template <typename Container> struct is_copy_constructible<Container, enable_if_t<
|
|
|
|
std::is_copy_constructible<Container>::value &&
|
|
|
|
std::is_same<typename Container::value_type &, typename Container::reference>::value
|
|
|
|
>> : std::is_copy_constructible<typename Container::value_type> {};
|
|
|
|
|
2015-10-19 21:50:51 +00:00
|
|
|
/// Generic type caster for objects stored on the heap
|
2016-04-28 14:25:24 +00:00
|
|
|
template <typename type> class type_caster_base : public type_caster_generic {
|
2016-09-07 17:32:49 +00:00
|
|
|
using itype = intrinsic_t<type>;
|
2015-10-19 21:50:51 +00:00
|
|
|
public:
|
2016-01-17 21:36:36 +00:00
|
|
|
static PYBIND11_DESCR name() { return type_descr(_<type>()); }
|
2015-10-19 21:50:51 +00:00
|
|
|
|
2016-09-11 11:00:40 +00:00
|
|
|
type_caster_base() : type_caster_base(typeid(type)) { }
|
2016-10-16 20:27:42 +00:00
|
|
|
explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) { }
|
2015-10-19 21:50:51 +00:00
|
|
|
|
2016-09-07 17:32:49 +00:00
|
|
|
static handle cast(const itype &src, return_value_policy policy, handle parent) {
|
2016-04-14 12:26:13 +00:00
|
|
|
if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
|
2015-10-19 21:50:51 +00:00
|
|
|
policy = return_value_policy::copy;
|
2016-04-13 11:45:09 +00:00
|
|
|
return cast(&src, policy, parent);
|
2015-10-19 21:50:51 +00:00
|
|
|
}
|
|
|
|
|
2016-11-20 04:31:02 +00:00
|
|
|
static handle cast(itype &&src, return_value_policy, handle parent) {
|
|
|
|
return cast(&src, return_value_policy::move, parent);
|
2016-04-25 21:04:27 +00:00
|
|
|
}
|
|
|
|
|
2016-09-07 17:32:49 +00:00
|
|
|
static handle cast(const itype *src, return_value_policy policy, handle parent) {
|
2016-04-25 21:04:27 +00:00
|
|
|
return type_caster_generic::cast(
|
|
|
|
src, policy, parent, src ? &typeid(*src) : nullptr, &typeid(type),
|
2016-05-01 08:28:00 +00:00
|
|
|
make_copy_constructor(src), make_move_constructor(src));
|
2015-10-19 21:50:51 +00:00
|
|
|
}
|
|
|
|
|
2017-01-31 16:05:44 +00:00
|
|
|
static handle cast_holder(const itype *src, const void *holder) {
|
|
|
|
return type_caster_generic::cast(
|
|
|
|
src, return_value_policy::take_ownership, {},
|
|
|
|
src ? &typeid(*src) : nullptr, &typeid(type),
|
|
|
|
nullptr, nullptr, holder);
|
|
|
|
}
|
|
|
|
|
2016-03-26 22:04:10 +00:00
|
|
|
template <typename T> using cast_op_type = pybind11::detail::cast_op_type<T>;
|
|
|
|
|
2016-09-07 17:32:49 +00:00
|
|
|
operator itype*() { return (type *) value; }
|
|
|
|
operator itype&() { if (!value) throw reference_cast_error(); return *((itype *) value); }
|
2016-05-01 08:28:00 +00:00
|
|
|
|
2015-10-19 21:50:51 +00:00
|
|
|
protected:
|
2016-05-01 08:28:00 +00:00
|
|
|
typedef void *(*Constructor)(const void *stream);
|
|
|
|
#if !defined(_MSC_VER)
|
|
|
|
/* Only enabled when the types are {copy,move}-constructible *and* when the type
|
|
|
|
does not have a private operator new implementaton. */
|
Fix stl_bind to support movable, non-copyable value types (#490)
This commit includes the following changes:
* Don't provide make_copy_constructor for non-copyable container
make_copy_constructor currently fails for various stl containers (e.g.
std::vector, std::unordered_map, std::deque, etc.) when the container's
value type (e.g. the "T" or the std::pair<K,T> for a map) is
non-copyable. This adds an override that, for types that look like
containers, also requires that the value_type be copyable.
* stl_bind.h: make bind_{vector,map} work for non-copy-constructible types
Most stl_bind modifiers require copying, so if the type isn't copy
constructible, we provide a read-only interface instead.
In practice, this means that if the type is non-copyable, it will be,
for all intents and purposes, read-only from the Python side (but
currently it simply fails to compile with such a container).
It is still possible for the caller to provide an interface manually
(by defining methods on the returned class_ object), but this isn't
something stl_bind can handle because the C++ code to construct values
is going to be highly dependent on the container value_type.
* stl_bind: copy only for arithmetic value types
For non-primitive types, we may well be copying some complex type, when
returning by reference is more appropriate. This commit returns by
internal reference for all but basic arithmetic types.
* Return by reference whenever possible
Only if we definitely can't--i.e. std::vector<bool>--because v[i]
returns something that isn't a T& do we copy; for everything else, we
return by reference.
For the map case, we can always return by reference (at least for the
default stl map/unordered_map).
2016-11-15 11:30:38 +00:00
|
|
|
template <typename T = type, typename = enable_if_t<is_copy_constructible<T>::value>> static auto make_copy_constructor(const T *value) -> decltype(new T(*value), Constructor(nullptr)) {
|
2016-05-01 08:28:00 +00:00
|
|
|
return [](const void *arg) -> void * { return new T(*((const T *) arg)); }; }
|
|
|
|
template <typename T = type> static auto make_move_constructor(const T *value) -> decltype(new T(std::move(*((T *) value))), Constructor(nullptr)) {
|
2017-02-08 22:43:08 +00:00
|
|
|
return [](const void *arg) -> void * { return (void *) new T(std::move(*const_cast<T *>(reinterpret_cast<const T *>(arg)))); }; }
|
2016-05-01 08:28:00 +00:00
|
|
|
#else
|
|
|
|
/* Visual Studio 2015's SFINAE implementation doesn't yet handle the above robustly in all situations.
|
|
|
|
Use a workaround that only tests for constructibility for now. */
|
Fix stl_bind to support movable, non-copyable value types (#490)
This commit includes the following changes:
* Don't provide make_copy_constructor for non-copyable container
make_copy_constructor currently fails for various stl containers (e.g.
std::vector, std::unordered_map, std::deque, etc.) when the container's
value type (e.g. the "T" or the std::pair<K,T> for a map) is
non-copyable. This adds an override that, for types that look like
containers, also requires that the value_type be copyable.
* stl_bind.h: make bind_{vector,map} work for non-copy-constructible types
Most stl_bind modifiers require copying, so if the type isn't copy
constructible, we provide a read-only interface instead.
In practice, this means that if the type is non-copyable, it will be,
for all intents and purposes, read-only from the Python side (but
currently it simply fails to compile with such a container).
It is still possible for the caller to provide an interface manually
(by defining methods on the returned class_ object), but this isn't
something stl_bind can handle because the C++ code to construct values
is going to be highly dependent on the container value_type.
* stl_bind: copy only for arithmetic value types
For non-primitive types, we may well be copying some complex type, when
returning by reference is more appropriate. This commit returns by
internal reference for all but basic arithmetic types.
* Return by reference whenever possible
Only if we definitely can't--i.e. std::vector<bool>--because v[i]
returns something that isn't a T& do we copy; for everything else, we
return by reference.
For the map case, we can always return by reference (at least for the
default stl map/unordered_map).
2016-11-15 11:30:38 +00:00
|
|
|
template <typename T = type, typename = enable_if_t<is_copy_constructible<T>::value>>
|
2016-05-01 08:28:00 +00:00
|
|
|
static Constructor make_copy_constructor(const T *value) {
|
|
|
|
return [](const void *arg) -> void * { return new T(*((const T *)arg)); }; }
|
2016-09-12 15:36:43 +00:00
|
|
|
template <typename T = type, typename = enable_if_t<std::is_move_constructible<T>::value>>
|
2016-05-01 08:28:00 +00:00
|
|
|
static Constructor make_move_constructor(const T *value) {
|
|
|
|
return [](const void *arg) -> void * { return (void *) new T(std::move(*((T *)arg))); }; }
|
|
|
|
#endif
|
Fix stl_bind to support movable, non-copyable value types (#490)
This commit includes the following changes:
* Don't provide make_copy_constructor for non-copyable container
make_copy_constructor currently fails for various stl containers (e.g.
std::vector, std::unordered_map, std::deque, etc.) when the container's
value type (e.g. the "T" or the std::pair<K,T> for a map) is
non-copyable. This adds an override that, for types that look like
containers, also requires that the value_type be copyable.
* stl_bind.h: make bind_{vector,map} work for non-copy-constructible types
Most stl_bind modifiers require copying, so if the type isn't copy
constructible, we provide a read-only interface instead.
In practice, this means that if the type is non-copyable, it will be,
for all intents and purposes, read-only from the Python side (but
currently it simply fails to compile with such a container).
It is still possible for the caller to provide an interface manually
(by defining methods on the returned class_ object), but this isn't
something stl_bind can handle because the C++ code to construct values
is going to be highly dependent on the container value_type.
* stl_bind: copy only for arithmetic value types
For non-primitive types, we may well be copying some complex type, when
returning by reference is more appropriate. This commit returns by
internal reference for all but basic arithmetic types.
* Return by reference whenever possible
Only if we definitely can't--i.e. std::vector<bool>--because v[i]
returns something that isn't a T& do we copy; for everything else, we
return by reference.
For the map case, we can always return by reference (at least for the
default stl map/unordered_map).
2016-11-15 11:30:38 +00:00
|
|
|
|
2016-05-01 08:28:00 +00:00
|
|
|
static Constructor make_copy_constructor(...) { return nullptr; }
|
|
|
|
static Constructor make_move_constructor(...) { return nullptr; }
|
2015-10-19 21:50:51 +00:00
|
|
|
};
|
|
|
|
|
2016-04-28 14:25:24 +00:00
|
|
|
template <typename type, typename SFINAE = void> class type_caster : public type_caster_base<type> { };
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
template <typename type> using make_caster = type_caster<intrinsic_t<type>>;
|
2016-04-28 14:25:24 +00:00
|
|
|
|
2016-11-25 17:35:00 +00:00
|
|
|
// Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T
|
2016-11-25 18:23:01 +00:00
|
|
|
template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) {
|
2016-11-25 17:35:00 +00:00
|
|
|
return caster.operator typename make_caster<T>::template cast_op_type<T>();
|
|
|
|
}
|
2016-11-25 18:23:01 +00:00
|
|
|
template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &&caster) {
|
2016-11-25 17:35:00 +00:00
|
|
|
return cast_op<T>(caster);
|
|
|
|
}
|
|
|
|
|
2016-04-28 14:25:24 +00:00
|
|
|
template <typename type> class type_caster<std::reference_wrapper<type>> : public type_caster_base<type> {
|
2016-04-20 15:00:57 +00:00
|
|
|
public:
|
|
|
|
static handle cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) {
|
2016-04-28 14:25:24 +00:00
|
|
|
return type_caster_base<type>::cast(&src.get(), policy, parent);
|
2016-04-20 15:00:57 +00:00
|
|
|
}
|
2016-04-21 10:21:14 +00:00
|
|
|
template <typename T> using cast_op_type = std::reference_wrapper<type>;
|
|
|
|
operator std::reference_wrapper<type>() { return std::ref(*((type *) this->value)); }
|
2016-04-20 15:00:57 +00:00
|
|
|
};
|
|
|
|
|
2015-10-18 14:48:30 +00:00
|
|
|
#define PYBIND11_TYPE_CASTER(type, py_name) \
|
2015-07-05 18:05:44 +00:00
|
|
|
protected: \
|
|
|
|
type value; \
|
|
|
|
public: \
|
2016-01-17 21:36:36 +00:00
|
|
|
static PYBIND11_DESCR name() { return type_descr(py_name); } \
|
2016-01-17 21:36:44 +00:00
|
|
|
static handle cast(const type *src, return_value_policy policy, handle parent) { \
|
2017-03-15 12:57:10 +00:00
|
|
|
if (!src) return none().release(); \
|
2015-07-05 18:05:44 +00:00
|
|
|
return cast(*src, policy, parent); \
|
|
|
|
} \
|
|
|
|
operator type*() { return &value; } \
|
2016-03-26 22:04:10 +00:00
|
|
|
operator type&() { return value; } \
|
2016-04-18 08:34:27 +00:00
|
|
|
template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>
|
2015-07-05 18:05:44 +00:00
|
|
|
|
2015-12-16 11:11:01 +00:00
|
|
|
|
Unicode fixes and docs (#624)
* Propagate unicode conversion failure
If returning a std::string with invalid utf-8 data, we currently fail
with an uninformative TypeError instead of propagating the
UnicodeDecodeError that Python sets on failure.
* Add support for u16/u32strings and literals
This adds support for wchar{16,32}_t character literals and the
associated std::u{16,32}string types. It also folds the
character/string conversion into a single type_caster template, since
the type casters for string and wstring were mostly the same anyway.
* Added too-long and too-big character conversion errors
With this commit, when casting to a single character, as opposed to a
C-style string, we make sure the input wasn't a multi-character string
or a single character with codepoint too large for the character type.
This also changes the character cast op to CharT instead of CharT& (we
need to be able to return a temporary decoded char value, but also
because there's little gained by bothering with an lvalue return here).
Finally it changes the char caster to 'has-a-string-caster' instead of
'is-a-string-caster' because, with the cast_op change above, there's
nothing at all gained from inheritance. This also lets us remove the
`success` from the string caster (which was only there for the char
caster) into the char caster itself. (I also renamed it to 'none' and
inverted its value to better reflect its purpose). The None -> nullptr
loading also now takes place only under a `convert = true` load pass.
Although it's unlikely that a function taking a char also has overloads
that can take a None, it seems marginally more correct to treat it as a
conversion.
This commit simplifies the size assumptions about character sizes with
static_asserts to back them up.
2017-02-14 10:08:19 +00:00
|
|
|
template <typename CharT> using is_std_char_type = any_of<
|
|
|
|
std::is_same<CharT, char>, /* std::string */
|
|
|
|
std::is_same<CharT, char16_t>, /* std::u16string */
|
|
|
|
std::is_same<CharT, char32_t>, /* std::u32string */
|
|
|
|
std::is_same<CharT, wchar_t> /* std::wstring */
|
|
|
|
>;
|
|
|
|
|
2015-11-30 11:30:28 +00:00
|
|
|
template <typename T>
|
Unicode fixes and docs (#624)
* Propagate unicode conversion failure
If returning a std::string with invalid utf-8 data, we currently fail
with an uninformative TypeError instead of propagating the
UnicodeDecodeError that Python sets on failure.
* Add support for u16/u32strings and literals
This adds support for wchar{16,32}_t character literals and the
associated std::u{16,32}string types. It also folds the
character/string conversion into a single type_caster template, since
the type casters for string and wstring were mostly the same anyway.
* Added too-long and too-big character conversion errors
With this commit, when casting to a single character, as opposed to a
C-style string, we make sure the input wasn't a multi-character string
or a single character with codepoint too large for the character type.
This also changes the character cast op to CharT instead of CharT& (we
need to be able to return a temporary decoded char value, but also
because there's little gained by bothering with an lvalue return here).
Finally it changes the char caster to 'has-a-string-caster' instead of
'is-a-string-caster' because, with the cast_op change above, there's
nothing at all gained from inheritance. This also lets us remove the
`success` from the string caster (which was only there for the char
caster) into the char caster itself. (I also renamed it to 'none' and
inverted its value to better reflect its purpose). The None -> nullptr
loading also now takes place only under a `convert = true` load pass.
Although it's unlikely that a function taking a char also has overloads
that can take a None, it seems marginally more correct to treat it as a
conversion.
This commit simplifies the size assumptions about character sizes with
static_asserts to back them up.
2017-02-14 10:08:19 +00:00
|
|
|
struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value && !is_std_char_type<T>::value>> {
|
2017-02-04 01:16:14 +00:00
|
|
|
using _py_type_0 = conditional_t<sizeof(T) <= sizeof(long), long, long long>;
|
|
|
|
using _py_type_1 = conditional_t<std::is_signed<T>::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>;
|
|
|
|
using py_type = conditional_t<std::is_floating_point<T>::value, double, _py_type_1>;
|
2015-11-30 11:30:28 +00:00
|
|
|
public:
|
2015-07-05 18:05:44 +00:00
|
|
|
|
2017-02-04 01:16:14 +00:00
|
|
|
bool load(handle src, bool convert) {
|
2015-11-30 11:30:28 +00:00
|
|
|
py_type py_value;
|
2015-07-05 18:05:44 +00:00
|
|
|
|
2017-02-04 01:16:14 +00:00
|
|
|
if (!src)
|
2016-05-10 14:59:01 +00:00
|
|
|
return false;
|
2017-02-04 01:16:14 +00:00
|
|
|
|
|
|
|
if (std::is_floating_point<T>::value) {
|
|
|
|
if (convert || PyFloat_Check(src.ptr()))
|
|
|
|
py_value = (py_type) PyFloat_AsDouble(src.ptr());
|
|
|
|
else
|
|
|
|
return false;
|
2015-11-30 11:30:28 +00:00
|
|
|
} else if (sizeof(T) <= sizeof(long)) {
|
2016-05-17 13:35:29 +00:00
|
|
|
if (PyFloat_Check(src.ptr()))
|
|
|
|
return false;
|
2015-11-30 11:30:28 +00:00
|
|
|
if (std::is_signed<T>::value)
|
2016-01-17 21:36:44 +00:00
|
|
|
py_value = (py_type) PyLong_AsLong(src.ptr());
|
2015-11-30 11:30:28 +00:00
|
|
|
else
|
2016-01-17 21:36:44 +00:00
|
|
|
py_value = (py_type) PyLong_AsUnsignedLong(src.ptr());
|
2015-11-30 11:30:28 +00:00
|
|
|
} else {
|
2016-05-17 13:35:29 +00:00
|
|
|
if (PyFloat_Check(src.ptr()))
|
|
|
|
return false;
|
2015-11-30 11:30:28 +00:00
|
|
|
if (std::is_signed<T>::value)
|
2016-01-17 21:36:44 +00:00
|
|
|
py_value = (py_type) PYBIND11_LONG_AS_LONGLONG(src.ptr());
|
2015-11-30 11:30:28 +00:00
|
|
|
else
|
2016-01-17 21:36:44 +00:00
|
|
|
py_value = (py_type) PYBIND11_LONG_AS_UNSIGNED_LONGLONG(src.ptr());
|
2015-11-30 11:30:28 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if ((py_value == (py_type) -1 && PyErr_Occurred()) ||
|
|
|
|
(std::is_integral<T>::value && sizeof(py_type) != sizeof(T) &&
|
|
|
|
(py_value < (py_type) std::numeric_limits<T>::min() ||
|
|
|
|
py_value > (py_type) std::numeric_limits<T>::max()))) {
|
2016-10-27 22:37:07 +00:00
|
|
|
#if PY_VERSION_HEX < 0x03000000
|
|
|
|
bool type_error = PyErr_ExceptionMatches(PyExc_SystemError);
|
|
|
|
#else
|
|
|
|
bool type_error = PyErr_ExceptionMatches(PyExc_TypeError);
|
|
|
|
#endif
|
2015-11-30 11:30:28 +00:00
|
|
|
PyErr_Clear();
|
2017-02-04 01:16:14 +00:00
|
|
|
if (type_error && convert && PyNumber_Check(src.ptr())) {
|
2016-10-28 01:08:15 +00:00
|
|
|
auto tmp = reinterpret_borrow<object>(std::is_floating_point<T>::value
|
|
|
|
? PyNumber_Float(src.ptr())
|
|
|
|
: PyNumber_Long(src.ptr()));
|
2016-11-07 14:59:01 +00:00
|
|
|
PyErr_Clear();
|
|
|
|
return load(tmp, false);
|
|
|
|
}
|
2015-11-30 11:30:28 +00:00
|
|
|
return false;
|
|
|
|
}
|
2015-07-05 18:05:44 +00:00
|
|
|
|
2015-11-30 11:30:28 +00:00
|
|
|
value = (T) py_value;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
static handle cast(T src, return_value_policy /* policy */, handle /* parent */) {
|
2015-11-30 11:30:28 +00:00
|
|
|
if (std::is_floating_point<T>::value) {
|
|
|
|
return PyFloat_FromDouble((double) src);
|
|
|
|
} else if (sizeof(T) <= sizeof(long)) {
|
|
|
|
if (std::is_signed<T>::value)
|
|
|
|
return PyLong_FromLong((long) src);
|
|
|
|
else
|
|
|
|
return PyLong_FromUnsignedLong((unsigned long) src);
|
|
|
|
} else {
|
|
|
|
if (std::is_signed<T>::value)
|
|
|
|
return PyLong_FromLongLong((long long) src);
|
|
|
|
else
|
|
|
|
return PyLong_FromUnsignedLongLong((unsigned long long) src);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-07-06 04:40:54 +00:00
|
|
|
PYBIND11_TYPE_CASTER(T, _<std::is_integral<T>::value>("int", "float"));
|
2015-11-30 11:30:28 +00:00
|
|
|
};
|
2015-07-05 18:05:44 +00:00
|
|
|
|
2016-11-15 12:00:38 +00:00
|
|
|
template<typename T> struct void_caster {
|
2015-07-05 18:05:44 +00:00
|
|
|
public:
|
2016-01-17 21:36:44 +00:00
|
|
|
bool load(handle, bool) { return false; }
|
2016-11-15 12:00:38 +00:00
|
|
|
static handle cast(T, return_value_policy /* policy */, handle /* parent */) {
|
2016-09-08 13:53:18 +00:00
|
|
|
return none().inc_ref();
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
2016-11-15 12:00:38 +00:00
|
|
|
PYBIND11_TYPE_CASTER(T, _("None"));
|
2015-07-05 18:05:44 +00:00
|
|
|
};
|
|
|
|
|
2016-11-15 12:00:38 +00:00
|
|
|
template <> class type_caster<void_type> : public void_caster<void_type> {};
|
|
|
|
|
2016-03-26 16:51:09 +00:00
|
|
|
template <> class type_caster<void> : public type_caster<void_type> {
|
|
|
|
public:
|
|
|
|
using type_caster<void_type>::cast;
|
|
|
|
|
|
|
|
bool load(handle h, bool) {
|
2016-05-10 14:59:01 +00:00
|
|
|
if (!h) {
|
|
|
|
return false;
|
2016-08-29 01:38:47 +00:00
|
|
|
} else if (h.is_none()) {
|
2016-03-26 19:41:28 +00:00
|
|
|
value = nullptr;
|
|
|
|
return true;
|
|
|
|
}
|
2016-04-30 17:56:10 +00:00
|
|
|
|
|
|
|
/* Check if this is a capsule */
|
2016-10-23 12:50:08 +00:00
|
|
|
if (isinstance<capsule>(h)) {
|
2016-10-28 01:08:15 +00:00
|
|
|
value = reinterpret_borrow<capsule>(h);
|
2016-04-30 17:56:10 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check if this is a C++ type */
|
2016-09-11 11:00:40 +00:00
|
|
|
if (get_type_info((PyTypeObject *) h.get_type().ptr())) {
|
2016-04-30 17:56:10 +00:00
|
|
|
value = ((instance<void> *) h.ptr())->value;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Fail */
|
|
|
|
return false;
|
2016-03-26 16:51:09 +00:00
|
|
|
}
|
|
|
|
|
2016-04-30 17:13:18 +00:00
|
|
|
static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) {
|
2016-03-26 19:41:28 +00:00
|
|
|
if (ptr)
|
|
|
|
return capsule(ptr).release();
|
|
|
|
else
|
2016-09-08 13:53:18 +00:00
|
|
|
return none().inc_ref();
|
2016-03-26 16:51:09 +00:00
|
|
|
}
|
2016-03-26 19:41:28 +00:00
|
|
|
|
2016-03-26 23:19:32 +00:00
|
|
|
template <typename T> using cast_op_type = void*&;
|
|
|
|
operator void *&() { return value; }
|
2016-08-03 23:40:40 +00:00
|
|
|
static PYBIND11_DESCR name() { return type_descr(_("capsule")); }
|
2016-03-26 16:51:09 +00:00
|
|
|
private:
|
2016-03-26 22:04:10 +00:00
|
|
|
void *value = nullptr;
|
2016-03-26 16:51:09 +00:00
|
|
|
};
|
|
|
|
|
2015-12-16 10:34:39 +00:00
|
|
|
template <> class type_caster<std::nullptr_t> : public type_caster<void_type> { };
|
2015-10-01 16:37:26 +00:00
|
|
|
|
2015-07-05 18:05:44 +00:00
|
|
|
template <> class type_caster<bool> {
|
|
|
|
public:
|
2016-01-17 21:36:44 +00:00
|
|
|
bool load(handle src, bool) {
|
2016-05-10 14:59:01 +00:00
|
|
|
if (!src) return false;
|
|
|
|
else if (src.ptr() == Py_True) { value = true; return true; }
|
2016-01-17 21:36:44 +00:00
|
|
|
else if (src.ptr() == Py_False) { value = false; return true; }
|
2015-07-05 18:05:44 +00:00
|
|
|
else return false;
|
|
|
|
}
|
2016-01-17 21:36:44 +00:00
|
|
|
static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) {
|
|
|
|
return handle(src ? Py_True : Py_False).inc_ref();
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
2016-01-17 21:36:36 +00:00
|
|
|
PYBIND11_TYPE_CASTER(bool, _("bool"));
|
2015-07-05 18:05:44 +00:00
|
|
|
};
|
|
|
|
|
Unicode fixes and docs (#624)
* Propagate unicode conversion failure
If returning a std::string with invalid utf-8 data, we currently fail
with an uninformative TypeError instead of propagating the
UnicodeDecodeError that Python sets on failure.
* Add support for u16/u32strings and literals
This adds support for wchar{16,32}_t character literals and the
associated std::u{16,32}string types. It also folds the
character/string conversion into a single type_caster template, since
the type casters for string and wstring were mostly the same anyway.
* Added too-long and too-big character conversion errors
With this commit, when casting to a single character, as opposed to a
C-style string, we make sure the input wasn't a multi-character string
or a single character with codepoint too large for the character type.
This also changes the character cast op to CharT instead of CharT& (we
need to be able to return a temporary decoded char value, but also
because there's little gained by bothering with an lvalue return here).
Finally it changes the char caster to 'has-a-string-caster' instead of
'is-a-string-caster' because, with the cast_op change above, there's
nothing at all gained from inheritance. This also lets us remove the
`success` from the string caster (which was only there for the char
caster) into the char caster itself. (I also renamed it to 'none' and
inverted its value to better reflect its purpose). The None -> nullptr
loading also now takes place only under a `convert = true` load pass.
Although it's unlikely that a function taking a char also has overloads
that can take a None, it seems marginally more correct to treat it as a
conversion.
This commit simplifies the size assumptions about character sizes with
static_asserts to back them up.
2017-02-14 10:08:19 +00:00
|
|
|
// Helper class for UTF-{8,16,32} C++ stl strings:
|
|
|
|
template <typename CharT, class Traits, class Allocator>
|
|
|
|
struct type_caster<std::basic_string<CharT, Traits, Allocator>, enable_if_t<is_std_char_type<CharT>::value>> {
|
|
|
|
// Simplify life by being able to assume standard char sizes (the standard only guarantees
|
|
|
|
// minimums), but Python requires exact sizes
|
|
|
|
static_assert(!std::is_same<CharT, char>::value || sizeof(CharT) == 1, "Unsupported char size != 1");
|
|
|
|
static_assert(!std::is_same<CharT, char16_t>::value || sizeof(CharT) == 2, "Unsupported char16_t size != 2");
|
|
|
|
static_assert(!std::is_same<CharT, char32_t>::value || sizeof(CharT) == 4, "Unsupported char32_t size != 4");
|
|
|
|
// wchar_t can be either 16 bits (Windows) or 32 (everywhere else)
|
|
|
|
static_assert(!std::is_same<CharT, wchar_t>::value || sizeof(CharT) == 2 || sizeof(CharT) == 4,
|
|
|
|
"Unsupported wchar_t size != 2/4");
|
|
|
|
static constexpr size_t UTF_N = 8 * sizeof(CharT);
|
|
|
|
|
|
|
|
using StringType = std::basic_string<CharT, Traits, Allocator>;
|
2016-01-17 21:36:37 +00:00
|
|
|
|
2016-03-26 22:38:46 +00:00
|
|
|
bool load(handle src, bool) {
|
2017-03-01 09:53:38 +00:00
|
|
|
#if PY_MAJOR_VERSION < 3
|
2016-03-26 22:38:46 +00:00
|
|
|
object temp;
|
Unicode fixes and docs (#624)
* Propagate unicode conversion failure
If returning a std::string with invalid utf-8 data, we currently fail
with an uninformative TypeError instead of propagating the
UnicodeDecodeError that Python sets on failure.
* Add support for u16/u32strings and literals
This adds support for wchar{16,32}_t character literals and the
associated std::u{16,32}string types. It also folds the
character/string conversion into a single type_caster template, since
the type casters for string and wstring were mostly the same anyway.
* Added too-long and too-big character conversion errors
With this commit, when casting to a single character, as opposed to a
C-style string, we make sure the input wasn't a multi-character string
or a single character with codepoint too large for the character type.
This also changes the character cast op to CharT instead of CharT& (we
need to be able to return a temporary decoded char value, but also
because there's little gained by bothering with an lvalue return here).
Finally it changes the char caster to 'has-a-string-caster' instead of
'is-a-string-caster' because, with the cast_op change above, there's
nothing at all gained from inheritance. This also lets us remove the
`success` from the string caster (which was only there for the char
caster) into the char caster itself. (I also renamed it to 'none' and
inverted its value to better reflect its purpose). The None -> nullptr
loading also now takes place only under a `convert = true` load pass.
Although it's unlikely that a function taking a char also has overloads
that can take a None, it seems marginally more correct to treat it as a
conversion.
This commit simplifies the size assumptions about character sizes with
static_asserts to back them up.
2017-02-14 10:08:19 +00:00
|
|
|
#endif
|
2016-03-26 22:38:46 +00:00
|
|
|
handle load_src = src;
|
2016-05-10 14:59:01 +00:00
|
|
|
if (!src) {
|
|
|
|
return false;
|
|
|
|
} else if (!PyUnicode_Check(load_src.ptr())) {
|
2017-03-01 09:53:38 +00:00
|
|
|
#if PY_MAJOR_VERSION >= 3
|
Unicode fixes and docs (#624)
* Propagate unicode conversion failure
If returning a std::string with invalid utf-8 data, we currently fail
with an uninformative TypeError instead of propagating the
UnicodeDecodeError that Python sets on failure.
* Add support for u16/u32strings and literals
This adds support for wchar{16,32}_t character literals and the
associated std::u{16,32}string types. It also folds the
character/string conversion into a single type_caster template, since
the type casters for string and wstring were mostly the same anyway.
* Added too-long and too-big character conversion errors
With this commit, when casting to a single character, as opposed to a
C-style string, we make sure the input wasn't a multi-character string
or a single character with codepoint too large for the character type.
This also changes the character cast op to CharT instead of CharT& (we
need to be able to return a temporary decoded char value, but also
because there's little gained by bothering with an lvalue return here).
Finally it changes the char caster to 'has-a-string-caster' instead of
'is-a-string-caster' because, with the cast_op change above, there's
nothing at all gained from inheritance. This also lets us remove the
`success` from the string caster (which was only there for the char
caster) into the char caster itself. (I also renamed it to 'none' and
inverted its value to better reflect its purpose). The None -> nullptr
loading also now takes place only under a `convert = true` load pass.
Although it's unlikely that a function taking a char also has overloads
that can take a None, it seems marginally more correct to treat it as a
conversion.
This commit simplifies the size assumptions about character sizes with
static_asserts to back them up.
2017-02-14 10:08:19 +00:00
|
|
|
return false;
|
|
|
|
// The below is a guaranteed failure in Python 3 when PyUnicode_Check returns false
|
|
|
|
#else
|
2017-02-24 10:33:31 +00:00
|
|
|
if (!PYBIND11_BYTES_CHECK(load_src.ptr()))
|
|
|
|
return false;
|
2016-10-28 01:08:15 +00:00
|
|
|
temp = reinterpret_steal<object>(PyUnicode_FromObject(load_src.ptr()));
|
2016-03-26 22:38:46 +00:00
|
|
|
if (!temp) { PyErr_Clear(); return false; }
|
|
|
|
load_src = temp;
|
2016-03-08 18:40:32 +00:00
|
|
|
#endif
|
Unicode fixes and docs (#624)
* Propagate unicode conversion failure
If returning a std::string with invalid utf-8 data, we currently fail
with an uninformative TypeError instead of propagating the
UnicodeDecodeError that Python sets on failure.
* Add support for u16/u32strings and literals
This adds support for wchar{16,32}_t character literals and the
associated std::u{16,32}string types. It also folds the
character/string conversion into a single type_caster template, since
the type casters for string and wstring were mostly the same anyway.
* Added too-long and too-big character conversion errors
With this commit, when casting to a single character, as opposed to a
C-style string, we make sure the input wasn't a multi-character string
or a single character with codepoint too large for the character type.
This also changes the character cast op to CharT instead of CharT& (we
need to be able to return a temporary decoded char value, but also
because there's little gained by bothering with an lvalue return here).
Finally it changes the char caster to 'has-a-string-caster' instead of
'is-a-string-caster' because, with the cast_op change above, there's
nothing at all gained from inheritance. This also lets us remove the
`success` from the string caster (which was only there for the char
caster) into the char caster itself. (I also renamed it to 'none' and
inverted its value to better reflect its purpose). The None -> nullptr
loading also now takes place only under a `convert = true` load pass.
Although it's unlikely that a function taking a char also has overloads
that can take a None, it seems marginally more correct to treat it as a
conversion.
This commit simplifies the size assumptions about character sizes with
static_asserts to back them up.
2017-02-14 10:08:19 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
object utfNbytes = reinterpret_steal<object>(PyUnicode_AsEncodedString(
|
Call PyUnicode_DecodeUTF* directly
Some versions of Python 2.7 reportedly (#713) have issues with
PyUnicode_Decode being passed the encoding string, so just skip it
entirely by calling the PyUnicode_DecodeUTF* function directly. This
will also be slightly more efficient by avoiding having to check the
encoding string, and (for python 2) going through the unicode class's
decode (python 3 fast-tracks this for all utf-{8,16,32} encodings;
python 2 only fast-tracked for the exact string "utf-8", which we
weren't passing anyway (we had "utf8")).
This doesn't work for PyPy, however: its `PyUnicode_DecodeUTF{8,16,32}`
appear rather broken: the UTF8 one segfaults, while the 16/32 require
recasting into a non-const `char *` (and might segfault; I didn't get
far enough to find out). Just avoid the whole thing by keeping the
encoding-passed-as-string version for PyPy, which seems to work
reliably.
2017-03-09 16:35:28 +00:00
|
|
|
load_src.ptr(), UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr));
|
Unicode fixes and docs (#624)
* Propagate unicode conversion failure
If returning a std::string with invalid utf-8 data, we currently fail
with an uninformative TypeError instead of propagating the
UnicodeDecodeError that Python sets on failure.
* Add support for u16/u32strings and literals
This adds support for wchar{16,32}_t character literals and the
associated std::u{16,32}string types. It also folds the
character/string conversion into a single type_caster template, since
the type casters for string and wstring were mostly the same anyway.
* Added too-long and too-big character conversion errors
With this commit, when casting to a single character, as opposed to a
C-style string, we make sure the input wasn't a multi-character string
or a single character with codepoint too large for the character type.
This also changes the character cast op to CharT instead of CharT& (we
need to be able to return a temporary decoded char value, but also
because there's little gained by bothering with an lvalue return here).
Finally it changes the char caster to 'has-a-string-caster' instead of
'is-a-string-caster' because, with the cast_op change above, there's
nothing at all gained from inheritance. This also lets us remove the
`success` from the string caster (which was only there for the char
caster) into the char caster itself. (I also renamed it to 'none' and
inverted its value to better reflect its purpose). The None -> nullptr
loading also now takes place only under a `convert = true` load pass.
Although it's unlikely that a function taking a char also has overloads
that can take a None, it seems marginally more correct to treat it as a
conversion.
This commit simplifies the size assumptions about character sizes with
static_asserts to back them up.
2017-02-14 10:08:19 +00:00
|
|
|
if (!utfNbytes) { PyErr_Clear(); return false; }
|
|
|
|
|
|
|
|
const CharT *buffer = reinterpret_cast<const CharT *>(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr()));
|
|
|
|
size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT);
|
|
|
|
if (UTF_N > 8) { buffer++; length--; } // Skip BOM for UTF-16/32
|
|
|
|
value = StringType(buffer, length);
|
2016-03-26 22:38:46 +00:00
|
|
|
return true;
|
|
|
|
}
|
2016-03-02 05:59:39 +00:00
|
|
|
|
Unicode fixes and docs (#624)
* Propagate unicode conversion failure
If returning a std::string with invalid utf-8 data, we currently fail
with an uninformative TypeError instead of propagating the
UnicodeDecodeError that Python sets on failure.
* Add support for u16/u32strings and literals
This adds support for wchar{16,32}_t character literals and the
associated std::u{16,32}string types. It also folds the
character/string conversion into a single type_caster template, since
the type casters for string and wstring were mostly the same anyway.
* Added too-long and too-big character conversion errors
With this commit, when casting to a single character, as opposed to a
C-style string, we make sure the input wasn't a multi-character string
or a single character with codepoint too large for the character type.
This also changes the character cast op to CharT instead of CharT& (we
need to be able to return a temporary decoded char value, but also
because there's little gained by bothering with an lvalue return here).
Finally it changes the char caster to 'has-a-string-caster' instead of
'is-a-string-caster' because, with the cast_op change above, there's
nothing at all gained from inheritance. This also lets us remove the
`success` from the string caster (which was only there for the char
caster) into the char caster itself. (I also renamed it to 'none' and
inverted its value to better reflect its purpose). The None -> nullptr
loading also now takes place only under a `convert = true` load pass.
Although it's unlikely that a function taking a char also has overloads
that can take a None, it seems marginally more correct to treat it as a
conversion.
This commit simplifies the size assumptions about character sizes with
static_asserts to back them up.
2017-02-14 10:08:19 +00:00
|
|
|
static handle cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) {
|
|
|
|
const char *buffer = reinterpret_cast<const char *>(src.c_str());
|
|
|
|
ssize_t nbytes = ssize_t(src.size() * sizeof(CharT));
|
Call PyUnicode_DecodeUTF* directly
Some versions of Python 2.7 reportedly (#713) have issues with
PyUnicode_Decode being passed the encoding string, so just skip it
entirely by calling the PyUnicode_DecodeUTF* function directly. This
will also be slightly more efficient by avoiding having to check the
encoding string, and (for python 2) going through the unicode class's
decode (python 3 fast-tracks this for all utf-{8,16,32} encodings;
python 2 only fast-tracked for the exact string "utf-8", which we
weren't passing anyway (we had "utf8")).
This doesn't work for PyPy, however: its `PyUnicode_DecodeUTF{8,16,32}`
appear rather broken: the UTF8 one segfaults, while the 16/32 require
recasting into a non-const `char *` (and might segfault; I didn't get
far enough to find out). Just avoid the whole thing by keeping the
encoding-passed-as-string version for PyPy, which seems to work
reliably.
2017-03-09 16:35:28 +00:00
|
|
|
handle s = decode_utfN(buffer, nbytes);
|
Unicode fixes and docs (#624)
* Propagate unicode conversion failure
If returning a std::string with invalid utf-8 data, we currently fail
with an uninformative TypeError instead of propagating the
UnicodeDecodeError that Python sets on failure.
* Add support for u16/u32strings and literals
This adds support for wchar{16,32}_t character literals and the
associated std::u{16,32}string types. It also folds the
character/string conversion into a single type_caster template, since
the type casters for string and wstring were mostly the same anyway.
* Added too-long and too-big character conversion errors
With this commit, when casting to a single character, as opposed to a
C-style string, we make sure the input wasn't a multi-character string
or a single character with codepoint too large for the character type.
This also changes the character cast op to CharT instead of CharT& (we
need to be able to return a temporary decoded char value, but also
because there's little gained by bothering with an lvalue return here).
Finally it changes the char caster to 'has-a-string-caster' instead of
'is-a-string-caster' because, with the cast_op change above, there's
nothing at all gained from inheritance. This also lets us remove the
`success` from the string caster (which was only there for the char
caster) into the char caster itself. (I also renamed it to 'none' and
inverted its value to better reflect its purpose). The None -> nullptr
loading also now takes place only under a `convert = true` load pass.
Although it's unlikely that a function taking a char also has overloads
that can take a None, it seems marginally more correct to treat it as a
conversion.
This commit simplifies the size assumptions about character sizes with
static_asserts to back them up.
2017-02-14 10:08:19 +00:00
|
|
|
if (!s) throw error_already_set();
|
|
|
|
return s;
|
2016-03-26 22:38:46 +00:00
|
|
|
}
|
2015-07-05 18:05:44 +00:00
|
|
|
|
Unicode fixes and docs (#624)
* Propagate unicode conversion failure
If returning a std::string with invalid utf-8 data, we currently fail
with an uninformative TypeError instead of propagating the
UnicodeDecodeError that Python sets on failure.
* Add support for u16/u32strings and literals
This adds support for wchar{16,32}_t character literals and the
associated std::u{16,32}string types. It also folds the
character/string conversion into a single type_caster template, since
the type casters for string and wstring were mostly the same anyway.
* Added too-long and too-big character conversion errors
With this commit, when casting to a single character, as opposed to a
C-style string, we make sure the input wasn't a multi-character string
or a single character with codepoint too large for the character type.
This also changes the character cast op to CharT instead of CharT& (we
need to be able to return a temporary decoded char value, but also
because there's little gained by bothering with an lvalue return here).
Finally it changes the char caster to 'has-a-string-caster' instead of
'is-a-string-caster' because, with the cast_op change above, there's
nothing at all gained from inheritance. This also lets us remove the
`success` from the string caster (which was only there for the char
caster) into the char caster itself. (I also renamed it to 'none' and
inverted its value to better reflect its purpose). The None -> nullptr
loading also now takes place only under a `convert = true` load pass.
Although it's unlikely that a function taking a char also has overloads
that can take a None, it seems marginally more correct to treat it as a
conversion.
This commit simplifies the size assumptions about character sizes with
static_asserts to back them up.
2017-02-14 10:08:19 +00:00
|
|
|
PYBIND11_TYPE_CASTER(StringType, _(PYBIND11_STRING_NAME));
|
Call PyUnicode_DecodeUTF* directly
Some versions of Python 2.7 reportedly (#713) have issues with
PyUnicode_Decode being passed the encoding string, so just skip it
entirely by calling the PyUnicode_DecodeUTF* function directly. This
will also be slightly more efficient by avoiding having to check the
encoding string, and (for python 2) going through the unicode class's
decode (python 3 fast-tracks this for all utf-{8,16,32} encodings;
python 2 only fast-tracked for the exact string "utf-8", which we
weren't passing anyway (we had "utf8")).
This doesn't work for PyPy, however: its `PyUnicode_DecodeUTF{8,16,32}`
appear rather broken: the UTF8 one segfaults, while the 16/32 require
recasting into a non-const `char *` (and might segfault; I didn't get
far enough to find out). Just avoid the whole thing by keeping the
encoding-passed-as-string version for PyPy, which seems to work
reliably.
2017-03-09 16:35:28 +00:00
|
|
|
|
|
|
|
private:
|
|
|
|
static handle decode_utfN(const char *buffer, ssize_t nbytes) {
|
|
|
|
#if !defined(PYPY_VERSION)
|
|
|
|
return
|
|
|
|
UTF_N == 8 ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr) :
|
|
|
|
UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr) :
|
|
|
|
PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr);
|
|
|
|
#else
|
|
|
|
// PyPy seems to have multiple problems related to PyUnicode_UTF*: the UTF8 version
|
|
|
|
// sometimes segfaults for unknown reasons, while the UTF16 and 32 versions require a
|
|
|
|
// non-const char * arguments, which is also a nuissance, so bypass the whole thing by just
|
|
|
|
// passing the encoding as a string value, which works properly:
|
|
|
|
return PyUnicode_Decode(buffer, nbytes, UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr);
|
|
|
|
#endif
|
|
|
|
}
|
2016-03-02 05:59:39 +00:00
|
|
|
};
|
|
|
|
|
Unicode fixes and docs (#624)
* Propagate unicode conversion failure
If returning a std::string with invalid utf-8 data, we currently fail
with an uninformative TypeError instead of propagating the
UnicodeDecodeError that Python sets on failure.
* Add support for u16/u32strings and literals
This adds support for wchar{16,32}_t character literals and the
associated std::u{16,32}string types. It also folds the
character/string conversion into a single type_caster template, since
the type casters for string and wstring were mostly the same anyway.
* Added too-long and too-big character conversion errors
With this commit, when casting to a single character, as opposed to a
C-style string, we make sure the input wasn't a multi-character string
or a single character with codepoint too large for the character type.
This also changes the character cast op to CharT instead of CharT& (we
need to be able to return a temporary decoded char value, but also
because there's little gained by bothering with an lvalue return here).
Finally it changes the char caster to 'has-a-string-caster' instead of
'is-a-string-caster' because, with the cast_op change above, there's
nothing at all gained from inheritance. This also lets us remove the
`success` from the string caster (which was only there for the char
caster) into the char caster itself. (I also renamed it to 'none' and
inverted its value to better reflect its purpose). The None -> nullptr
loading also now takes place only under a `convert = true` load pass.
Although it's unlikely that a function taking a char also has overloads
that can take a None, it seems marginally more correct to treat it as a
conversion.
This commit simplifies the size assumptions about character sizes with
static_asserts to back them up.
2017-02-14 10:08:19 +00:00
|
|
|
// Type caster for C-style strings. We basically use a std::string type caster, but also add the
|
|
|
|
// ability to use None as a nullptr char* (which the string caster doesn't allow).
|
|
|
|
template <typename CharT> struct type_caster<CharT, enable_if_t<is_std_char_type<CharT>::value>> {
|
|
|
|
using StringType = std::basic_string<CharT>;
|
|
|
|
using StringCaster = type_caster<StringType>;
|
|
|
|
StringCaster str_caster;
|
|
|
|
bool none = false;
|
2015-07-05 18:05:44 +00:00
|
|
|
public:
|
2016-03-26 22:38:46 +00:00
|
|
|
bool load(handle src, bool convert) {
|
Unicode fixes and docs (#624)
* Propagate unicode conversion failure
If returning a std::string with invalid utf-8 data, we currently fail
with an uninformative TypeError instead of propagating the
UnicodeDecodeError that Python sets on failure.
* Add support for u16/u32strings and literals
This adds support for wchar{16,32}_t character literals and the
associated std::u{16,32}string types. It also folds the
character/string conversion into a single type_caster template, since
the type casters for string and wstring were mostly the same anyway.
* Added too-long and too-big character conversion errors
With this commit, when casting to a single character, as opposed to a
C-style string, we make sure the input wasn't a multi-character string
or a single character with codepoint too large for the character type.
This also changes the character cast op to CharT instead of CharT& (we
need to be able to return a temporary decoded char value, but also
because there's little gained by bothering with an lvalue return here).
Finally it changes the char caster to 'has-a-string-caster' instead of
'is-a-string-caster' because, with the cast_op change above, there's
nothing at all gained from inheritance. This also lets us remove the
`success` from the string caster (which was only there for the char
caster) into the char caster itself. (I also renamed it to 'none' and
inverted its value to better reflect its purpose). The None -> nullptr
loading also now takes place only under a `convert = true` load pass.
Although it's unlikely that a function taking a char also has overloads
that can take a None, it seems marginally more correct to treat it as a
conversion.
This commit simplifies the size assumptions about character sizes with
static_asserts to back them up.
2017-02-14 10:08:19 +00:00
|
|
|
if (!src) return false;
|
|
|
|
if (src.is_none()) {
|
|
|
|
// Defer accepting None to other overloads (if we aren't in convert mode):
|
|
|
|
if (!convert) return false;
|
|
|
|
none = true;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return str_caster.load(src, convert);
|
2016-03-26 22:37:51 +00:00
|
|
|
}
|
|
|
|
|
Unicode fixes and docs (#624)
* Propagate unicode conversion failure
If returning a std::string with invalid utf-8 data, we currently fail
with an uninformative TypeError instead of propagating the
UnicodeDecodeError that Python sets on failure.
* Add support for u16/u32strings and literals
This adds support for wchar{16,32}_t character literals and the
associated std::u{16,32}string types. It also folds the
character/string conversion into a single type_caster template, since
the type casters for string and wstring were mostly the same anyway.
* Added too-long and too-big character conversion errors
With this commit, when casting to a single character, as opposed to a
C-style string, we make sure the input wasn't a multi-character string
or a single character with codepoint too large for the character type.
This also changes the character cast op to CharT instead of CharT& (we
need to be able to return a temporary decoded char value, but also
because there's little gained by bothering with an lvalue return here).
Finally it changes the char caster to 'has-a-string-caster' instead of
'is-a-string-caster' because, with the cast_op change above, there's
nothing at all gained from inheritance. This also lets us remove the
`success` from the string caster (which was only there for the char
caster) into the char caster itself. (I also renamed it to 'none' and
inverted its value to better reflect its purpose). The None -> nullptr
loading also now takes place only under a `convert = true` load pass.
Although it's unlikely that a function taking a char also has overloads
that can take a None, it seems marginally more correct to treat it as a
conversion.
This commit simplifies the size assumptions about character sizes with
static_asserts to back them up.
2017-02-14 10:08:19 +00:00
|
|
|
static handle cast(const CharT *src, return_value_policy policy, handle parent) {
|
|
|
|
if (src == nullptr) return pybind11::none().inc_ref();
|
|
|
|
return StringCaster::cast(StringType(src), policy, parent);
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
Unicode fixes and docs (#624)
* Propagate unicode conversion failure
If returning a std::string with invalid utf-8 data, we currently fail
with an uninformative TypeError instead of propagating the
UnicodeDecodeError that Python sets on failure.
* Add support for u16/u32strings and literals
This adds support for wchar{16,32}_t character literals and the
associated std::u{16,32}string types. It also folds the
character/string conversion into a single type_caster template, since
the type casters for string and wstring were mostly the same anyway.
* Added too-long and too-big character conversion errors
With this commit, when casting to a single character, as opposed to a
C-style string, we make sure the input wasn't a multi-character string
or a single character with codepoint too large for the character type.
This also changes the character cast op to CharT instead of CharT& (we
need to be able to return a temporary decoded char value, but also
because there's little gained by bothering with an lvalue return here).
Finally it changes the char caster to 'has-a-string-caster' instead of
'is-a-string-caster' because, with the cast_op change above, there's
nothing at all gained from inheritance. This also lets us remove the
`success` from the string caster (which was only there for the char
caster) into the char caster itself. (I also renamed it to 'none' and
inverted its value to better reflect its purpose). The None -> nullptr
loading also now takes place only under a `convert = true` load pass.
Although it's unlikely that a function taking a char also has overloads
that can take a None, it seems marginally more correct to treat it as a
conversion.
This commit simplifies the size assumptions about character sizes with
static_asserts to back them up.
2017-02-14 10:08:19 +00:00
|
|
|
static handle cast(CharT src, return_value_policy policy, handle parent) {
|
|
|
|
if (std::is_same<char, CharT>::value) {
|
|
|
|
handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr);
|
|
|
|
if (!s) throw error_already_set();
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
return StringCaster::cast(StringType(1, src), policy, parent);
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
Unicode fixes and docs (#624)
* Propagate unicode conversion failure
If returning a std::string with invalid utf-8 data, we currently fail
with an uninformative TypeError instead of propagating the
UnicodeDecodeError that Python sets on failure.
* Add support for u16/u32strings and literals
This adds support for wchar{16,32}_t character literals and the
associated std::u{16,32}string types. It also folds the
character/string conversion into a single type_caster template, since
the type casters for string and wstring were mostly the same anyway.
* Added too-long and too-big character conversion errors
With this commit, when casting to a single character, as opposed to a
C-style string, we make sure the input wasn't a multi-character string
or a single character with codepoint too large for the character type.
This also changes the character cast op to CharT instead of CharT& (we
need to be able to return a temporary decoded char value, but also
because there's little gained by bothering with an lvalue return here).
Finally it changes the char caster to 'has-a-string-caster' instead of
'is-a-string-caster' because, with the cast_op change above, there's
nothing at all gained from inheritance. This also lets us remove the
`success` from the string caster (which was only there for the char
caster) into the char caster itself. (I also renamed it to 'none' and
inverted its value to better reflect its purpose). The None -> nullptr
loading also now takes place only under a `convert = true` load pass.
Although it's unlikely that a function taking a char also has overloads
that can take a None, it seems marginally more correct to treat it as a
conversion.
This commit simplifies the size assumptions about character sizes with
static_asserts to back them up.
2017-02-14 10:08:19 +00:00
|
|
|
operator CharT*() { return none ? nullptr : const_cast<CharT *>(static_cast<StringType &>(str_caster).c_str()); }
|
|
|
|
operator CharT() {
|
|
|
|
if (none)
|
|
|
|
throw value_error("Cannot convert None to a character");
|
|
|
|
|
|
|
|
auto &value = static_cast<StringType &>(str_caster);
|
|
|
|
size_t str_len = value.size();
|
|
|
|
if (str_len == 0)
|
|
|
|
throw value_error("Cannot convert empty string to a character");
|
|
|
|
|
|
|
|
// If we're in UTF-8 mode, we have two possible failures: one for a unicode character that
|
|
|
|
// is too high, and one for multiple unicode characters (caught later), so we need to figure
|
|
|
|
// out how long the first encoded character is in bytes to distinguish between these two
|
|
|
|
// errors. We also allow want to allow unicode characters U+0080 through U+00FF, as those
|
|
|
|
// can fit into a single char value.
|
|
|
|
if (StringCaster::UTF_N == 8 && str_len > 1 && str_len <= 4) {
|
|
|
|
unsigned char v0 = static_cast<unsigned char>(value[0]);
|
|
|
|
size_t char0_bytes = !(v0 & 0x80) ? 1 : // low bits only: 0-127
|
|
|
|
(v0 & 0xE0) == 0xC0 ? 2 : // 0b110xxxxx - start of 2-byte sequence
|
|
|
|
(v0 & 0xF0) == 0xE0 ? 3 : // 0b1110xxxx - start of 3-byte sequence
|
|
|
|
4; // 0b11110xxx - start of 4-byte sequence
|
|
|
|
|
|
|
|
if (char0_bytes == str_len) {
|
|
|
|
// If we have a 128-255 value, we can decode it into a single char:
|
|
|
|
if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx
|
|
|
|
return static_cast<CharT>(((v0 & 3) << 6) + (static_cast<unsigned char>(value[1]) & 0x3F));
|
|
|
|
}
|
|
|
|
// Otherwise we have a single character, but it's > U+00FF
|
|
|
|
throw value_error("Character code point not in range(0x100)");
|
|
|
|
}
|
|
|
|
}
|
2015-07-05 18:05:44 +00:00
|
|
|
|
Unicode fixes and docs (#624)
* Propagate unicode conversion failure
If returning a std::string with invalid utf-8 data, we currently fail
with an uninformative TypeError instead of propagating the
UnicodeDecodeError that Python sets on failure.
* Add support for u16/u32strings and literals
This adds support for wchar{16,32}_t character literals and the
associated std::u{16,32}string types. It also folds the
character/string conversion into a single type_caster template, since
the type casters for string and wstring were mostly the same anyway.
* Added too-long and too-big character conversion errors
With this commit, when casting to a single character, as opposed to a
C-style string, we make sure the input wasn't a multi-character string
or a single character with codepoint too large for the character type.
This also changes the character cast op to CharT instead of CharT& (we
need to be able to return a temporary decoded char value, but also
because there's little gained by bothering with an lvalue return here).
Finally it changes the char caster to 'has-a-string-caster' instead of
'is-a-string-caster' because, with the cast_op change above, there's
nothing at all gained from inheritance. This also lets us remove the
`success` from the string caster (which was only there for the char
caster) into the char caster itself. (I also renamed it to 'none' and
inverted its value to better reflect its purpose). The None -> nullptr
loading also now takes place only under a `convert = true` load pass.
Although it's unlikely that a function taking a char also has overloads
that can take a None, it seems marginally more correct to treat it as a
conversion.
This commit simplifies the size assumptions about character sizes with
static_asserts to back them up.
2017-02-14 10:08:19 +00:00
|
|
|
// UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a
|
|
|
|
// surrogate pair with total length 2 instantly indicates a range error (but not a "your
|
|
|
|
// string was too long" error).
|
|
|
|
else if (StringCaster::UTF_N == 16 && str_len == 2) {
|
|
|
|
char16_t v0 = static_cast<char16_t>(value[0]);
|
|
|
|
if (v0 >= 0xD800 && v0 < 0xE000)
|
|
|
|
throw value_error("Character code point not in range(0x10000)");
|
|
|
|
}
|
2016-03-26 22:37:51 +00:00
|
|
|
|
Unicode fixes and docs (#624)
* Propagate unicode conversion failure
If returning a std::string with invalid utf-8 data, we currently fail
with an uninformative TypeError instead of propagating the
UnicodeDecodeError that Python sets on failure.
* Add support for u16/u32strings and literals
This adds support for wchar{16,32}_t character literals and the
associated std::u{16,32}string types. It also folds the
character/string conversion into a single type_caster template, since
the type casters for string and wstring were mostly the same anyway.
* Added too-long and too-big character conversion errors
With this commit, when casting to a single character, as opposed to a
C-style string, we make sure the input wasn't a multi-character string
or a single character with codepoint too large for the character type.
This also changes the character cast op to CharT instead of CharT& (we
need to be able to return a temporary decoded char value, but also
because there's little gained by bothering with an lvalue return here).
Finally it changes the char caster to 'has-a-string-caster' instead of
'is-a-string-caster' because, with the cast_op change above, there's
nothing at all gained from inheritance. This also lets us remove the
`success` from the string caster (which was only there for the char
caster) into the char caster itself. (I also renamed it to 'none' and
inverted its value to better reflect its purpose). The None -> nullptr
loading also now takes place only under a `convert = true` load pass.
Although it's unlikely that a function taking a char also has overloads
that can take a None, it seems marginally more correct to treat it as a
conversion.
This commit simplifies the size assumptions about character sizes with
static_asserts to back them up.
2017-02-14 10:08:19 +00:00
|
|
|
if (str_len != 1)
|
|
|
|
throw value_error("Expected a character, but multi-character string found");
|
2016-03-02 07:07:08 +00:00
|
|
|
|
Unicode fixes and docs (#624)
* Propagate unicode conversion failure
If returning a std::string with invalid utf-8 data, we currently fail
with an uninformative TypeError instead of propagating the
UnicodeDecodeError that Python sets on failure.
* Add support for u16/u32strings and literals
This adds support for wchar{16,32}_t character literals and the
associated std::u{16,32}string types. It also folds the
character/string conversion into a single type_caster template, since
the type casters for string and wstring were mostly the same anyway.
* Added too-long and too-big character conversion errors
With this commit, when casting to a single character, as opposed to a
C-style string, we make sure the input wasn't a multi-character string
or a single character with codepoint too large for the character type.
This also changes the character cast op to CharT instead of CharT& (we
need to be able to return a temporary decoded char value, but also
because there's little gained by bothering with an lvalue return here).
Finally it changes the char caster to 'has-a-string-caster' instead of
'is-a-string-caster' because, with the cast_op change above, there's
nothing at all gained from inheritance. This also lets us remove the
`success` from the string caster (which was only there for the char
caster) into the char caster itself. (I also renamed it to 'none' and
inverted its value to better reflect its purpose). The None -> nullptr
loading also now takes place only under a `convert = true` load pass.
Although it's unlikely that a function taking a char also has overloads
that can take a None, it seems marginally more correct to treat it as a
conversion.
This commit simplifies the size assumptions about character sizes with
static_asserts to back them up.
2017-02-14 10:08:19 +00:00
|
|
|
return value[0];
|
2016-03-26 22:38:46 +00:00
|
|
|
}
|
2016-03-02 07:07:08 +00:00
|
|
|
|
2016-03-26 22:38:46 +00:00
|
|
|
static PYBIND11_DESCR name() { return type_descr(_(PYBIND11_STRING_NAME)); }
|
Unicode fixes and docs (#624)
* Propagate unicode conversion failure
If returning a std::string with invalid utf-8 data, we currently fail
with an uninformative TypeError instead of propagating the
UnicodeDecodeError that Python sets on failure.
* Add support for u16/u32strings and literals
This adds support for wchar{16,32}_t character literals and the
associated std::u{16,32}string types. It also folds the
character/string conversion into a single type_caster template, since
the type casters for string and wstring were mostly the same anyway.
* Added too-long and too-big character conversion errors
With this commit, when casting to a single character, as opposed to a
C-style string, we make sure the input wasn't a multi-character string
or a single character with codepoint too large for the character type.
This also changes the character cast op to CharT instead of CharT& (we
need to be able to return a temporary decoded char value, but also
because there's little gained by bothering with an lvalue return here).
Finally it changes the char caster to 'has-a-string-caster' instead of
'is-a-string-caster' because, with the cast_op change above, there's
nothing at all gained from inheritance. This also lets us remove the
`success` from the string caster (which was only there for the char
caster) into the char caster itself. (I also renamed it to 'none' and
inverted its value to better reflect its purpose). The None -> nullptr
loading also now takes place only under a `convert = true` load pass.
Although it's unlikely that a function taking a char also has overloads
that can take a None, it seems marginally more correct to treat it as a
conversion.
This commit simplifies the size assumptions about character sizes with
static_asserts to back them up.
2017-02-14 10:08:19 +00:00
|
|
|
template <typename _T> using cast_op_type = typename std::remove_reference<pybind11::detail::cast_op_type<_T>>::type;
|
2016-03-02 07:07:08 +00:00
|
|
|
};
|
|
|
|
|
2015-07-05 18:05:44 +00:00
|
|
|
template <typename T1, typename T2> class type_caster<std::pair<T1, T2>> {
|
|
|
|
typedef std::pair<T1, T2> type;
|
|
|
|
public:
|
2016-01-17 21:36:44 +00:00
|
|
|
bool load(handle src, bool convert) {
|
2016-11-27 19:32:04 +00:00
|
|
|
if (!isinstance<sequence>(src))
|
2016-05-10 14:59:01 +00:00
|
|
|
return false;
|
2016-11-27 19:32:04 +00:00
|
|
|
const auto seq = reinterpret_borrow<sequence>(src);
|
|
|
|
if (seq.size() != 2)
|
2015-07-05 18:05:44 +00:00
|
|
|
return false;
|
2016-11-27 19:32:04 +00:00
|
|
|
return first.load(seq[0], convert) && second.load(seq[1], convert);
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
static handle cast(const type &src, return_value_policy policy, handle parent) {
|
2016-10-28 01:08:15 +00:00
|
|
|
auto o1 = reinterpret_steal<object>(make_caster<T1>::cast(src.first, policy, parent));
|
|
|
|
auto o2 = reinterpret_steal<object>(make_caster<T2>::cast(src.second, policy, parent));
|
2015-12-30 20:03:57 +00:00
|
|
|
if (!o1 || !o2)
|
2016-01-17 21:36:44 +00:00
|
|
|
return handle();
|
|
|
|
tuple result(2);
|
|
|
|
PyTuple_SET_ITEM(result.ptr(), 0, o1.release().ptr());
|
|
|
|
PyTuple_SET_ITEM(result.ptr(), 1, o2.release().ptr());
|
|
|
|
return result.release();
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
2016-01-17 21:36:36 +00:00
|
|
|
static PYBIND11_DESCR name() {
|
|
|
|
return type_descr(
|
2016-09-05 12:30:56 +00:00
|
|
|
_("Tuple[") + make_caster<T1>::name() + _(", ") + make_caster<T2>::name() + _("]")
|
|
|
|
);
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
2016-03-26 22:04:10 +00:00
|
|
|
template <typename T> using cast_op_type = type;
|
|
|
|
|
2015-07-05 18:05:44 +00:00
|
|
|
operator type() {
|
2016-11-25 17:35:00 +00:00
|
|
|
return type(cast_op<T1>(first), cast_op<T2>(second));
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
protected:
|
2016-09-05 12:30:56 +00:00
|
|
|
make_caster<T1> first;
|
|
|
|
make_caster<T2> second;
|
2015-07-05 18:05:44 +00:00
|
|
|
};
|
|
|
|
|
2015-07-30 13:29:00 +00:00
|
|
|
template <typename... Tuple> class type_caster<std::tuple<Tuple...>> {
|
2016-11-27 17:19:34 +00:00
|
|
|
using type = std::tuple<Tuple...>;
|
2016-11-27 19:56:04 +00:00
|
|
|
using indices = make_index_sequence<sizeof...(Tuple)>;
|
2016-11-27 17:19:34 +00:00
|
|
|
static constexpr auto size = sizeof...(Tuple);
|
2016-05-10 14:59:01 +00:00
|
|
|
|
2016-11-27 17:19:34 +00:00
|
|
|
public:
|
2016-01-17 21:36:44 +00:00
|
|
|
bool load(handle src, bool convert) {
|
2016-11-27 19:32:04 +00:00
|
|
|
if (!isinstance<sequence>(src))
|
|
|
|
return false;
|
|
|
|
const auto seq = reinterpret_borrow<sequence>(src);
|
|
|
|
if (seq.size() != size)
|
2016-05-10 14:59:01 +00:00
|
|
|
return false;
|
2016-11-27 19:32:04 +00:00
|
|
|
return load_impl(seq, convert, indices{});
|
2016-05-10 14:59:01 +00:00
|
|
|
}
|
2016-05-26 12:29:31 +00:00
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
static handle cast(const type &src, return_value_policy policy, handle parent) {
|
2016-11-27 17:19:34 +00:00
|
|
|
return cast_impl(src, policy, parent, indices{});
|
2016-08-03 23:40:40 +00:00
|
|
|
}
|
2016-09-06 04:02:29 +00:00
|
|
|
|
2016-01-17 21:36:36 +00:00
|
|
|
static PYBIND11_DESCR name() {
|
2016-11-27 17:19:34 +00:00
|
|
|
return type_descr(_("Tuple[") + detail::concat(make_caster<Tuple>::name()...) + _("]"));
|
2015-07-26 14:33:49 +00:00
|
|
|
}
|
|
|
|
|
2016-03-26 22:04:10 +00:00
|
|
|
template <typename T> using cast_op_type = type;
|
|
|
|
|
2016-11-27 17:19:34 +00:00
|
|
|
operator type() { return implicit_cast(indices{}); }
|
2015-07-26 14:33:49 +00:00
|
|
|
|
2015-07-05 18:05:44 +00:00
|
|
|
protected:
|
2016-11-27 17:19:34 +00:00
|
|
|
template <size_t... Is>
|
|
|
|
type implicit_cast(index_sequence<Is...>) { return type(cast_op<Tuple>(std::get<Is>(value))...); }
|
2015-07-26 14:33:49 +00:00
|
|
|
|
2016-11-27 19:32:04 +00:00
|
|
|
static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; }
|
2015-07-05 18:05:44 +00:00
|
|
|
|
2016-11-27 17:19:34 +00:00
|
|
|
template <size_t... Is>
|
2016-11-27 19:32:04 +00:00
|
|
|
bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) {
|
|
|
|
for (bool r : {std::get<Is>(value).load(seq[Is], convert)...})
|
2015-07-05 18:05:44 +00:00
|
|
|
if (!r)
|
|
|
|
return false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2016-11-27 17:19:34 +00:00
|
|
|
static handle cast_impl(const type &, return_value_policy, handle,
|
|
|
|
index_sequence<>) { return tuple().release(); }
|
|
|
|
|
2015-07-05 18:05:44 +00:00
|
|
|
/* Implementation: Convert a C++ tuple into a Python tuple */
|
2016-11-27 17:19:34 +00:00
|
|
|
template <size_t... Is>
|
|
|
|
static handle cast_impl(const type &src, return_value_policy policy, handle parent, index_sequence<Is...>) {
|
2016-01-17 21:36:44 +00:00
|
|
|
std::array<object, size> entries {{
|
2016-11-27 17:19:34 +00:00
|
|
|
reinterpret_steal<object>(make_caster<Tuple>::cast(std::get<Is>(src), policy, parent))...
|
2015-07-05 18:05:44 +00:00
|
|
|
}};
|
2016-01-17 21:36:44 +00:00
|
|
|
for (const auto &entry: entries)
|
|
|
|
if (!entry)
|
|
|
|
return handle();
|
|
|
|
tuple result(size);
|
2015-12-30 20:03:57 +00:00
|
|
|
int counter = 0;
|
2016-01-17 21:36:44 +00:00
|
|
|
for (auto & entry: entries)
|
|
|
|
PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr());
|
|
|
|
return result.release();
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
2016-09-05 12:30:56 +00:00
|
|
|
std::tuple<make_caster<Tuple>...> value;
|
2015-07-05 18:05:44 +00:00
|
|
|
};
|
|
|
|
|
2017-01-31 16:05:44 +00:00
|
|
|
/// Helper class which abstracts away certain actions. Users can provide specializations for
|
|
|
|
/// custom holders, but it's only necessary if the type has a non-standard interface.
|
|
|
|
template <typename T>
|
|
|
|
struct holder_helper {
|
|
|
|
static auto get(const T &p) -> decltype(p.get()) { return p.get(); }
|
|
|
|
};
|
|
|
|
|
2015-07-05 18:05:44 +00:00
|
|
|
/// Type caster for holder types like std::shared_ptr, etc.
|
2017-01-31 16:05:44 +00:00
|
|
|
template <typename type, typename holder_type>
|
|
|
|
struct copyable_holder_caster : public type_caster_base<type> {
|
2015-07-05 18:05:44 +00:00
|
|
|
public:
|
2016-09-11 11:00:40 +00:00
|
|
|
using base = type_caster_base<type>;
|
2017-04-07 15:11:14 +00:00
|
|
|
static_assert(std::is_base_of<base, type_caster<type>>::value,
|
|
|
|
"Holder classes are only supported for custom types");
|
2016-09-11 11:00:40 +00:00
|
|
|
using base::base;
|
|
|
|
using base::cast;
|
|
|
|
using base::typeinfo;
|
|
|
|
using base::value;
|
|
|
|
using base::temp;
|
2015-11-24 22:05:58 +00:00
|
|
|
|
2016-09-11 11:00:40 +00:00
|
|
|
PYBIND11_NOINLINE bool load(handle src, bool convert) {
|
|
|
|
return load(src, convert, Py_TYPE(src.ptr()));
|
|
|
|
}
|
|
|
|
|
|
|
|
bool load(handle src, bool convert, PyTypeObject *tobj) {
|
|
|
|
if (!src || !typeinfo)
|
2015-07-05 18:05:44 +00:00
|
|
|
return false;
|
2016-09-11 11:00:40 +00:00
|
|
|
if (src.is_none()) {
|
2016-03-03 13:05:06 +00:00
|
|
|
value = nullptr;
|
|
|
|
return true;
|
2016-09-11 11:00:40 +00:00
|
|
|
}
|
|
|
|
|
2017-03-20 20:53:24 +00:00
|
|
|
if (typeinfo->default_holder)
|
|
|
|
throw cast_error("Unable to load a custom holder type from a default-holder instance");
|
|
|
|
|
2016-09-11 11:00:40 +00:00
|
|
|
if (typeinfo->simple_type) { /* Case 1: no multiple inheritance etc. involved */
|
|
|
|
/* Check if we can safely perform a reinterpret-style cast */
|
2016-12-07 01:36:44 +00:00
|
|
|
if (PyType_IsSubtype(tobj, typeinfo->type))
|
|
|
|
return load_value_and_holder(src);
|
2016-09-11 11:00:40 +00:00
|
|
|
} else { /* Case 2: multiple inheritance */
|
|
|
|
/* Check if we can safely perform a reinterpret-style cast */
|
2016-12-07 01:36:44 +00:00
|
|
|
if (tobj == typeinfo->type)
|
|
|
|
return load_value_and_holder(src);
|
2016-09-11 11:00:40 +00:00
|
|
|
|
|
|
|
/* If this is a python class, also check the parents recursively */
|
|
|
|
auto const &type_dict = get_internals().registered_types_py;
|
2016-12-16 14:00:46 +00:00
|
|
|
bool new_style_class = PyType_Check((PyObject *) tobj);
|
2016-09-11 11:00:40 +00:00
|
|
|
if (type_dict.find(tobj) == type_dict.end() && new_style_class && tobj->tp_bases) {
|
2016-10-28 01:08:15 +00:00
|
|
|
auto parents = reinterpret_borrow<tuple>(tobj->tp_bases);
|
2016-09-11 11:00:40 +00:00
|
|
|
for (handle parent : parents) {
|
|
|
|
bool result = load(src, convert, (PyTypeObject *) parent.ptr());
|
|
|
|
if (result)
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (try_implicit_casts(src, convert))
|
|
|
|
return true;
|
2016-01-17 21:36:40 +00:00
|
|
|
}
|
2016-01-17 21:36:44 +00:00
|
|
|
|
2016-01-17 21:36:40 +00:00
|
|
|
if (convert) {
|
|
|
|
for (auto &converter : typeinfo->implicit_conversions) {
|
2016-10-28 01:08:15 +00:00
|
|
|
temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type));
|
2016-01-17 21:36:44 +00:00
|
|
|
if (load(temp, false))
|
2016-01-17 21:36:40 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
2016-09-11 11:00:40 +00:00
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2016-12-07 01:36:44 +00:00
|
|
|
bool load_value_and_holder(handle src) {
|
|
|
|
auto inst = (instance<type, holder_type> *) src.ptr();
|
|
|
|
value = (void *) inst->value;
|
|
|
|
if (inst->holder_constructed) {
|
|
|
|
holder = inst->holder;
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) "
|
|
|
|
#if defined(NDEBUG)
|
|
|
|
"(compile in debug mode for type information)");
|
|
|
|
#else
|
|
|
|
"of type '" + type_id<holder_type>() + "''");
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-09-11 11:00:40 +00:00
|
|
|
template <typename T = holder_type, detail::enable_if_t<!std::is_constructible<T, const T &, type*>::value, int> = 0>
|
|
|
|
bool try_implicit_casts(handle, bool) { return false; }
|
|
|
|
|
|
|
|
template <typename T = holder_type, detail::enable_if_t<std::is_constructible<T, const T &, type*>::value, int> = 0>
|
|
|
|
bool try_implicit_casts(handle src, bool convert) {
|
|
|
|
for (auto &cast : typeinfo->implicit_casts) {
|
2017-01-31 16:05:44 +00:00
|
|
|
copyable_holder_caster sub_caster(*cast.first);
|
2016-09-11 11:00:40 +00:00
|
|
|
if (sub_caster.load(src, convert)) {
|
|
|
|
value = cast.second(sub_caster.value);
|
|
|
|
holder = holder_type(sub_caster.holder, (type *) value);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
2016-01-17 21:36:40 +00:00
|
|
|
return false;
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
2015-11-24 22:05:58 +00:00
|
|
|
|
2015-07-05 18:05:44 +00:00
|
|
|
explicit operator type*() { return this->value; }
|
|
|
|
explicit operator type&() { return *(this->value); }
|
|
|
|
explicit operator holder_type*() { return &holder; }
|
2015-11-12 22:27:20 +00:00
|
|
|
|
2016-02-18 17:38:27 +00:00
|
|
|
// Workaround for Intel compiler bug
|
|
|
|
// see pybind11 issue 94
|
|
|
|
#if defined(__ICC) || defined(__INTEL_COMPILER)
|
|
|
|
operator holder_type&() { return holder; }
|
|
|
|
#else
|
|
|
|
explicit operator holder_type&() { return holder; }
|
|
|
|
#endif
|
|
|
|
|
2016-04-30 21:01:06 +00:00
|
|
|
static handle cast(const holder_type &src, return_value_policy, handle) {
|
2017-01-31 16:05:44 +00:00
|
|
|
const auto *ptr = holder_helper<holder_type>::get(src);
|
|
|
|
return type_caster_base<type>::cast_holder(ptr, &src);
|
2015-11-12 22:27:20 +00:00
|
|
|
}
|
|
|
|
|
2015-07-05 18:05:44 +00:00
|
|
|
protected:
|
|
|
|
holder_type holder;
|
|
|
|
};
|
|
|
|
|
2016-10-18 11:56:33 +00:00
|
|
|
/// Specialize for the common std::shared_ptr, so users don't need to
|
|
|
|
template <typename T>
|
2017-01-31 16:05:44 +00:00
|
|
|
class type_caster<std::shared_ptr<T>> : public copyable_holder_caster<T, std::shared_ptr<T>> { };
|
|
|
|
|
|
|
|
template <typename type, typename holder_type>
|
|
|
|
struct move_only_holder_caster {
|
2017-04-07 15:11:14 +00:00
|
|
|
static_assert(std::is_base_of<type_caster_base<type>, type_caster<type>>::value,
|
|
|
|
"Holder classes are only supported for custom types");
|
|
|
|
|
2017-01-31 16:05:44 +00:00
|
|
|
static handle cast(holder_type &&src, return_value_policy, handle) {
|
|
|
|
auto *ptr = holder_helper<holder_type>::get(src);
|
|
|
|
return type_caster_base<type>::cast_holder(ptr, &src);
|
|
|
|
}
|
|
|
|
static PYBIND11_DESCR name() { return type_caster_base<type>::name(); }
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename type, typename deleter>
|
|
|
|
class type_caster<std::unique_ptr<type, deleter>>
|
|
|
|
: public move_only_holder_caster<type, std::unique_ptr<type, deleter>> { };
|
|
|
|
|
|
|
|
template <typename type, typename holder_type>
|
|
|
|
using type_caster_holder = conditional_t<std::is_copy_constructible<holder_type>::value,
|
|
|
|
copyable_holder_caster<type, holder_type>,
|
|
|
|
move_only_holder_caster<type, holder_type>>;
|
2016-10-18 11:56:33 +00:00
|
|
|
|
2016-12-15 22:44:23 +00:00
|
|
|
template <typename T, bool Value = false> struct always_construct_holder { static constexpr bool value = Value; };
|
|
|
|
|
2016-10-18 11:56:33 +00:00
|
|
|
/// Create a specialization for custom holder types (silently ignores std::shared_ptr)
|
2016-12-15 22:44:23 +00:00
|
|
|
#define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \
|
2016-10-18 11:56:33 +00:00
|
|
|
namespace pybind11 { namespace detail { \
|
|
|
|
template <typename type> \
|
2016-12-15 22:44:23 +00:00
|
|
|
struct always_construct_holder<holder_type> : always_construct_holder<void, ##__VA_ARGS__> { }; \
|
|
|
|
template <typename type> \
|
2016-10-18 11:56:33 +00:00
|
|
|
class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \
|
|
|
|
: public type_caster_holder<type, holder_type> { }; \
|
|
|
|
}}
|
|
|
|
|
2016-09-06 16:27:00 +00:00
|
|
|
// PYBIND11_DECLARE_HOLDER_TYPE holder types:
|
Allow arbitrary class_ template option ordering
The current pybind11::class_<Type, Holder, Trampoline> fixed template
ordering results in a requirement to repeat the Holder with its default
value (std::unique_ptr<Type>) argument, which is a little bit annoying:
it needs to be specified not because we want to override the default,
but rather because we need to specify the third argument.
This commit removes this limitation by making the class_ template take
the type name plus a parameter pack of options. It then extracts the
first valid holder type and the first subclass type for holder_type and
trampoline type_alias, respectively. (If unfound, both fall back to
their current defaults, `std::unique_ptr<type>` and `type`,
respectively). If any unmatched template arguments are provided, a
static assertion fails.
What this means is that you can specify or omit the arguments in any
order:
py::class_<A, PyA> c1(m, "A");
py::class_<B, PyB, std::shared_ptr<B>> c2(m, "B");
py::class_<C, std::shared_ptr<C>, PyB> c3(m, "C");
It also allows future class attributes (such as base types in the next
commit) to be passed as class template types rather than needing to use
a py::base<> wrapper.
2016-09-06 16:17:06 +00:00
|
|
|
template <typename base, typename holder> struct is_holder_type :
|
2016-09-06 16:27:00 +00:00
|
|
|
std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {};
|
|
|
|
// Specialization for always-supported unique_ptr holders:
|
|
|
|
template <typename base, typename deleter> struct is_holder_type<base, std::unique_ptr<base, deleter>> :
|
|
|
|
std::true_type {};
|
Allow arbitrary class_ template option ordering
The current pybind11::class_<Type, Holder, Trampoline> fixed template
ordering results in a requirement to repeat the Holder with its default
value (std::unique_ptr<Type>) argument, which is a little bit annoying:
it needs to be specified not because we want to override the default,
but rather because we need to specify the third argument.
This commit removes this limitation by making the class_ template take
the type name plus a parameter pack of options. It then extracts the
first valid holder type and the first subclass type for holder_type and
trampoline type_alias, respectively. (If unfound, both fall back to
their current defaults, `std::unique_ptr<type>` and `type`,
respectively). If any unmatched template arguments are provided, a
static assertion fails.
What this means is that you can specify or omit the arguments in any
order:
py::class_<A, PyA> c1(m, "A");
py::class_<B, PyB, std::shared_ptr<B>> c2(m, "B");
py::class_<C, std::shared_ptr<C>, PyB> c3(m, "C");
It also allows future class attributes (such as base types in the next
commit) to be passed as class template types rather than needing to use
a py::base<> wrapper.
2016-09-06 16:17:06 +00:00
|
|
|
|
2016-01-17 21:36:38 +00:00
|
|
|
template <typename T> struct handle_type_name { static PYBIND11_DESCR name() { return _<T>(); } };
|
|
|
|
template <> struct handle_type_name<bytes> { static PYBIND11_DESCR name() { return _(PYBIND11_BYTES_NAME); } };
|
2016-05-10 14:59:01 +00:00
|
|
|
template <> struct handle_type_name<args> { static PYBIND11_DESCR name() { return _("*args"); } };
|
|
|
|
template <> struct handle_type_name<kwargs> { static PYBIND11_DESCR name() { return _("**kwargs"); } };
|
2016-01-17 21:36:38 +00:00
|
|
|
|
2015-12-16 11:11:01 +00:00
|
|
|
template <typename type>
|
2016-10-23 12:50:08 +00:00
|
|
|
struct pyobject_caster {
|
|
|
|
template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
|
|
|
|
bool load(handle src, bool /* convert */) { value = src; return static_cast<bool>(value); }
|
2015-12-16 11:11:01 +00:00
|
|
|
|
2016-09-12 15:36:43 +00:00
|
|
|
template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
|
2016-10-23 12:50:08 +00:00
|
|
|
bool load(handle src, bool /* convert */) {
|
|
|
|
if (!isinstance<type>(src))
|
|
|
|
return false;
|
2016-10-28 01:08:15 +00:00
|
|
|
value = reinterpret_borrow<type>(src);
|
2016-10-23 12:50:08 +00:00
|
|
|
return true;
|
|
|
|
}
|
2015-12-16 11:11:01 +00:00
|
|
|
|
2016-01-17 21:36:44 +00:00
|
|
|
static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
|
|
|
|
return src.inc_ref();
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
2016-01-17 21:36:38 +00:00
|
|
|
PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name());
|
2015-07-05 18:05:44 +00:00
|
|
|
};
|
|
|
|
|
2016-10-23 12:50:08 +00:00
|
|
|
template <typename T>
|
|
|
|
class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> { };
|
|
|
|
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
// Our conditions for enabling moving are quite restrictive:
|
|
|
|
// At compile time:
|
|
|
|
// - T needs to be a non-const, non-pointer, non-reference type
|
|
|
|
// - type_caster<T>::operator T&() must exist
|
|
|
|
// - the type must be move constructible (obviously)
|
|
|
|
// At run-time:
|
|
|
|
// - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it
|
|
|
|
// must have ref_count() == 1)h
|
|
|
|
// If any of the above are not satisfied, we fall back to copying.
|
Numpy: better compilation errors, long double support (#619)
* Clarify PYBIND11_NUMPY_DTYPE documentation
The current documentation and example reads as though
PYBIND11_NUMPY_DTYPE is a declarative macro along the same lines as
PYBIND11_DECLARE_HOLDER_TYPE, but it isn't. The changes the
documentation and docs example to make it clear that you need to "call"
the macro.
* Add satisfies_{all,any,none}_of<T, Preds>
`satisfies_all_of<T, Pred1, Pred2, Pred3>` is a nice legibility-enhanced
shortcut for `is_all<Pred1<T>, Pred2<T>, Pred3<T>>`.
* Give better error message for non-POD dtype attempts
If you try to use a non-POD data type, you get difficult-to-interpret
compilation errors (about ::name() not being a member of an internal
pybind11 struct, among others), for which isn't at all obvious what the
problem is.
This adds a static_assert for such cases.
It also changes the base case from an empty struct to the is_pod_struct
case by no longer using `enable_if<is_pod_struct>` but instead using a
static_assert: thus specializations avoid the base class, POD types
work, and non-POD types (and unimplemented POD types like std::array)
get a more informative static_assert failure.
* Prefix macros with PYBIND11_
numpy.h uses unprefixed macros, which seems undesirable. This prefixes
them with PYBIND11_ to match all the other macros in numpy.h (and
elsewhere).
* Add long double support
This adds long double and std::complex<long double> support for numpy
arrays.
This allows some simplification of the code used to generate format
descriptors; the new code uses fewer macros, instead putting the code as
different templated options; the template conditions end up simpler with
this because we are now supporting all basic C++ arithmetic types (and
so can use is_arithmetic instead of is_integral + multiple
different specializations).
In addition to testing that it is indeed working in the test script, it
also adds various offset and size calculations there, which
fixes the test failures under x86 compilations.
2017-01-31 16:00:15 +00:00
|
|
|
template <typename T> using move_is_plain_type = satisfies_none_of<T,
|
|
|
|
std::is_void, std::is_pointer, std::is_reference, std::is_const
|
Change all_of_t/any_of_t to all_of/any_of, add none_of
This replaces the current `all_of_t<Pred, Ts...>` with `all_of<Ts...>`,
with previous use of `all_of_t<Pred, Ts...>` becoming
`all_of<Pred<Ts>...>` (and similarly for `any_of_t`). It also adds a
`none_of<Ts...>`, a shortcut for `negation<any_of<Ts...>>`.
This allows `all_of` and `any_of` to be used a bit more flexible, e.g.
in cases where several predicates need to be tested for the same type
instead of the same predicate for multiple types.
This commit replaces the implementation with a more efficient version
for non-MSVC. For MSVC, this changes the workaround to use the
built-in, recursive std::conjunction/std::disjunction instead.
This also removes the `count_t` since `any_of_t` and `all_of_t` were the
only things using it.
This commit also rearranges some of the future std imports to use actual
`std` implementations for C++14/17 features when under the appropriate
compiler mode, as we were already doing for a few things (like
index_sequence). Most of these aren't saving much (the implementation
for enable_if_t, for example, is trivial), but I think it makes the
intention of the code instantly clear. It also enables MSVC's native
std::index_sequence support.
2016-12-12 23:11:49 +00:00
|
|
|
>;
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
template <typename T, typename SFINAE = void> struct move_always : std::false_type {};
|
Change all_of_t/any_of_t to all_of/any_of, add none_of
This replaces the current `all_of_t<Pred, Ts...>` with `all_of<Ts...>`,
with previous use of `all_of_t<Pred, Ts...>` becoming
`all_of<Pred<Ts>...>` (and similarly for `any_of_t`). It also adds a
`none_of<Ts...>`, a shortcut for `negation<any_of<Ts...>>`.
This allows `all_of` and `any_of` to be used a bit more flexible, e.g.
in cases where several predicates need to be tested for the same type
instead of the same predicate for multiple types.
This commit replaces the implementation with a more efficient version
for non-MSVC. For MSVC, this changes the workaround to use the
built-in, recursive std::conjunction/std::disjunction instead.
This also removes the `count_t` since `any_of_t` and `all_of_t` were the
only things using it.
This commit also rearranges some of the future std imports to use actual
`std` implementations for C++14/17 features when under the appropriate
compiler mode, as we were already doing for a few things (like
index_sequence). Most of these aren't saving much (the implementation
for enable_if_t, for example, is trivial), but I think it makes the
intention of the code instantly clear. It also enables MSVC's native
std::index_sequence support.
2016-12-12 23:11:49 +00:00
|
|
|
template <typename T> struct move_always<T, enable_if_t<all_of<
|
|
|
|
move_is_plain_type<T>,
|
|
|
|
negation<std::is_copy_constructible<T>>,
|
|
|
|
std::is_move_constructible<T>,
|
2017-01-03 10:52:05 +00:00
|
|
|
std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
|
Change all_of_t/any_of_t to all_of/any_of, add none_of
This replaces the current `all_of_t<Pred, Ts...>` with `all_of<Ts...>`,
with previous use of `all_of_t<Pred, Ts...>` becoming
`all_of<Pred<Ts>...>` (and similarly for `any_of_t`). It also adds a
`none_of<Ts...>`, a shortcut for `negation<any_of<Ts...>>`.
This allows `all_of` and `any_of` to be used a bit more flexible, e.g.
in cases where several predicates need to be tested for the same type
instead of the same predicate for multiple types.
This commit replaces the implementation with a more efficient version
for non-MSVC. For MSVC, this changes the workaround to use the
built-in, recursive std::conjunction/std::disjunction instead.
This also removes the `count_t` since `any_of_t` and `all_of_t` were the
only things using it.
This commit also rearranges some of the future std imports to use actual
`std` implementations for C++14/17 features when under the appropriate
compiler mode, as we were already doing for a few things (like
index_sequence). Most of these aren't saving much (the implementation
for enable_if_t, for example, is trivial), but I think it makes the
intention of the code instantly clear. It also enables MSVC's native
std::index_sequence support.
2016-12-12 23:11:49 +00:00
|
|
|
>::value>> : std::true_type {};
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
template <typename T, typename SFINAE = void> struct move_if_unreferenced : std::false_type {};
|
Change all_of_t/any_of_t to all_of/any_of, add none_of
This replaces the current `all_of_t<Pred, Ts...>` with `all_of<Ts...>`,
with previous use of `all_of_t<Pred, Ts...>` becoming
`all_of<Pred<Ts>...>` (and similarly for `any_of_t`). It also adds a
`none_of<Ts...>`, a shortcut for `negation<any_of<Ts...>>`.
This allows `all_of` and `any_of` to be used a bit more flexible, e.g.
in cases where several predicates need to be tested for the same type
instead of the same predicate for multiple types.
This commit replaces the implementation with a more efficient version
for non-MSVC. For MSVC, this changes the workaround to use the
built-in, recursive std::conjunction/std::disjunction instead.
This also removes the `count_t` since `any_of_t` and `all_of_t` were the
only things using it.
This commit also rearranges some of the future std imports to use actual
`std` implementations for C++14/17 features when under the appropriate
compiler mode, as we were already doing for a few things (like
index_sequence). Most of these aren't saving much (the implementation
for enable_if_t, for example, is trivial), but I think it makes the
intention of the code instantly clear. It also enables MSVC's native
std::index_sequence support.
2016-12-12 23:11:49 +00:00
|
|
|
template <typename T> struct move_if_unreferenced<T, enable_if_t<all_of<
|
|
|
|
move_is_plain_type<T>,
|
|
|
|
negation<move_always<T>>,
|
|
|
|
std::is_move_constructible<T>,
|
2017-01-03 10:52:05 +00:00
|
|
|
std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
|
Change all_of_t/any_of_t to all_of/any_of, add none_of
This replaces the current `all_of_t<Pred, Ts...>` with `all_of<Ts...>`,
with previous use of `all_of_t<Pred, Ts...>` becoming
`all_of<Pred<Ts>...>` (and similarly for `any_of_t`). It also adds a
`none_of<Ts...>`, a shortcut for `negation<any_of<Ts...>>`.
This allows `all_of` and `any_of` to be used a bit more flexible, e.g.
in cases where several predicates need to be tested for the same type
instead of the same predicate for multiple types.
This commit replaces the implementation with a more efficient version
for non-MSVC. For MSVC, this changes the workaround to use the
built-in, recursive std::conjunction/std::disjunction instead.
This also removes the `count_t` since `any_of_t` and `all_of_t` were the
only things using it.
This commit also rearranges some of the future std imports to use actual
`std` implementations for C++14/17 features when under the appropriate
compiler mode, as we were already doing for a few things (like
index_sequence). Most of these aren't saving much (the implementation
for enable_if_t, for example, is trivial), but I think it makes the
intention of the code instantly clear. It also enables MSVC's native
std::index_sequence support.
2016-12-12 23:11:49 +00:00
|
|
|
>::value>> : std::true_type {};
|
|
|
|
template <typename T> using move_never = none_of<move_always<T>, move_if_unreferenced<T>>;
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
|
2016-09-07 17:38:32 +00:00
|
|
|
// Detect whether returning a `type` from a cast on type's type_caster is going to result in a
|
|
|
|
// reference or pointer to a local variable of the type_caster. Basically, only
|
|
|
|
// non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe;
|
|
|
|
// everything else returns a reference/pointer to a local variable.
|
|
|
|
template <typename type> using cast_is_temporary_value_reference = bool_constant<
|
|
|
|
(std::is_reference<type>::value || std::is_pointer<type>::value) &&
|
|
|
|
!std::is_base_of<type_caster_generic, make_caster<type>>::value
|
|
|
|
>;
|
|
|
|
|
Add an ability to avoid forcing rvp::move
Eigen::Ref objects, when returned, are almost always returned as
rvalues; what's important is the data they reference, not the outer
shell, and so we want to be able to use `::copy`,
`::reference_internal`, etc. to refer to the data the Eigen::Ref
references (in the following commits), rather than the Eigen::Ref
instance itself.
This moves the policy override into a struct so that code that wants to
avoid it (or wants to provide some other Return-type-conditional
override) can create a specialization of
return_value_policy_override<Return> in order to override the override.
This lets an Eigen::Ref-returning function be bound with `rvp::copy`,
for example, to specify that the data should be copied into a new numpy
array rather than referenced, or `rvp::reference_internal` to indicate
that it should be referenced, but a keep-alive used (actually, we used
the array's `base` rather than a py::keep_alive in such a case, but it
accomplishes the same thing).
2017-01-20 05:59:26 +00:00
|
|
|
// When a value returned from a C++ function is being cast back to Python, we almost always want to
|
|
|
|
// force `policy = move`, regardless of the return value policy the function/method was declared
|
|
|
|
// with. Some classes (most notably Eigen::Ref and related) need to avoid this, and so can do so by
|
|
|
|
// specializing this struct.
|
|
|
|
template <typename Return, typename SFINAE = void> struct return_value_policy_override {
|
|
|
|
static return_value_policy policy(return_value_policy p) {
|
|
|
|
return !std::is_lvalue_reference<Return>::value && !std::is_pointer<Return>::value
|
|
|
|
? return_value_policy::move : p;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2016-09-11 16:17:41 +00:00
|
|
|
// Basic python -> C++ casting; throws if casting fails
|
2016-09-12 20:21:40 +00:00
|
|
|
template <typename T, typename SFINAE> type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) {
|
2016-07-01 14:07:24 +00:00
|
|
|
if (!conv.load(handle, true)) {
|
|
|
|
#if defined(NDEBUG)
|
|
|
|
throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)");
|
|
|
|
#else
|
|
|
|
throw cast_error("Unable to cast Python instance of type " +
|
2016-10-25 20:12:39 +00:00
|
|
|
(std::string) str(handle.get_type()) + " to C++ type '" + type_id<T>() + "''");
|
2016-07-01 14:07:24 +00:00
|
|
|
#endif
|
|
|
|
}
|
2016-09-08 18:49:43 +00:00
|
|
|
return conv;
|
|
|
|
}
|
2016-09-11 16:17:41 +00:00
|
|
|
// Wrapper around the above that also constructs and returns a type_caster
|
|
|
|
template <typename T> make_caster<T> load_type(const handle &handle) {
|
|
|
|
make_caster<T> conv;
|
|
|
|
load_type(conv, handle);
|
|
|
|
return conv;
|
|
|
|
}
|
2016-09-08 18:49:43 +00:00
|
|
|
|
|
|
|
NAMESPACE_END(detail)
|
|
|
|
|
2016-10-28 01:08:15 +00:00
|
|
|
// pytype -> C++ type
|
2016-10-25 20:12:39 +00:00
|
|
|
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
|
|
|
|
T cast(const handle &handle) {
|
2016-11-25 17:35:00 +00:00
|
|
|
using namespace detail;
|
|
|
|
static_assert(!cast_is_temporary_value_reference<T>::value,
|
2016-09-08 18:49:43 +00:00
|
|
|
"Unable to cast type to reference: value is local to type caster");
|
2016-11-25 17:35:00 +00:00
|
|
|
return cast_op<T>(load_type<T>(handle));
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
2016-10-28 01:08:15 +00:00
|
|
|
// pytype -> pytype (calls converting constructor)
|
2016-10-25 20:12:39 +00:00
|
|
|
template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0>
|
2016-10-28 01:08:15 +00:00
|
|
|
T cast(const handle &handle) { return T(reinterpret_borrow<object>(handle)); }
|
2016-10-25 20:12:39 +00:00
|
|
|
|
2016-10-28 01:08:15 +00:00
|
|
|
// C++ type -> py::object
|
2016-10-25 20:12:39 +00:00
|
|
|
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
|
|
|
|
object cast(const T &value, return_value_policy policy = return_value_policy::automatic_reference,
|
|
|
|
handle parent = handle()) {
|
2015-07-05 18:05:44 +00:00
|
|
|
if (policy == return_value_policy::automatic)
|
|
|
|
policy = std::is_pointer<T>::value ? return_value_policy::take_ownership : return_value_policy::copy;
|
2016-04-14 12:26:13 +00:00
|
|
|
else if (policy == return_value_policy::automatic_reference)
|
|
|
|
policy = std::is_pointer<T>::value ? return_value_policy::reference : return_value_policy::copy;
|
2016-10-28 01:08:15 +00:00
|
|
|
return reinterpret_steal<object>(detail::make_caster<T>::cast(value, policy, parent));
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
2016-05-03 11:28:40 +00:00
|
|
|
template <typename T> T handle::cast() const { return pybind11::cast<T>(*this); }
|
2015-12-26 18:01:28 +00:00
|
|
|
template <> inline void handle::cast() const { return; }
|
2015-07-05 18:05:44 +00:00
|
|
|
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
template <typename T>
|
Change all_of_t/any_of_t to all_of/any_of, add none_of
This replaces the current `all_of_t<Pred, Ts...>` with `all_of<Ts...>`,
with previous use of `all_of_t<Pred, Ts...>` becoming
`all_of<Pred<Ts>...>` (and similarly for `any_of_t`). It also adds a
`none_of<Ts...>`, a shortcut for `negation<any_of<Ts...>>`.
This allows `all_of` and `any_of` to be used a bit more flexible, e.g.
in cases where several predicates need to be tested for the same type
instead of the same predicate for multiple types.
This commit replaces the implementation with a more efficient version
for non-MSVC. For MSVC, this changes the workaround to use the
built-in, recursive std::conjunction/std::disjunction instead.
This also removes the `count_t` since `any_of_t` and `all_of_t` were the
only things using it.
This commit also rearranges some of the future std imports to use actual
`std` implementations for C++14/17 features when under the appropriate
compiler mode, as we were already doing for a few things (like
index_sequence). Most of these aren't saving much (the implementation
for enable_if_t, for example, is trivial), but I think it makes the
intention of the code instantly clear. It also enables MSVC's native
std::index_sequence support.
2016-12-12 23:11:49 +00:00
|
|
|
detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) {
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
if (obj.ref_count() > 1)
|
|
|
|
#if defined(NDEBUG)
|
|
|
|
throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references"
|
|
|
|
" (compile in debug mode for details)");
|
|
|
|
#else
|
2016-10-25 20:12:39 +00:00
|
|
|
throw cast_error("Unable to move from Python " + (std::string) str(obj.get_type()) +
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
" instance to C++ " + type_id<T>() + " instance: instance has multiple references");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Move into a temporary and return that, because the reference may be a local value of `conv`
|
2016-09-08 18:49:43 +00:00
|
|
|
T ret = std::move(detail::load_type<T>(obj).operator T&());
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Calling cast() on an rvalue calls pybind::cast with the object rvalue, which does:
|
|
|
|
// - If we have to move (because T has no copy constructor), do it. This will fail if the moved
|
|
|
|
// object has multiple references, but trying to copy will fail to compile.
|
|
|
|
// - If both movable and copyable, check ref count: if 1, move; otherwise copy
|
|
|
|
// - Otherwise (not movable), copy.
|
2016-09-08 18:49:43 +00:00
|
|
|
template <typename T> detail::enable_if_t<detail::move_always<T>::value, T> cast(object &&object) {
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
return move<T>(std::move(object));
|
|
|
|
}
|
2016-09-08 18:49:43 +00:00
|
|
|
template <typename T> detail::enable_if_t<detail::move_if_unreferenced<T>::value, T> cast(object &&object) {
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
if (object.ref_count() > 1)
|
|
|
|
return cast<T>(object);
|
|
|
|
else
|
|
|
|
return move<T>(std::move(object));
|
|
|
|
}
|
2016-09-08 18:49:43 +00:00
|
|
|
template <typename T> detail::enable_if_t<detail::move_never<T>::value, T> cast(object &&object) {
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
return cast<T>(object);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T> T object::cast() const & { return pybind11::cast<T>(*this); }
|
|
|
|
template <typename T> T object::cast() && { return pybind11::cast<T>(std::move(*this)); }
|
|
|
|
template <> inline void object::cast() const & { return; }
|
|
|
|
template <> inline void object::cast() && { return; }
|
|
|
|
|
2016-09-08 18:49:43 +00:00
|
|
|
NAMESPACE_BEGIN(detail)
|
|
|
|
|
2016-12-12 22:42:52 +00:00
|
|
|
// Declared in pytypes.h:
|
|
|
|
template <typename T, enable_if_t<!is_pyobject<T>::value, int>>
|
|
|
|
object object_or_cast(T &&o) { return pybind11::cast(std::forward<T>(o)); }
|
|
|
|
|
2016-09-11 16:17:41 +00:00
|
|
|
struct overload_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the OVERLOAD_INT macro
|
|
|
|
template <typename ret_type> using overload_caster_t = conditional_t<
|
|
|
|
cast_is_temporary_value_reference<ret_type>::value, make_caster<ret_type>, overload_unused>;
|
2016-09-08 18:49:43 +00:00
|
|
|
|
|
|
|
// Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then
|
|
|
|
// store the result in the given variable. For other types, this is a no-op.
|
2016-09-11 16:17:41 +00:00
|
|
|
template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o, make_caster<T> &caster) {
|
2016-11-25 17:35:00 +00:00
|
|
|
return cast_op<T>(load_type(caster, o));
|
2016-09-08 18:49:43 +00:00
|
|
|
}
|
2016-09-11 16:17:41 +00:00
|
|
|
template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&, overload_unused &) {
|
2016-09-08 18:49:43 +00:00
|
|
|
pybind11_fail("Internal error: cast_ref fallback invoked"); }
|
|
|
|
|
|
|
|
// Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even
|
|
|
|
// though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in
|
|
|
|
// cases where pybind11::cast is valid.
|
|
|
|
template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&o) {
|
|
|
|
return pybind11::cast<T>(std::move(o)); }
|
|
|
|
template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) {
|
|
|
|
pybind11_fail("Internal error: cast_safe fallback invoked"); }
|
|
|
|
template <> inline void cast_safe<void>(object &&) {}
|
|
|
|
|
|
|
|
NAMESPACE_END(detail)
|
Move support for return values of called Python functions
Currently pybind11 always translates values returned by Python functions
invoked from C++ code by copying, even when moving is feasible--and,
more importantly, even when moving is required.
The first, and relatively minor, concern is that moving may be
considerably more efficient for some types. The second problem,
however, is more serious: there's currently no way python code can
return a non-copyable type to C++ code.
I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual
method that returns just such a type: it simply fails to compile because
this:
overload = ...
overload(args).template cast<ret_type>();
involves a copy: overload(args) returns an object instance, and the
invoked object::cast() loads the returned value, then returns a copy of
the loaded value.
We can, however, safely move that returned value *if* the object has the
only reference to it (i.e. if ref_count() == 1) and the object is
itself temporary (i.e. if it's an rvalue).
This commit does that by adding an rvalue-qualified object::cast()
method that allows the returned value to be move-constructed out of the
stored instance when feasible.
This basically comes down to three cases:
- For objects that are movable but not copyable, we always try the move,
with a runtime exception raised if this would involve moving a value
with multiple references.
- When the type is both movable and non-trivially copyable, the move
happens only if the invoked object has a ref_count of 1, otherwise the
object is copied. (Trivially copyable types are excluded from this
case because they are typically just collections of primitive types,
which can be copied just as easily as they can be moved.)
- Non-movable and trivially copy constructible objects are simply
copied.
This also adds examples to example-virtual-functions that shows both a
non-copyable object and a movable/copyable object in action: the former
raises an exception if returned while holding a reference, the latter
invokes a move constructor if unreferenced, or a copy constructor if
referenced.
Basically this allows code such as:
class MyClass(Pybind11Class):
def somemethod(self, whatever):
mt = MovableType(whatever)
# ...
return mt
which allows the MovableType instance to be returned to the C++ code
via its move constructor.
Of course if you attempt to violate this by doing something like:
self.value = MovableType(whatever)
return self.value
you get an exception--but right now, the pybind11-side of that code
won't compile at all.
2016-07-22 01:31:05 +00:00
|
|
|
|
2016-04-14 12:26:13 +00:00
|
|
|
template <return_value_policy policy = return_value_policy::automatic_reference,
|
2016-05-03 11:28:40 +00:00
|
|
|
typename... Args> tuple make_tuple(Args&&... args_) {
|
2017-04-05 14:51:02 +00:00
|
|
|
constexpr size_t size = sizeof...(Args);
|
2016-01-17 21:36:44 +00:00
|
|
|
std::array<object, size> args {
|
2016-10-28 01:08:15 +00:00
|
|
|
{ reinterpret_steal<object>(detail::make_caster<Args>::cast(
|
|
|
|
std::forward<Args>(args_), policy, nullptr))... }
|
2015-07-05 18:05:44 +00:00
|
|
|
};
|
2017-04-05 14:51:02 +00:00
|
|
|
for (size_t i = 0; i < args.size(); i++) {
|
|
|
|
if (!args[i]) {
|
2016-07-01 18:35:35 +00:00
|
|
|
#if defined(NDEBUG)
|
|
|
|
throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)");
|
|
|
|
#else
|
2017-04-05 22:00:38 +00:00
|
|
|
std::array<std::string, size> argtypes { {type_id<Args>()...} };
|
2017-04-05 14:51:02 +00:00
|
|
|
throw cast_error("make_tuple(): unable to convert argument of type '" +
|
|
|
|
argtypes[i] + "' to Python object");
|
2016-07-01 18:35:35 +00:00
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
2016-04-12 22:56:17 +00:00
|
|
|
tuple result(size);
|
2015-07-05 18:05:44 +00:00
|
|
|
int counter = 0;
|
2016-01-17 21:36:44 +00:00
|
|
|
for (auto &arg_value : args)
|
2016-04-12 22:56:17 +00:00
|
|
|
PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr());
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2017-01-31 15:54:08 +00:00
|
|
|
/// \ingroup annotations
|
Add support for non-converting arguments
This adds support for controlling the `convert` flag of arguments
through the py::arg annotation. This then allows arguments to be
flagged as non-converting, which the type_caster is able to use to
request different behaviour.
Currently, AFAICS `convert` is only used for type converters of regular
pybind11-registered types; all of the other core type_casters ignore it.
We can, however, repurpose it to control internal conversion of
converters like Eigen and `array`: most usefully to give callers a way
to disable the conversion that would otherwise occur when a
`Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that
requires conversion (either because it has an incompatible stride or the
wrong dtype).
Specifying a noconvert looks like one of these:
m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert
m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting
m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting
(The last part--being able to declare a py::arg without a name--is new:
previous py::arg() only accepted named keyword arguments).
Such an non-convert argument is then passed `convert = false` by the
type caster when loading the argument. Whether this has an effect is up
to the type caster itself, but as mentioned above, this would be
extremely helpful for the Eigen support to give a nicer way to specify
a "no-copy" mode than the custom wrapper in the current PR, and
moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
|
|
|
/// Annotation for arguments
|
2016-09-05 22:49:21 +00:00
|
|
|
struct arg {
|
Add support for non-converting arguments
This adds support for controlling the `convert` flag of arguments
through the py::arg annotation. This then allows arguments to be
flagged as non-converting, which the type_caster is able to use to
request different behaviour.
Currently, AFAICS `convert` is only used for type converters of regular
pybind11-registered types; all of the other core type_casters ignore it.
We can, however, repurpose it to control internal conversion of
converters like Eigen and `array`: most usefully to give callers a way
to disable the conversion that would otherwise occur when a
`Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that
requires conversion (either because it has an incompatible stride or the
wrong dtype).
Specifying a noconvert looks like one of these:
m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert
m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting
m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting
(The last part--being able to declare a py::arg without a name--is new:
previous py::arg() only accepted named keyword arguments).
Such an non-convert argument is then passed `convert = false` by the
type caster when loading the argument. Whether this has an effect is up
to the type caster itself, but as mentioned above, this would be
extremely helpful for the Eigen support to give a nicer way to specify
a "no-copy" mode than the custom wrapper in the current PR, and
moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
|
|
|
/// Constructs an argument with the name of the argument; if null or omitted, this is a positional argument.
|
|
|
|
constexpr explicit arg(const char *name = nullptr) : name(name), flag_noconvert(false) { }
|
2017-01-31 15:54:08 +00:00
|
|
|
/// Assign a value to this argument
|
2016-09-05 22:49:21 +00:00
|
|
|
template <typename T> arg_v operator=(T &&value) const;
|
Add support for non-converting arguments
This adds support for controlling the `convert` flag of arguments
through the py::arg annotation. This then allows arguments to be
flagged as non-converting, which the type_caster is able to use to
request different behaviour.
Currently, AFAICS `convert` is only used for type converters of regular
pybind11-registered types; all of the other core type_casters ignore it.
We can, however, repurpose it to control internal conversion of
converters like Eigen and `array`: most usefully to give callers a way
to disable the conversion that would otherwise occur when a
`Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that
requires conversion (either because it has an incompatible stride or the
wrong dtype).
Specifying a noconvert looks like one of these:
m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert
m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting
m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting
(The last part--being able to declare a py::arg without a name--is new:
previous py::arg() only accepted named keyword arguments).
Such an non-convert argument is then passed `convert = false` by the
type caster when loading the argument. Whether this has an effect is up
to the type caster itself, but as mentioned above, this would be
extremely helpful for the Eigen support to give a nicer way to specify
a "no-copy" mode than the custom wrapper in the current PR, and
moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
|
|
|
/// Indicate that the type should not be converted in the type caster
|
|
|
|
arg &noconvert(bool flag = true) { flag_noconvert = flag; return *this; }
|
2016-09-05 22:49:21 +00:00
|
|
|
|
Add support for non-converting arguments
This adds support for controlling the `convert` flag of arguments
through the py::arg annotation. This then allows arguments to be
flagged as non-converting, which the type_caster is able to use to
request different behaviour.
Currently, AFAICS `convert` is only used for type converters of regular
pybind11-registered types; all of the other core type_casters ignore it.
We can, however, repurpose it to control internal conversion of
converters like Eigen and `array`: most usefully to give callers a way
to disable the conversion that would otherwise occur when a
`Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that
requires conversion (either because it has an incompatible stride or the
wrong dtype).
Specifying a noconvert looks like one of these:
m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert
m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting
m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting
(The last part--being able to declare a py::arg without a name--is new:
previous py::arg() only accepted named keyword arguments).
Such an non-convert argument is then passed `convert = false` by the
type caster when loading the argument. Whether this has an effect is up
to the type caster itself, but as mentioned above, this would be
extremely helpful for the Eigen support to give a nicer way to specify
a "no-copy" mode than the custom wrapper in the current PR, and
moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
|
|
|
const char *name; ///< If non-null, this is a named kwargs argument
|
|
|
|
bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type caster!)
|
2016-09-05 22:49:21 +00:00
|
|
|
};
|
|
|
|
|
2017-01-31 15:54:08 +00:00
|
|
|
/// \ingroup annotations
|
Add support for non-converting arguments
This adds support for controlling the `convert` flag of arguments
through the py::arg annotation. This then allows arguments to be
flagged as non-converting, which the type_caster is able to use to
request different behaviour.
Currently, AFAICS `convert` is only used for type converters of regular
pybind11-registered types; all of the other core type_casters ignore it.
We can, however, repurpose it to control internal conversion of
converters like Eigen and `array`: most usefully to give callers a way
to disable the conversion that would otherwise occur when a
`Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that
requires conversion (either because it has an incompatible stride or the
wrong dtype).
Specifying a noconvert looks like one of these:
m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert
m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting
m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting
(The last part--being able to declare a py::arg without a name--is new:
previous py::arg() only accepted named keyword arguments).
Such an non-convert argument is then passed `convert = false` by the
type caster when loading the argument. Whether this has an effect is up
to the type caster itself, but as mentioned above, this would be
extremely helpful for the Eigen support to give a nicer way to specify
a "no-copy" mode than the custom wrapper in the current PR, and
moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
|
|
|
/// Annotation for arguments with values
|
2016-09-05 22:49:21 +00:00
|
|
|
struct arg_v : arg {
|
Add support for non-converting arguments
This adds support for controlling the `convert` flag of arguments
through the py::arg annotation. This then allows arguments to be
flagged as non-converting, which the type_caster is able to use to
request different behaviour.
Currently, AFAICS `convert` is only used for type converters of regular
pybind11-registered types; all of the other core type_casters ignore it.
We can, however, repurpose it to control internal conversion of
converters like Eigen and `array`: most usefully to give callers a way
to disable the conversion that would otherwise occur when a
`Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that
requires conversion (either because it has an incompatible stride or the
wrong dtype).
Specifying a noconvert looks like one of these:
m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert
m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting
m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting
(The last part--being able to declare a py::arg without a name--is new:
previous py::arg() only accepted named keyword arguments).
Such an non-convert argument is then passed `convert = false` by the
type caster when loading the argument. Whether this has an effect is up
to the type caster itself, but as mentioned above, this would be
extremely helpful for the Eigen support to give a nicer way to specify
a "no-copy" mode than the custom wrapper in the current PR, and
moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
|
|
|
private:
|
2016-09-05 22:49:21 +00:00
|
|
|
template <typename T>
|
Add support for non-converting arguments
This adds support for controlling the `convert` flag of arguments
through the py::arg annotation. This then allows arguments to be
flagged as non-converting, which the type_caster is able to use to
request different behaviour.
Currently, AFAICS `convert` is only used for type converters of regular
pybind11-registered types; all of the other core type_casters ignore it.
We can, however, repurpose it to control internal conversion of
converters like Eigen and `array`: most usefully to give callers a way
to disable the conversion that would otherwise occur when a
`Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that
requires conversion (either because it has an incompatible stride or the
wrong dtype).
Specifying a noconvert looks like one of these:
m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert
m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting
m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting
(The last part--being able to declare a py::arg without a name--is new:
previous py::arg() only accepted named keyword arguments).
Such an non-convert argument is then passed `convert = false` by the
type caster when loading the argument. Whether this has an effect is up
to the type caster itself, but as mentioned above, this would be
extremely helpful for the Eigen support to give a nicer way to specify
a "no-copy" mode than the custom wrapper in the current PR, and
moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
|
|
|
arg_v(arg &&base, T &&x, const char *descr = nullptr)
|
|
|
|
: arg(base),
|
2016-10-28 01:08:15 +00:00
|
|
|
value(reinterpret_steal<object>(
|
|
|
|
detail::make_caster<T>::cast(x, return_value_policy::automatic, {})
|
|
|
|
)),
|
2016-09-05 22:49:21 +00:00
|
|
|
descr(descr)
|
|
|
|
#if !defined(NDEBUG)
|
|
|
|
, type(type_id<T>())
|
|
|
|
#endif
|
|
|
|
{ }
|
|
|
|
|
Add support for non-converting arguments
This adds support for controlling the `convert` flag of arguments
through the py::arg annotation. This then allows arguments to be
flagged as non-converting, which the type_caster is able to use to
request different behaviour.
Currently, AFAICS `convert` is only used for type converters of regular
pybind11-registered types; all of the other core type_casters ignore it.
We can, however, repurpose it to control internal conversion of
converters like Eigen and `array`: most usefully to give callers a way
to disable the conversion that would otherwise occur when a
`Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that
requires conversion (either because it has an incompatible stride or the
wrong dtype).
Specifying a noconvert looks like one of these:
m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert
m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting
m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting
(The last part--being able to declare a py::arg without a name--is new:
previous py::arg() only accepted named keyword arguments).
Such an non-convert argument is then passed `convert = false` by the
type caster when loading the argument. Whether this has an effect is up
to the type caster itself, but as mentioned above, this would be
extremely helpful for the Eigen support to give a nicer way to specify
a "no-copy" mode than the custom wrapper in the current PR, and
moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
|
|
|
public:
|
|
|
|
/// Direct construction with name, default, and description
|
|
|
|
template <typename T>
|
|
|
|
arg_v(const char *name, T &&x, const char *descr = nullptr)
|
|
|
|
: arg_v(arg(name), std::forward<T>(x), descr) { }
|
|
|
|
|
|
|
|
/// Called internally when invoking `py::arg("a") = value`
|
|
|
|
template <typename T>
|
|
|
|
arg_v(const arg &base, T &&x, const char *descr = nullptr)
|
|
|
|
: arg_v(arg(base), std::forward<T>(x), descr) { }
|
|
|
|
|
|
|
|
/// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg&
|
|
|
|
arg_v &noconvert(bool flag = true) { arg::noconvert(flag); return *this; }
|
|
|
|
|
|
|
|
/// The default value
|
2016-09-05 22:49:21 +00:00
|
|
|
object value;
|
Add support for non-converting arguments
This adds support for controlling the `convert` flag of arguments
through the py::arg annotation. This then allows arguments to be
flagged as non-converting, which the type_caster is able to use to
request different behaviour.
Currently, AFAICS `convert` is only used for type converters of regular
pybind11-registered types; all of the other core type_casters ignore it.
We can, however, repurpose it to control internal conversion of
converters like Eigen and `array`: most usefully to give callers a way
to disable the conversion that would otherwise occur when a
`Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that
requires conversion (either because it has an incompatible stride or the
wrong dtype).
Specifying a noconvert looks like one of these:
m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert
m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting
m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting
(The last part--being able to declare a py::arg without a name--is new:
previous py::arg() only accepted named keyword arguments).
Such an non-convert argument is then passed `convert = false` by the
type caster when loading the argument. Whether this has an effect is up
to the type caster itself, but as mentioned above, this would be
extremely helpful for the Eigen support to give a nicer way to specify
a "no-copy" mode than the custom wrapper in the current PR, and
moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
|
|
|
/// The (optional) description of the default value
|
2016-09-05 22:49:21 +00:00
|
|
|
const char *descr;
|
|
|
|
#if !defined(NDEBUG)
|
Add support for non-converting arguments
This adds support for controlling the `convert` flag of arguments
through the py::arg annotation. This then allows arguments to be
flagged as non-converting, which the type_caster is able to use to
request different behaviour.
Currently, AFAICS `convert` is only used for type converters of regular
pybind11-registered types; all of the other core type_casters ignore it.
We can, however, repurpose it to control internal conversion of
converters like Eigen and `array`: most usefully to give callers a way
to disable the conversion that would otherwise occur when a
`Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that
requires conversion (either because it has an incompatible stride or the
wrong dtype).
Specifying a noconvert looks like one of these:
m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert
m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting
m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting
(The last part--being able to declare a py::arg without a name--is new:
previous py::arg() only accepted named keyword arguments).
Such an non-convert argument is then passed `convert = false` by the
type caster when loading the argument. Whether this has an effect is up
to the type caster itself, but as mentioned above, this would be
extremely helpful for the Eigen support to give a nicer way to specify
a "no-copy" mode than the custom wrapper in the current PR, and
moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
|
|
|
/// The C++ type name of the default value (only available when compiled in debug mode)
|
2016-09-05 22:49:21 +00:00
|
|
|
std::string type;
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename T>
|
Add support for non-converting arguments
This adds support for controlling the `convert` flag of arguments
through the py::arg annotation. This then allows arguments to be
flagged as non-converting, which the type_caster is able to use to
request different behaviour.
Currently, AFAICS `convert` is only used for type converters of regular
pybind11-registered types; all of the other core type_casters ignore it.
We can, however, repurpose it to control internal conversion of
converters like Eigen and `array`: most usefully to give callers a way
to disable the conversion that would otherwise occur when a
`Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that
requires conversion (either because it has an incompatible stride or the
wrong dtype).
Specifying a noconvert looks like one of these:
m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert
m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting
m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting
(The last part--being able to declare a py::arg without a name--is new:
previous py::arg() only accepted named keyword arguments).
Such an non-convert argument is then passed `convert = false` by the
type caster when loading the argument. Whether this has an effect is up
to the type caster itself, but as mentioned above, this would be
extremely helpful for the Eigen support to give a nicer way to specify
a "no-copy" mode than the custom wrapper in the current PR, and
moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
|
|
|
arg_v arg::operator=(T &&value) const { return {std::move(*this), std::forward<T>(value)}; }
|
2016-09-05 22:49:21 +00:00
|
|
|
|
2016-09-11 11:00:40 +00:00
|
|
|
/// Alias for backward compatibility -- to be removed in version 2.0
|
2016-09-05 22:49:21 +00:00
|
|
|
template <typename /*unused*/> using arg_t = arg_v;
|
|
|
|
|
|
|
|
inline namespace literals {
|
2017-01-31 15:54:08 +00:00
|
|
|
/** \rst
|
|
|
|
String literal version of `arg`
|
|
|
|
\endrst */
|
2016-09-05 22:49:21 +00:00
|
|
|
constexpr arg operator"" _a(const char *name, size_t) { return arg(name); }
|
|
|
|
}
|
|
|
|
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
NAMESPACE_BEGIN(detail)
|
2016-11-27 17:19:34 +00:00
|
|
|
|
2017-01-22 04:42:14 +00:00
|
|
|
// forward declaration
|
|
|
|
struct function_record;
|
|
|
|
|
Add support for non-converting arguments
This adds support for controlling the `convert` flag of arguments
through the py::arg annotation. This then allows arguments to be
flagged as non-converting, which the type_caster is able to use to
request different behaviour.
Currently, AFAICS `convert` is only used for type converters of regular
pybind11-registered types; all of the other core type_casters ignore it.
We can, however, repurpose it to control internal conversion of
converters like Eigen and `array`: most usefully to give callers a way
to disable the conversion that would otherwise occur when a
`Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that
requires conversion (either because it has an incompatible stride or the
wrong dtype).
Specifying a noconvert looks like one of these:
m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert
m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting
m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting
(The last part--being able to declare a py::arg without a name--is new:
previous py::arg() only accepted named keyword arguments).
Such an non-convert argument is then passed `convert = false` by the
type caster when loading the argument. Whether this has an effect is up
to the type caster itself, but as mentioned above, this would be
extremely helpful for the Eigen support to give a nicer way to specify
a "no-copy" mode than the custom wrapper in the current PR, and
moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
|
|
|
/// Internal data associated with a single function call
|
|
|
|
struct function_call {
|
|
|
|
function_call(function_record &f, handle p); // Implementation in attr.h
|
|
|
|
|
|
|
|
/// The function data:
|
|
|
|
const function_record &func;
|
|
|
|
|
|
|
|
/// Arguments passed to the function:
|
|
|
|
std::vector<handle> args;
|
|
|
|
|
|
|
|
/// The `convert` value the arguments should be loaded with
|
|
|
|
std::vector<bool> args_convert;
|
|
|
|
|
|
|
|
/// The parent, if any
|
|
|
|
handle parent;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
2016-11-27 17:19:34 +00:00
|
|
|
/// Helper class which loads arguments for C++ functions called from Python
|
|
|
|
template <typename... Args>
|
|
|
|
class argument_loader {
|
2016-11-27 19:56:04 +00:00
|
|
|
using indices = make_index_sequence<sizeof...(Args)>;
|
2016-11-27 17:19:34 +00:00
|
|
|
|
2017-01-23 00:15:12 +00:00
|
|
|
template <typename Arg> using argument_is_args = std::is_same<intrinsic_t<Arg>, args>;
|
|
|
|
template <typename Arg> using argument_is_kwargs = std::is_same<intrinsic_t<Arg>, kwargs>;
|
|
|
|
// Get args/kwargs argument positions relative to the end of the argument list:
|
|
|
|
static constexpr auto args_pos = constexpr_first<argument_is_args, Args...>() - (int) sizeof...(Args),
|
|
|
|
kwargs_pos = constexpr_first<argument_is_kwargs, Args...>() - (int) sizeof...(Args);
|
|
|
|
|
|
|
|
static constexpr bool args_kwargs_are_last = kwargs_pos >= - 1 && args_pos >= kwargs_pos - 1;
|
|
|
|
|
|
|
|
static_assert(args_kwargs_are_last, "py::args/py::kwargs are only permitted as the last argument(s) of a function");
|
Work around gcc 7 ICE
Current g++ 7 snapshot fails to compile pybind under -std=c++17 with:
```
$ make
[ 3%] Building CXX object tests/CMakeFiles/pybind11_tests.dir/pybind11_tests.cpp.o
In file included from /home/jagerman/src/pybind11/tests/pybind11_tests.h:2:0,
from /home/jagerman/src/pybind11/tests/pybind11_tests.cpp:10:
/home/jagerman/src/pybind11/include/pybind11/pybind11.h: In instantiation of 'pybind11::cpp_function::initialize(Func&&, Return (*)(Args ...), const Extra& ...)::<lambda(pybind11::detail::function_record*, pybind11::handle, pybind11::handle, pybind11::handle)> [with Func = pybind11::cpp_function::cpp_function(Return (Class::*)(Arg ...), const Extra& ...) [with Return = int; Class = ConstructorStats; Arg = {}; Extra = {pybind11::name, pybind11::is_method, pybind11::sibling}]::<lambda(ConstructorStats*)>; Return = int; Args = {ConstructorStats*}; Extra = {pybind11::name, pybind11::is_method, pybind11::sibling}]':
/home/jagerman/src/pybind11/include/pybind11/pybind11.h:120:22: required from 'struct pybind11::cpp_function::initialize(Func&&, Return (*)(Args ...), const Extra& ...) [with Func = pybind11::cpp_function::cpp_function(Return (Class::*)(Arg ...), const Extra& ...) [with Return = int; Class = ConstructorStats; Arg = {}; Extra = {pybind11::name, pybind11::is_method, pybind11::sibling}]::<lambda(ConstructorStats*)>; Return = int; Args = {ConstructorStats*}; Extra = {pybind11::name, pybind11::is_method, pybind11::sibling}]::<lambda(struct pybind11::detail::function_record*, class pybind11::handle, class pybind11::handle, class pybind11::handle)>'
/home/jagerman/src/pybind11/include/pybind11/pybind11.h:120:19: required from 'void pybind11::cpp_function::initialize(Func&&, Return (*)(Args ...), const Extra& ...) [with Func = pybind11::cpp_function::cpp_function(Return (Class::*)(Arg ...), const Extra& ...) [with Return = int; Class = ConstructorStats; Arg = {}; Extra = {pybind11::name, pybind11::is_method, pybind11::sibling}]::<lambda(ConstructorStats*)>; Return = int; Args = {ConstructorStats*}; Extra = {pybind11::name, pybind11::is_method, pybind11::sibling}]'
/home/jagerman/src/pybind11/include/pybind11/pybind11.h:62:9: required from 'pybind11::cpp_function::cpp_function(Return (Class::*)(Arg ...), const Extra& ...) [with Return = int; Class = ConstructorStats; Arg = {}; Extra = {pybind11::name, pybind11::is_method, pybind11::sibling}]'
/home/jagerman/src/pybind11/include/pybind11/pybind11.h:984:22: required from 'pybind11::class_<type_, options>& pybind11::class_<type_, options>::def(const char*, Func&&, const Extra& ...) [with Func = int (ConstructorStats::*)(); Extra = {}; type_ = ConstructorStats; options = {}]'
/home/jagerman/src/pybind11/tests/pybind11_tests.cpp:24:47: required from here
/home/jagerman/src/pybind11/include/pybind11/pybind11.h:147:9: sorry, unimplemented: unexpected AST of kind cleanup_stmt
};
^
/home/jagerman/src/pybind11/include/pybind11/pybind11.h:147:9: internal compiler error: in potential_constant_expression_1, at cp/constexpr.c:5593
0x84c52a potential_constant_expression_1
../../src/gcc/cp/constexpr.c:5593
0x84c3c0 potential_constant_expression_1
../../src/gcc/cp/constexpr.c:5154
0x645511 finish_function(int)
../../src/gcc/cp/decl.c:15527
0x66e80b instantiate_decl(tree_node*, int, bool)
../../src/gcc/cp/pt.c:22558
0x6b61e2 instantiate_class_template_1
../../src/gcc/cp/pt.c:10444
0x6b61e2 instantiate_class_template(tree_node*)
../../src/gcc/cp/pt.c:10514
0x75a676 complete_type(tree_node*)
../../src/gcc/cp/typeck.c:133
0x67d5a4 tsubst_copy_and_build(tree_node*, tree_node*, int, tree_node*, bool, bool)
../../src/gcc/cp/pt.c:17516
0x67ca19 tsubst_copy_and_build(tree_node*, tree_node*, int, tree_node*, bool, bool)
../../src/gcc/cp/pt.c:16655
0x672cce tsubst_expr(tree_node*, tree_node*, int, tree_node*, bool)
../../src/gcc/cp/pt.c:16140
0x6713dc tsubst_expr(tree_node*, tree_node*, int, tree_node*, bool)
../../src/gcc/cp/pt.c:15408
0x671915 tsubst_expr(tree_node*, tree_node*, int, tree_node*, bool)
../../src/gcc/cp/pt.c:15394
0x671fc0 tsubst_expr(tree_node*, tree_node*, int, tree_node*, bool)
../../src/gcc/cp/pt.c:15618
0x66e97f tsubst_expr(tree_node*, tree_node*, int, tree_node*, bool)
../../src/gcc/cp/pt.c:15379
0x66e97f instantiate_decl(tree_node*, int, bool)
../../src/gcc/cp/pt.c:22536
0x6ba0cb instantiate_pending_templates(int)
../../src/gcc/cp/pt.c:22653
0x6fd7f8 c_parse_final_cleanups()
../../src/gcc/cp/decl2.c:4512
```
which looks a lot like https://gcc.gnu.org/bugzilla/show_bug.cgi?id=77545.
The error seems to be that it gets confused about the `std::tuple<...>
value` in argument_loader: it is apparently not being initialized
properly. Adding a default constructor with an explicit
default-initialization of `value` works around the problem.
2016-12-14 00:11:36 +00:00
|
|
|
|
2017-01-22 04:42:14 +00:00
|
|
|
public:
|
2017-01-23 00:15:12 +00:00
|
|
|
static constexpr bool has_kwargs = kwargs_pos < 0;
|
|
|
|
static constexpr bool has_args = args_pos < 0;
|
2016-11-27 17:19:34 +00:00
|
|
|
|
|
|
|
static PYBIND11_DESCR arg_names() { return detail::concat(make_caster<Args>::name()...); }
|
|
|
|
|
Add support for non-converting arguments
This adds support for controlling the `convert` flag of arguments
through the py::arg annotation. This then allows arguments to be
flagged as non-converting, which the type_caster is able to use to
request different behaviour.
Currently, AFAICS `convert` is only used for type converters of regular
pybind11-registered types; all of the other core type_casters ignore it.
We can, however, repurpose it to control internal conversion of
converters like Eigen and `array`: most usefully to give callers a way
to disable the conversion that would otherwise occur when a
`Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that
requires conversion (either because it has an incompatible stride or the
wrong dtype).
Specifying a noconvert looks like one of these:
m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert
m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting
m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting
(The last part--being able to declare a py::arg without a name--is new:
previous py::arg() only accepted named keyword arguments).
Such an non-convert argument is then passed `convert = false` by the
type caster when loading the argument. Whether this has an effect is up
to the type caster itself, but as mentioned above, this would be
extremely helpful for the Eigen support to give a nicer way to specify
a "no-copy" mode than the custom wrapper in the current PR, and
moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
|
|
|
bool load_args(function_call &call) {
|
|
|
|
return load_impl_sequence(call, indices{});
|
2016-11-27 17:19:34 +00:00
|
|
|
}
|
|
|
|
|
2017-03-16 10:22:26 +00:00
|
|
|
template <typename Return, typename Guard, typename Func>
|
2016-11-27 17:19:34 +00:00
|
|
|
enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) {
|
2017-03-16 10:22:26 +00:00
|
|
|
return call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
|
2016-11-27 17:19:34 +00:00
|
|
|
}
|
|
|
|
|
2017-03-16 10:22:26 +00:00
|
|
|
template <typename Return, typename Guard, typename Func>
|
2016-11-27 17:19:34 +00:00
|
|
|
enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) {
|
2017-03-16 10:22:26 +00:00
|
|
|
call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
|
2016-11-27 17:19:34 +00:00
|
|
|
return void_type();
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
Add support for non-converting arguments
This adds support for controlling the `convert` flag of arguments
through the py::arg annotation. This then allows arguments to be
flagged as non-converting, which the type_caster is able to use to
request different behaviour.
Currently, AFAICS `convert` is only used for type converters of regular
pybind11-registered types; all of the other core type_casters ignore it.
We can, however, repurpose it to control internal conversion of
converters like Eigen and `array`: most usefully to give callers a way
to disable the conversion that would otherwise occur when a
`Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that
requires conversion (either because it has an incompatible stride or the
wrong dtype).
Specifying a noconvert looks like one of these:
m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert
m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting
m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting
(The last part--being able to declare a py::arg without a name--is new:
previous py::arg() only accepted named keyword arguments).
Such an non-convert argument is then passed `convert = false` by the
type caster when loading the argument. Whether this has an effect is up
to the type caster itself, but as mentioned above, this would be
extremely helpful for the Eigen support to give a nicer way to specify
a "no-copy" mode than the custom wrapper in the current PR, and
moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
|
|
|
static bool load_impl_sequence(function_call &, index_sequence<>) { return true; }
|
2016-11-27 17:19:34 +00:00
|
|
|
|
|
|
|
template <size_t... Is>
|
Add support for non-converting arguments
This adds support for controlling the `convert` flag of arguments
through the py::arg annotation. This then allows arguments to be
flagged as non-converting, which the type_caster is able to use to
request different behaviour.
Currently, AFAICS `convert` is only used for type converters of regular
pybind11-registered types; all of the other core type_casters ignore it.
We can, however, repurpose it to control internal conversion of
converters like Eigen and `array`: most usefully to give callers a way
to disable the conversion that would otherwise occur when a
`Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that
requires conversion (either because it has an incompatible stride or the
wrong dtype).
Specifying a noconvert looks like one of these:
m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert
m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting
m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting
(The last part--being able to declare a py::arg without a name--is new:
previous py::arg() only accepted named keyword arguments).
Such an non-convert argument is then passed `convert = false` by the
type caster when loading the argument. Whether this has an effect is up
to the type caster itself, but as mentioned above, this would be
extremely helpful for the Eigen support to give a nicer way to specify
a "no-copy" mode than the custom wrapper in the current PR, and
moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
|
|
|
bool load_impl_sequence(function_call &call, index_sequence<Is...>) {
|
|
|
|
for (bool r : {std::get<Is>(value).load(call.args[Is], call.args_convert[Is])...})
|
2016-11-27 17:19:34 +00:00
|
|
|
if (!r)
|
|
|
|
return false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2017-03-16 10:22:26 +00:00
|
|
|
template <typename Return, typename Func, size_t... Is, typename Guard>
|
|
|
|
Return call_impl(Func &&f, index_sequence<Is...>, Guard &&) {
|
2016-11-27 17:19:34 +00:00
|
|
|
return std::forward<Func>(f)(cast_op<Args>(std::get<Is>(value))...);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::tuple<make_caster<Args>...> value;
|
|
|
|
};
|
|
|
|
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
/// Helper class which collects only positional arguments for a Python function call.
|
|
|
|
/// A fancier version below can collect any argument, but this one is optimal for simple calls.
|
|
|
|
template <return_value_policy policy>
|
|
|
|
class simple_collector {
|
|
|
|
public:
|
|
|
|
template <typename... Ts>
|
2016-10-16 20:27:42 +00:00
|
|
|
explicit simple_collector(Ts &&...values)
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
: m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) { }
|
|
|
|
|
|
|
|
const tuple &args() const & { return m_args; }
|
|
|
|
dict kwargs() const { return {}; }
|
|
|
|
|
|
|
|
tuple args() && { return std::move(m_args); }
|
|
|
|
|
|
|
|
/// Call a Python function and pass the collected arguments
|
|
|
|
object call(PyObject *ptr) const {
|
2016-10-28 01:08:15 +00:00
|
|
|
PyObject *result = PyObject_CallObject(ptr, m_args.ptr());
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
if (!result)
|
|
|
|
throw error_already_set();
|
2016-10-28 01:08:15 +00:00
|
|
|
return reinterpret_steal<object>(result);
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
tuple m_args;
|
|
|
|
};
|
|
|
|
|
|
|
|
/// Helper class which collects positional, keyword, * and ** arguments for a Python function call
|
|
|
|
template <return_value_policy policy>
|
|
|
|
class unpacking_collector {
|
|
|
|
public:
|
|
|
|
template <typename... Ts>
|
2016-10-16 20:27:42 +00:00
|
|
|
explicit unpacking_collector(Ts &&...values) {
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
// Tuples aren't (easily) resizable so a list is needed for collection,
|
|
|
|
// but the actual function call strictly requires a tuple.
|
|
|
|
auto args_list = list();
|
|
|
|
int _[] = { 0, (process(args_list, std::forward<Ts>(values)), 0)... };
|
|
|
|
ignore_unused(_);
|
|
|
|
|
2016-10-25 20:12:39 +00:00
|
|
|
m_args = std::move(args_list);
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
const tuple &args() const & { return m_args; }
|
|
|
|
const dict &kwargs() const & { return m_kwargs; }
|
|
|
|
|
|
|
|
tuple args() && { return std::move(m_args); }
|
|
|
|
dict kwargs() && { return std::move(m_kwargs); }
|
|
|
|
|
|
|
|
/// Call a Python function and pass the collected arguments
|
|
|
|
object call(PyObject *ptr) const {
|
2016-10-28 01:08:15 +00:00
|
|
|
PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr());
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
if (!result)
|
|
|
|
throw error_already_set();
|
2016-10-28 01:08:15 +00:00
|
|
|
return reinterpret_steal<object>(result);
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
template <typename T>
|
|
|
|
void process(list &args_list, T &&x) {
|
2016-10-28 01:08:15 +00:00
|
|
|
auto o = reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(x), policy, {}));
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
if (!o) {
|
|
|
|
#if defined(NDEBUG)
|
|
|
|
argument_cast_error();
|
|
|
|
#else
|
|
|
|
argument_cast_error(std::to_string(args_list.size()), type_id<T>());
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
args_list.append(o);
|
|
|
|
}
|
|
|
|
|
|
|
|
void process(list &args_list, detail::args_proxy ap) {
|
2016-10-08 13:30:00 +00:00
|
|
|
for (const auto &a : ap)
|
2016-09-08 15:02:04 +00:00
|
|
|
args_list.append(a);
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
}
|
|
|
|
|
2016-09-05 22:49:21 +00:00
|
|
|
void process(list &/*args_list*/, arg_v a) {
|
Add support for non-converting arguments
This adds support for controlling the `convert` flag of arguments
through the py::arg annotation. This then allows arguments to be
flagged as non-converting, which the type_caster is able to use to
request different behaviour.
Currently, AFAICS `convert` is only used for type converters of regular
pybind11-registered types; all of the other core type_casters ignore it.
We can, however, repurpose it to control internal conversion of
converters like Eigen and `array`: most usefully to give callers a way
to disable the conversion that would otherwise occur when a
`Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that
requires conversion (either because it has an incompatible stride or the
wrong dtype).
Specifying a noconvert looks like one of these:
m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert
m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting
m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting
(The last part--being able to declare a py::arg without a name--is new:
previous py::arg() only accepted named keyword arguments).
Such an non-convert argument is then passed `convert = false` by the
type caster when loading the argument. Whether this has an effect is up
to the type caster itself, but as mentioned above, this would be
extremely helpful for the Eigen support to give a nicer way to specify
a "no-copy" mode than the custom wrapper in the current PR, and
moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
|
|
|
if (!a.name)
|
|
|
|
#if defined(NDEBUG)
|
|
|
|
nameless_argument_error();
|
|
|
|
#else
|
|
|
|
nameless_argument_error(a.type);
|
|
|
|
#endif
|
|
|
|
|
2016-09-20 23:06:32 +00:00
|
|
|
if (m_kwargs.contains(a.name)) {
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
#if defined(NDEBUG)
|
|
|
|
multiple_values_error();
|
|
|
|
#else
|
|
|
|
multiple_values_error(a.name);
|
|
|
|
#endif
|
|
|
|
}
|
2016-09-05 22:49:21 +00:00
|
|
|
if (!a.value) {
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
#if defined(NDEBUG)
|
|
|
|
argument_cast_error();
|
|
|
|
#else
|
2016-09-05 22:49:21 +00:00
|
|
|
argument_cast_error(a.name, a.type);
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
#endif
|
|
|
|
}
|
2016-09-05 22:49:21 +00:00
|
|
|
m_kwargs[a.name] = a.value;
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void process(list &/*args_list*/, detail::kwargs_proxy kp) {
|
2016-10-08 13:30:00 +00:00
|
|
|
if (!kp)
|
|
|
|
return;
|
2016-10-28 01:08:15 +00:00
|
|
|
for (const auto &k : reinterpret_borrow<dict>(kp)) {
|
2016-09-20 23:06:32 +00:00
|
|
|
if (m_kwargs.contains(k.first)) {
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
#if defined(NDEBUG)
|
|
|
|
multiple_values_error();
|
|
|
|
#else
|
2016-10-25 20:12:39 +00:00
|
|
|
multiple_values_error(str(k.first));
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
#endif
|
|
|
|
}
|
|
|
|
m_kwargs[k.first] = k.second;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Add support for non-converting arguments
This adds support for controlling the `convert` flag of arguments
through the py::arg annotation. This then allows arguments to be
flagged as non-converting, which the type_caster is able to use to
request different behaviour.
Currently, AFAICS `convert` is only used for type converters of regular
pybind11-registered types; all of the other core type_casters ignore it.
We can, however, repurpose it to control internal conversion of
converters like Eigen and `array`: most usefully to give callers a way
to disable the conversion that would otherwise occur when a
`Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that
requires conversion (either because it has an incompatible stride or the
wrong dtype).
Specifying a noconvert looks like one of these:
m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert
m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting
m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting
(The last part--being able to declare a py::arg without a name--is new:
previous py::arg() only accepted named keyword arguments).
Such an non-convert argument is then passed `convert = false` by the
type caster when loading the argument. Whether this has an effect is up
to the type caster itself, but as mentioned above, this would be
extremely helpful for the Eigen support to give a nicer way to specify
a "no-copy" mode than the custom wrapper in the current PR, and
moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
|
|
|
[[noreturn]] static void nameless_argument_error() {
|
|
|
|
throw type_error("Got kwargs without a name; only named arguments "
|
|
|
|
"may be passed via py::arg() to a python function call. "
|
|
|
|
"(compile in debug mode for details)");
|
|
|
|
}
|
|
|
|
[[noreturn]] static void nameless_argument_error(std::string type) {
|
|
|
|
throw type_error("Got kwargs without a name of type '" + type + "'; only named "
|
|
|
|
"arguments may be passed via py::arg() to a python function call. ");
|
|
|
|
}
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
[[noreturn]] static void multiple_values_error() {
|
|
|
|
throw type_error("Got multiple values for keyword argument "
|
|
|
|
"(compile in debug mode for details)");
|
|
|
|
}
|
|
|
|
|
|
|
|
[[noreturn]] static void multiple_values_error(std::string name) {
|
|
|
|
throw type_error("Got multiple values for keyword argument '" + name + "'");
|
|
|
|
}
|
|
|
|
|
|
|
|
[[noreturn]] static void argument_cast_error() {
|
|
|
|
throw cast_error("Unable to convert call argument to Python object "
|
|
|
|
"(compile in debug mode for details)");
|
|
|
|
}
|
|
|
|
|
|
|
|
[[noreturn]] static void argument_cast_error(std::string name, std::string type) {
|
|
|
|
throw cast_error("Unable to convert call argument '" + name
|
|
|
|
+ "' of type '" + type + "' to Python object");
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
tuple m_args;
|
|
|
|
dict m_kwargs;
|
|
|
|
};
|
|
|
|
|
|
|
|
/// Collect only positional arguments for a Python function call
|
|
|
|
template <return_value_policy policy, typename... Args,
|
Change all_of_t/any_of_t to all_of/any_of, add none_of
This replaces the current `all_of_t<Pred, Ts...>` with `all_of<Ts...>`,
with previous use of `all_of_t<Pred, Ts...>` becoming
`all_of<Pred<Ts>...>` (and similarly for `any_of_t`). It also adds a
`none_of<Ts...>`, a shortcut for `negation<any_of<Ts...>>`.
This allows `all_of` and `any_of` to be used a bit more flexible, e.g.
in cases where several predicates need to be tested for the same type
instead of the same predicate for multiple types.
This commit replaces the implementation with a more efficient version
for non-MSVC. For MSVC, this changes the workaround to use the
built-in, recursive std::conjunction/std::disjunction instead.
This also removes the `count_t` since `any_of_t` and `all_of_t` were the
only things using it.
This commit also rearranges some of the future std imports to use actual
`std` implementations for C++14/17 features when under the appropriate
compiler mode, as we were already doing for a few things (like
index_sequence). Most of these aren't saving much (the implementation
for enable_if_t, for example, is trivial), but I think it makes the
intention of the code instantly clear. It also enables MSVC's native
std::index_sequence support.
2016-12-12 23:11:49 +00:00
|
|
|
typename = enable_if_t<all_of<is_positional<Args>...>::value>>
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
simple_collector<policy> collect_arguments(Args &&...args) {
|
2016-10-16 20:27:42 +00:00
|
|
|
return simple_collector<policy>(std::forward<Args>(args)...);
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Collect all arguments, including keywords and unpacking (only instantiated when needed)
|
|
|
|
template <return_value_policy policy, typename... Args,
|
Change all_of_t/any_of_t to all_of/any_of, add none_of
This replaces the current `all_of_t<Pred, Ts...>` with `all_of<Ts...>`,
with previous use of `all_of_t<Pred, Ts...>` becoming
`all_of<Pred<Ts>...>` (and similarly for `any_of_t`). It also adds a
`none_of<Ts...>`, a shortcut for `negation<any_of<Ts...>>`.
This allows `all_of` and `any_of` to be used a bit more flexible, e.g.
in cases where several predicates need to be tested for the same type
instead of the same predicate for multiple types.
This commit replaces the implementation with a more efficient version
for non-MSVC. For MSVC, this changes the workaround to use the
built-in, recursive std::conjunction/std::disjunction instead.
This also removes the `count_t` since `any_of_t` and `all_of_t` were the
only things using it.
This commit also rearranges some of the future std imports to use actual
`std` implementations for C++14/17 features when under the appropriate
compiler mode, as we were already doing for a few things (like
index_sequence). Most of these aren't saving much (the implementation
for enable_if_t, for example, is trivial), but I think it makes the
intention of the code instantly clear. It also enables MSVC's native
std::index_sequence support.
2016-12-12 23:11:49 +00:00
|
|
|
typename = enable_if_t<!all_of<is_positional<Args>...>::value>>
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
unpacking_collector<policy> collect_arguments(Args &&...args) {
|
|
|
|
// Following argument order rules for generalized unpacking according to PEP 448
|
|
|
|
static_assert(
|
|
|
|
constexpr_last<is_positional, Args...>() < constexpr_first<is_keyword_or_ds, Args...>()
|
|
|
|
&& constexpr_last<is_s_unpacking, Args...>() < constexpr_first<is_ds_unpacking, Args...>(),
|
|
|
|
"Invalid function call: positional args must precede keywords and ** unpacking; "
|
|
|
|
"* unpacking must precede ** unpacking"
|
|
|
|
);
|
2016-10-16 20:27:42 +00:00
|
|
|
return unpacking_collector<policy>(std::forward<Args>(args)...);
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
}
|
|
|
|
|
2016-09-08 14:36:01 +00:00
|
|
|
template <typename Derived>
|
Support keyword arguments and generalized unpacking in C++
A Python function can be called with the syntax:
```python
foo(a1, a2, *args, ka=1, kb=2, **kwargs)
```
This commit adds support for the equivalent syntax in C++:
```c++
foo(a1, a2, *args, "ka"_a=1, "kb"_a=2, **kwargs)
```
In addition, generalized unpacking is implemented, as per PEP 448,
which allows calls with multiple * and ** unpacking:
```python
bar(*args1, 99, *args2, 101, **kwargs1, kz=200, **kwargs2)
```
and
```c++
bar(*args1, 99, *args2, 101, **kwargs1, "kz"_a=200, **kwargs2)
```
2016-08-29 01:05:42 +00:00
|
|
|
template <return_value_policy policy, typename... Args>
|
2016-09-08 14:36:01 +00:00
|
|
|
object object_api<Derived>::operator()(Args &&...args) const {
|
|
|
|
return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr());
|
2015-07-05 18:05:44 +00:00
|
|
|
}
|
|
|
|
|
2016-09-08 14:36:01 +00:00
|
|
|
template <typename Derived>
|
|
|
|
template <return_value_policy policy, typename... Args>
|
|
|
|
object object_api<Derived>::call(Args &&...args) const {
|
2016-06-22 12:29:13 +00:00
|
|
|
return operator()<policy>(std::forward<Args>(args)...);
|
2016-05-08 12:34:09 +00:00
|
|
|
}
|
|
|
|
|
2016-09-08 14:36:01 +00:00
|
|
|
NAMESPACE_END(detail)
|
|
|
|
|
2016-04-28 14:25:24 +00:00
|
|
|
#define PYBIND11_MAKE_OPAQUE(Type) \
|
|
|
|
namespace pybind11 { namespace detail { \
|
|
|
|
template<> class type_caster<Type> : public type_caster_base<Type> { }; \
|
|
|
|
}}
|
|
|
|
|
2015-10-15 16:13:33 +00:00
|
|
|
NAMESPACE_END(pybind11)
|