pybind11/tests/test_stl_binders.cpp

124 lines
3.5 KiB
C++
Raw Normal View History

2016-05-07 04:26:19 +00:00
/*
tests/test_stl_binders.cpp -- Usage of stl_binders functions
2016-05-07 04:26:19 +00:00
2016-05-15 18:50:38 +00:00
Copyright (c) 2016 Sergey Lyskov
2016-05-07 04:26:19 +00:00
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#include "pybind11_tests.h"
2016-05-07 04:26:19 +00:00
2016-05-15 18:50:38 +00:00
#include <pybind11/stl_bind.h>
#include <pybind11/numpy.h>
2016-09-06 04:02:29 +00:00
#include <map>
Fix stl_bind to support movable, non-copyable value types (#490) This commit includes the following changes: * Don't provide make_copy_constructor for non-copyable container make_copy_constructor currently fails for various stl containers (e.g. std::vector, std::unordered_map, std::deque, etc.) when the container's value type (e.g. the "T" or the std::pair<K,T> for a map) is non-copyable. This adds an override that, for types that look like containers, also requires that the value_type be copyable. * stl_bind.h: make bind_{vector,map} work for non-copy-constructible types Most stl_bind modifiers require copying, so if the type isn't copy constructible, we provide a read-only interface instead. In practice, this means that if the type is non-copyable, it will be, for all intents and purposes, read-only from the Python side (but currently it simply fails to compile with such a container). It is still possible for the caller to provide an interface manually (by defining methods on the returned class_ object), but this isn't something stl_bind can handle because the C++ code to construct values is going to be highly dependent on the container value_type. * stl_bind: copy only for arithmetic value types For non-primitive types, we may well be copying some complex type, when returning by reference is more appropriate. This commit returns by internal reference for all but basic arithmetic types. * Return by reference whenever possible Only if we definitely can't--i.e. std::vector<bool>--because v[i] returns something that isn't a T& do we copy; for everything else, we return by reference. For the map case, we can always return by reference (at least for the default stl map/unordered_map).
2016-11-15 11:30:38 +00:00
#include <deque>
2016-09-06 04:02:29 +00:00
#include <unordered_map>
2016-05-07 04:26:19 +00:00
2016-05-15 18:50:38 +00:00
class El {
2016-05-07 04:26:19 +00:00
public:
El() = delete;
El(int v) : a(v) { }
int a;
2016-05-07 04:26:19 +00:00
};
2016-05-15 18:50:38 +00:00
std::ostream & operator<<(std::ostream &s, El const&v) {
s << "El{" << v.a << '}';
return s;
}
Fix stl_bind to support movable, non-copyable value types (#490) This commit includes the following changes: * Don't provide make_copy_constructor for non-copyable container make_copy_constructor currently fails for various stl containers (e.g. std::vector, std::unordered_map, std::deque, etc.) when the container's value type (e.g. the "T" or the std::pair<K,T> for a map) is non-copyable. This adds an override that, for types that look like containers, also requires that the value_type be copyable. * stl_bind.h: make bind_{vector,map} work for non-copy-constructible types Most stl_bind modifiers require copying, so if the type isn't copy constructible, we provide a read-only interface instead. In practice, this means that if the type is non-copyable, it will be, for all intents and purposes, read-only from the Python side (but currently it simply fails to compile with such a container). It is still possible for the caller to provide an interface manually (by defining methods on the returned class_ object), but this isn't something stl_bind can handle because the C++ code to construct values is going to be highly dependent on the container value_type. * stl_bind: copy only for arithmetic value types For non-primitive types, we may well be copying some complex type, when returning by reference is more appropriate. This commit returns by internal reference for all but basic arithmetic types. * Return by reference whenever possible Only if we definitely can't--i.e. std::vector<bool>--because v[i] returns something that isn't a T& do we copy; for everything else, we return by reference. For the map case, we can always return by reference (at least for the default stl map/unordered_map).
2016-11-15 11:30:38 +00:00
/// Issue #487: binding std::vector<E> with E non-copyable
class E_nc {
public:
explicit E_nc(int i) : value{i} {}
E_nc(const E_nc &) = delete;
E_nc &operator=(const E_nc &) = delete;
E_nc(E_nc &&) = default;
E_nc &operator=(E_nc &&) = default;
int value;
};
template <class Container> Container *one_to_n(int n) {
auto v = new Container();
for (int i = 1; i <= n; i++)
v->emplace_back(i);
return v;
}
template <class Map> Map *times_ten(int n) {
auto m = new Map();
for (int i = 1; i <= n; i++)
m->emplace(int(i), E_nc(10*i));
return m;
}
struct VStruct {
bool w;
uint32_t x;
double y;
bool z;
};
struct VUndeclStruct { //dtype not declared for this version
bool w;
uint32_t x;
double y;
bool z;
};
test_initializer stl_binder_vector([](py::module &m) {
py::class_<El>(m, "El")
.def(py::init<int>());
py::bind_vector<std::vector<unsigned char>>(m, "VectorUChar", py::buffer_protocol());
py::bind_vector<std::vector<unsigned int>>(m, "VectorInt", py::buffer_protocol());
2016-09-06 04:02:29 +00:00
py::bind_vector<std::vector<bool>>(m, "VectorBool");
2016-05-15 18:50:38 +00:00
2016-09-06 04:02:29 +00:00
py::bind_vector<std::vector<El>>(m, "VectorEl");
2016-05-07 04:26:19 +00:00
2016-09-06 04:02:29 +00:00
py::bind_vector<std::vector<std::vector<El>>>(m, "VectorVectorEl");
Fix stl_bind to support movable, non-copyable value types (#490) This commit includes the following changes: * Don't provide make_copy_constructor for non-copyable container make_copy_constructor currently fails for various stl containers (e.g. std::vector, std::unordered_map, std::deque, etc.) when the container's value type (e.g. the "T" or the std::pair<K,T> for a map) is non-copyable. This adds an override that, for types that look like containers, also requires that the value_type be copyable. * stl_bind.h: make bind_{vector,map} work for non-copy-constructible types Most stl_bind modifiers require copying, so if the type isn't copy constructible, we provide a read-only interface instead. In practice, this means that if the type is non-copyable, it will be, for all intents and purposes, read-only from the Python side (but currently it simply fails to compile with such a container). It is still possible for the caller to provide an interface manually (by defining methods on the returned class_ object), but this isn't something stl_bind can handle because the C++ code to construct values is going to be highly dependent on the container value_type. * stl_bind: copy only for arithmetic value types For non-primitive types, we may well be copying some complex type, when returning by reference is more appropriate. This commit returns by internal reference for all but basic arithmetic types. * Return by reference whenever possible Only if we definitely can't--i.e. std::vector<bool>--because v[i] returns something that isn't a T& do we copy; for everything else, we return by reference. For the map case, we can always return by reference (at least for the default stl map/unordered_map).
2016-11-15 11:30:38 +00:00
m.def("create_undeclstruct", [m] () mutable {
py::bind_vector<std::vector<VUndeclStruct>>(m, "VectorUndeclStruct", py::buffer_protocol());
});
try {
py::module::import("numpy");
} catch (...) {
return;
}
PYBIND11_NUMPY_DTYPE(VStruct, w, x, y, z);
py::class_<VStruct>(m, "VStruct").def_readwrite("x", &VStruct::x);
py::bind_vector<std::vector<VStruct>>(m, "VectorStruct", py::buffer_protocol());
m.def("get_vectorstruct", [] {return std::vector<VStruct> {{0, 5, 3.0, 1}, {1, 30, -1e4, 0}};});
2016-08-30 02:50:38 +00:00
});
test_initializer stl_binder_map([](py::module &m) {
2016-09-06 04:02:29 +00:00
py::bind_map<std::map<std::string, double>>(m, "MapStringDouble");
py::bind_map<std::unordered_map<std::string, double>>(m, "UnorderedMapStringDouble");
2016-08-30 02:50:38 +00:00
2016-09-06 04:02:29 +00:00
py::bind_map<std::map<std::string, double const>>(m, "MapStringDoubleConst");
py::bind_map<std::unordered_map<std::string, double const>>(m, "UnorderedMapStringDoubleConst");
Fix stl_bind to support movable, non-copyable value types (#490) This commit includes the following changes: * Don't provide make_copy_constructor for non-copyable container make_copy_constructor currently fails for various stl containers (e.g. std::vector, std::unordered_map, std::deque, etc.) when the container's value type (e.g. the "T" or the std::pair<K,T> for a map) is non-copyable. This adds an override that, for types that look like containers, also requires that the value_type be copyable. * stl_bind.h: make bind_{vector,map} work for non-copy-constructible types Most stl_bind modifiers require copying, so if the type isn't copy constructible, we provide a read-only interface instead. In practice, this means that if the type is non-copyable, it will be, for all intents and purposes, read-only from the Python side (but currently it simply fails to compile with such a container). It is still possible for the caller to provide an interface manually (by defining methods on the returned class_ object), but this isn't something stl_bind can handle because the C++ code to construct values is going to be highly dependent on the container value_type. * stl_bind: copy only for arithmetic value types For non-primitive types, we may well be copying some complex type, when returning by reference is more appropriate. This commit returns by internal reference for all but basic arithmetic types. * Return by reference whenever possible Only if we definitely can't--i.e. std::vector<bool>--because v[i] returns something that isn't a T& do we copy; for everything else, we return by reference. For the map case, we can always return by reference (at least for the default stl map/unordered_map).
2016-11-15 11:30:38 +00:00
});
test_initializer stl_binder_noncopyable([](py::module &m) {
py::class_<E_nc>(m, "ENC")
.def(py::init<int>())
.def_readwrite("value", &E_nc::value);
py::bind_vector<std::vector<E_nc>>(m, "VectorENC");
m.def("get_vnc", &one_to_n<std::vector<E_nc>>, py::return_value_policy::reference);
py::bind_vector<std::deque<E_nc>>(m, "DequeENC");
m.def("get_dnc", &one_to_n<std::deque<E_nc>>, py::return_value_policy::reference);
py::bind_map<std::map<int, E_nc>>(m, "MapENC");
m.def("get_mnc", &times_ten<std::map<int, E_nc>>, py::return_value_policy::reference);
py::bind_map<std::unordered_map<int, E_nc>>(m, "UmapENC");
m.def("get_umnc", &times_ten<std::unordered_map<int, E_nc>>, py::return_value_policy::reference);
});