pybind11/include/pybind11/cast.h

1468 lines
60 KiB
C
Raw Normal View History

2015-07-05 18:05:44 +00:00
/*
pybind11/cast.h: Partial template specializations to cast between
2015-07-05 18:05:44 +00:00
C++ and Python types
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
2015-07-05 18:05:44 +00:00
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
2015-07-11 15:41:48 +00:00
#pragma once
2015-07-05 18:05:44 +00:00
#include "pytypes.h"
#include "detail/common.h"
#include "detail/descr.h"
#include "detail/type_caster_base.h"
#include "detail/typeid.h"
2015-07-05 18:05:44 +00:00
#include <array>
#include <cstring>
#include <functional>
#include <iosfwd>
#include <iterator>
#include <memory>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
2015-07-05 18:05:44 +00:00
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
2016-04-28 14:25:24 +00:00
template <typename type, typename SFINAE = void> class type_caster : public type_caster_base<type> { };
template <typename type> using make_caster = type_caster<intrinsic_t<type>>;
2016-04-28 14:25:24 +00:00
// Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T
template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) {
return caster.operator typename make_caster<T>::template cast_op_type<T>();
}
template <typename T> typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>
cast_op(make_caster<T> &&caster) {
return std::move(caster).operator
typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>();
}
template <typename type> class type_caster<std::reference_wrapper<type>> {
private:
using caster_t = make_caster<type>;
caster_t subcaster;
Adjusting `type_caster<std::reference_wrapper<T>>` to support const/non-const propagation in `cast_op`. (#2705) * Allow type_caster of std::reference_wrapper<T> to be the same as a native reference. Before, both std::reference_wrapper<T> and std::reference_wrapper<const T> would invoke cast_op<type>. This doesn't allow the type_caster<> specialization for T to distinguish reference_wrapper types from value types. After, the type_caster<> specialization invokes cast_op<type&>, which allows reference_wrapper to behave in the same way as a native reference type. * Add tests/examples for std::reference_wrapper<const T> * Add tests which use mutable/immutable variants This test is a chimera; it blends the pybind11 casters with a custom pytype implementation that supports immutable and mutable calls. In order to detect the immutable/mutable state, the cast_op needs to propagate it, even through e.g. std::reference<const T> Note: This is still a work in progress; some things are crashing, which likely means that I have a refcounting bug or something else missing. * Add/finish tests that distinguish const& from & Fixes the bugs in my custom python type implementation, demonstrate test that requires const& and reference_wrapper<const T> being treated differently from Non-const. * Add passing a const to non-const method. * Demonstrate non-const conversion of reference_wrapper in tests. Apply formatting presubmit check. * Fix build errors from presubmit checks. * Try and fix a few more CI errors * More CI fixes. * More CI fixups. * Try and get PyPy to work. * Additional minor fixups. Getting close to CI green. * More ci fixes? * fix clang-tidy warnings from presubmit * fix more clang-tidy warnings * minor comment and consistency cleanups * PyDECREF -> Py_DECREF * copy/move constructors * Resolve codereview comments * more review comment fixes * review comments: remove spurious & * Make the test fail even when the static_assert is commented out. This expands the test_freezable_type_caster a bit by: 1/ adding accessors .is_immutable and .addr to compare identity from python. 2/ Changing the default cast_op of the type_caster<> specialization to return a non-const value. In normal codepaths this is a reasonable default. 3/ adding roundtrip variants to exercise the by reference, by pointer and by reference_wrapper in all call paths. In conjunction with 2/, this demonstrates the failure case of the existing std::reference_wrpper conversion, which now loses const in a similar way that happens when using the default cast_op_type<>. * apply presubmit formatting * Revert inclusion of test_freezable_type_caster There's some concern that this test is a bit unwieldly because of the use of the raw <Python.h> functions. Removing for now. * Add a test that validates const references propagation. This test verifies that cast_op may be used to correctly detect const reference types when used with std::reference_wrapper. * mend * Review comments based changes. 1. std::add_lvalue_reference<type> -> type& 2. Simplify the test a little more; we're never returning the ConstRefCaster type so the class_ definition can be removed. * formatted files again. * Move const_ref_caster test to builtin_casters * Review comments: use cast_op and adjust some comments. * Simplify ConstRefCasted test I like this version better as it moves the assertion that matters back into python.
2020-12-16 00:53:55 +00:00
using reference_t = type&;
using subcaster_cast_op_type =
typename caster_t::template cast_op_type<reference_t>;
static_assert(std::is_same<typename std::remove_const<type>::type &, subcaster_cast_op_type>::value ||
std::is_same<reference_t, subcaster_cast_op_type>::value,
"std::reference_wrapper<T> caster requires T to have a caster with an "
"`operator T &()` or `operator const T &()`");
public:
bool load(handle src, bool convert) { return subcaster.load(src, convert); }
static constexpr auto name = caster_t::name;
static handle cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) {
// It is definitely wrong to take ownership of this pointer, so mask that rvp
if (policy == return_value_policy::take_ownership
|| policy == return_value_policy::automatic) {
policy = return_value_policy::automatic_reference;
}
return caster_t::cast(&src.get(), policy, parent);
}
template <typename T> using cast_op_type = std::reference_wrapper<type>;
explicit operator std::reference_wrapper<type>() { return cast_op<type &>(subcaster); }
};
#define PYBIND11_TYPE_CASTER(type, py_name) \
protected: \
type value; \
\
public: \
static constexpr auto name = py_name; \
template <typename T_, enable_if_t<std::is_same<type, remove_cv_t<T_>>::value, int> = 0> \
static handle cast(T_ *src, return_value_policy policy, handle parent) { \
if (!src) \
return none().release(); \
if (policy == return_value_policy::take_ownership) { \
auto h = cast(std::move(*src), policy, parent); \
delete src; \
return h; \
} \
return cast(*src, policy, parent); \
} \
operator type *() { return &value; } /* NOLINT(bugprone-macro-parentheses) */ \
operator type &() { return value; } /* NOLINT(bugprone-macro-parentheses) */ \
operator type &&() && { return std::move(value); } /* NOLINT(bugprone-macro-parentheses) */ \
template <typename T_> \
using cast_op_type = pybind11::detail::movable_cast_op_type<T_>
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
template <typename CharT> using is_std_char_type = any_of<
std::is_same<CharT, char>, /* std::string */
#if defined(PYBIND11_HAS_U8STRING)
std::is_same<CharT, char8_t>, /* std::u8string */
#endif
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
std::is_same<CharT, char16_t>, /* std::u16string */
std::is_same<CharT, char32_t>, /* std::u32string */
std::is_same<CharT, wchar_t> /* std::wstring */
>;
2015-11-30 11:30:28 +00:00
template <typename T>
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value && !is_std_char_type<T>::value>> {
using _py_type_0 = conditional_t<sizeof(T) <= sizeof(long), long, long long>;
using _py_type_1 = conditional_t<std::is_signed<T>::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>;
using py_type = conditional_t<std::is_floating_point<T>::value, double, _py_type_1>;
2015-11-30 11:30:28 +00:00
public:
2015-07-05 18:05:44 +00:00
bool load(handle src, bool convert) {
2015-11-30 11:30:28 +00:00
py_type py_value;
2015-07-05 18:05:44 +00:00
if (!src) {
return false;
}
#if !defined(PYPY_VERSION)
auto index_check = [](PyObject *o) { return PyIndex_Check(o); };
#else
// In PyPy 7.3.3, `PyIndex_Check` is implemented by calling `__index__`,
// while CPython only considers the existence of `nb_index`/`__index__`.
auto index_check = [](PyObject *o) { return hasattr(o, "__index__"); };
#endif
if (std::is_floating_point<T>::value) {
if (convert || PyFloat_Check(src.ptr())) {
py_value = (py_type) PyFloat_AsDouble(src.ptr());
} else {
return false;
}
} else if (PyFloat_Check(src.ptr())
|| (!convert && !PYBIND11_LONG_CHECK(src.ptr()) && !index_check(src.ptr()))) {
return false;
} else {
handle src_or_index = src;
// PyPy: 7.3.7's 3.8 does not implement PyLong_*'s __index__ calls.
#if PY_VERSION_HEX < 0x03080000 || defined(PYPY_VERSION)
object index;
if (!PYBIND11_LONG_CHECK(src.ptr())) { // So: index_check(src.ptr())
index = reinterpret_steal<object>(PyNumber_Index(src.ptr()));
if (!index) {
PyErr_Clear();
if (!convert)
return false;
}
else {
src_or_index = index;
}
}
#endif
if (std::is_unsigned<py_type>::value) {
py_value = as_unsigned<py_type>(src_or_index.ptr());
} else { // signed integer:
py_value = sizeof(T) <= sizeof(long)
? (py_type) PyLong_AsLong(src_or_index.ptr())
: (py_type) PYBIND11_LONG_AS_LONGLONG(src_or_index.ptr());
}
2015-11-30 11:30:28 +00:00
}
// Python API reported an error
Fix unsigned error value casting When casting to an unsigned type from a python 2 `int`, we currently cast using `(unsigned long long) PyLong_AsUnsignedLong(src.ptr())`. If the Python cast fails, it returns (unsigned long) -1, but then we cast this to `unsigned long long`, which means we get 4294967295, but because that isn't equal to `(unsigned long long) -1`, we don't detect the failure. This commit moves the unsigned casting into a `detail::as_unsigned` function which, upon error, casts -1 to the final type, and otherwise casts the return value to the final type to avoid the problematic double cast when an error occurs. The error most commonly shows up wherever `long` is 32-bits (e.g. under both 32- and 64-bit Windows, and under 32-bit linux) when passing a negative value to a bound function taking an `unsigned long`. Fixes #929. The added tests also trigger a latent segfault under PyPy: when casting to an integer smaller than `long` (e.g. casting to a `uint32_t` on a 64-bit `long` architecture) we check both for a Python error and also that the resulting intermediate value will fit in the final type. If there is no conversion error, but we get a value that would overflow, we end up calling `PyErr_ExceptionMatches()` illegally: that call is only allowed when there is a current exception. Under PyPy, this segfaults the test suite. It doesn't appear to segfault under CPython, but the documentation suggests that it *could* do so. The fix is to only check for the exception match if we actually got an error.
2017-07-01 20:31:49 +00:00
bool py_err = py_value == (py_type) -1 && PyErr_Occurred();
// Check to see if the conversion is valid (integers should match exactly)
// Signed/unsigned checks happen elsewhere
if (py_err || (std::is_integral<T>::value && sizeof(py_type) != sizeof(T) && py_value != (py_type) (T) py_value)) {
2015-11-30 11:30:28 +00:00
PyErr_Clear();
if (py_err && convert && (PyNumber_Check(src.ptr()) != 0)) {
auto tmp = reinterpret_steal<object>(std::is_floating_point<T>::value
? PyNumber_Float(src.ptr())
: PyNumber_Long(src.ptr()));
PyErr_Clear();
return load(tmp, false);
}
2015-11-30 11:30:28 +00:00
return false;
}
2015-07-05 18:05:44 +00:00
2015-11-30 11:30:28 +00:00
value = (T) py_value;
return true;
}
template<typename U = T>
static typename std::enable_if<std::is_floating_point<U>::value, handle>::type
cast(U src, return_value_policy /* policy */, handle /* parent */) {
return PyFloat_FromDouble((double) src);
}
template<typename U = T>
static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value && (sizeof(U) <= sizeof(long)), handle>::type
cast(U src, return_value_policy /* policy */, handle /* parent */) {
return PYBIND11_LONG_FROM_SIGNED((long) src);
}
template<typename U = T>
static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value && (sizeof(U) <= sizeof(unsigned long)), handle>::type
cast(U src, return_value_policy /* policy */, handle /* parent */) {
return PYBIND11_LONG_FROM_UNSIGNED((unsigned long) src);
}
template<typename U = T>
static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value && (sizeof(U) > sizeof(long)), handle>::type
cast(U src, return_value_policy /* policy */, handle /* parent */) {
return PyLong_FromLongLong((long long) src);
}
template<typename U = T>
static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value && (sizeof(U) > sizeof(unsigned long)), handle>::type
cast(U src, return_value_policy /* policy */, handle /* parent */) {
return PyLong_FromUnsignedLongLong((unsigned long long) src);
2015-11-30 11:30:28 +00:00
}
PYBIND11_TYPE_CASTER(T, const_name<std::is_integral<T>::value>("int", "float"));
2015-11-30 11:30:28 +00:00
};
2015-07-05 18:05:44 +00:00
template<typename T> struct void_caster {
2015-07-05 18:05:44 +00:00
public:
bool load(handle src, bool) {
if (src && src.is_none()) {
return true;
}
return false;
}
static handle cast(T, return_value_policy /* policy */, handle /* parent */) {
2016-09-08 13:53:18 +00:00
return none().inc_ref();
2015-07-05 18:05:44 +00:00
}
PYBIND11_TYPE_CASTER(T, const_name("None"));
2015-07-05 18:05:44 +00:00
};
template <> class type_caster<void_type> : public void_caster<void_type> {};
template <> class type_caster<void> : public type_caster<void_type> {
public:
using type_caster<void_type>::cast;
bool load(handle h, bool) {
if (!h) {
return false;
}
if (h.is_none()) {
value = nullptr;
return true;
}
/* Check if this is a capsule */
if (isinstance<capsule>(h)) {
value = reinterpret_borrow<capsule>(h);
return true;
}
/* Check if this is a C++ type */
const auto &bases = all_type_info((PyTypeObject *) type::handle_of(h).ptr());
if (bases.size() == 1) { // Only allowing loading from a single-value type
value = values_and_holders(reinterpret_cast<instance *>(h.ptr())).begin()->value_ptr();
return true;
}
/* Fail */
return false;
}
2016-04-30 17:13:18 +00:00
static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) {
if (ptr) {
return capsule(ptr).release();
}
return none().inc_ref();
}
2016-03-26 23:19:32 +00:00
template <typename T> using cast_op_type = void*&;
explicit operator void *&() { return value; }
static constexpr auto name = const_name("capsule");
private:
void *value = nullptr;
};
template <> class type_caster<std::nullptr_t> : public void_caster<std::nullptr_t> { };
2015-07-05 18:05:44 +00:00
template <> class type_caster<bool> {
public:
bool load(handle src, bool convert) {
if (!src) {
return false;
}
if (src.ptr() == Py_True) {
value = true;
return true;
}
if (src.ptr() == Py_False) {
value = false;
return true;
}
if (convert || (std::strcmp("numpy.bool_", Py_TYPE(src.ptr())->tp_name) == 0)) {
// (allow non-implicit conversion for numpy booleans)
Py_ssize_t res = -1;
if (src.is_none()) {
res = 0; // None is implicitly converted to False
}
#if defined(PYPY_VERSION)
// On PyPy, check that "__bool__" (or "__nonzero__" on Python 2.7) attr exists
else if (hasattr(src, PYBIND11_BOOL_ATTR)) {
res = PyObject_IsTrue(src.ptr());
}
#else
// Alternate approach for CPython: this does the same as the above, but optimized
// using the CPython API so as to avoid an unneeded attribute lookup.
else if (auto *tp_as_number = src.ptr()->ob_type->tp_as_number) {
if (PYBIND11_NB_BOOL(tp_as_number)) {
res = (*PYBIND11_NB_BOOL(tp_as_number))(src.ptr());
}
}
#endif
if (res == 0 || res == 1) {
value = (res != 0);
return true;
}
PyErr_Clear();
}
return false;
2015-07-05 18:05:44 +00:00
}
static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) {
return handle(src ? Py_True : Py_False).inc_ref();
2015-07-05 18:05:44 +00:00
}
PYBIND11_TYPE_CASTER(bool, const_name("bool"));
2015-07-05 18:05:44 +00:00
};
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
// Helper class for UTF-{8,16,32} C++ stl strings:
template <typename StringType, bool IsView = false> struct string_caster {
using CharT = typename StringType::value_type;
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
// Simplify life by being able to assume standard char sizes (the standard only guarantees
// minimums, but Python requires exact sizes)
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
static_assert(!std::is_same<CharT, char>::value || sizeof(CharT) == 1, "Unsupported char size != 1");
#if defined(PYBIND11_HAS_U8STRING)
static_assert(!std::is_same<CharT, char8_t>::value || sizeof(CharT) == 1, "Unsupported char8_t size != 1");
#endif
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
static_assert(!std::is_same<CharT, char16_t>::value || sizeof(CharT) == 2, "Unsupported char16_t size != 2");
static_assert(!std::is_same<CharT, char32_t>::value || sizeof(CharT) == 4, "Unsupported char32_t size != 4");
// wchar_t can be either 16 bits (Windows) or 32 (everywhere else)
static_assert(!std::is_same<CharT, wchar_t>::value || sizeof(CharT) == 2 || sizeof(CharT) == 4,
"Unsupported wchar_t size != 2/4");
static constexpr size_t UTF_N = 8 * sizeof(CharT);
2016-03-26 22:38:46 +00:00
bool load(handle src, bool) {
#if PY_MAJOR_VERSION < 3
2016-03-26 22:38:46 +00:00
object temp;
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
#endif
2016-03-26 22:38:46 +00:00
handle load_src = src;
if (!src) {
return false;
}
if (!PyUnicode_Check(load_src.ptr())) {
#if PY_MAJOR_VERSION >= 3
return load_bytes(load_src);
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
#else
if (std::is_same<CharT, char>::value) {
return load_bytes(load_src);
}
// The below is a guaranteed failure in Python 3 when PyUnicode_Check returns false
if (!PYBIND11_BYTES_CHECK(load_src.ptr()))
return false;
temp = reinterpret_steal<object>(PyUnicode_FromObject(load_src.ptr()));
2016-03-26 22:38:46 +00:00
if (!temp) { PyErr_Clear(); return false; }
load_src = temp;
#endif
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
}
#if PY_VERSION_HEX >= 0x03030000
// On Python >= 3.3, for UTF-8 we avoid the need for a temporary `bytes`
// object by using `PyUnicode_AsUTF8AndSize`.
if (PYBIND11_SILENCE_MSVC_C4127(UTF_N == 8)) {
Py_ssize_t size = -1;
const auto *buffer
= reinterpret_cast<const CharT *>(PyUnicode_AsUTF8AndSize(load_src.ptr(), &size));
if (!buffer) {
PyErr_Clear();
return false;
}
value = StringType(buffer, static_cast<size_t>(size));
return true;
}
#endif
auto utfNbytes = reinterpret_steal<object>(PyUnicode_AsEncodedString(
load_src.ptr(), UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr));
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
if (!utfNbytes) { PyErr_Clear(); return false; }
2020-09-11 03:20:47 +00:00
const auto *buffer = reinterpret_cast<const CharT *>(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr()));
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT);
// Skip BOM for UTF-16/32
if (PYBIND11_SILENCE_MSVC_C4127(UTF_N > 8)) {
buffer++;
length--;
}
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
value = StringType(buffer, length);
// If we're loading a string_view we need to keep the encoded Python object alive:
if (IsView) {
loader_life_support::add_patient(utfNbytes);
}
2016-03-26 22:38:46 +00:00
return true;
}
2016-03-02 05:59:39 +00:00
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
static handle cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) {
const char *buffer = reinterpret_cast<const char *>(src.data());
2020-09-11 03:20:47 +00:00
auto nbytes = ssize_t(src.size() * sizeof(CharT));
handle s = decode_utfN(buffer, nbytes);
if (!s) {
throw error_already_set();
}
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
return s;
2016-03-26 22:38:46 +00:00
}
2015-07-05 18:05:44 +00:00
PYBIND11_TYPE_CASTER(StringType, const_name(PYBIND11_STRING_NAME));
private:
static handle decode_utfN(const char *buffer, ssize_t nbytes) {
#if !defined(PYPY_VERSION)
return
UTF_N == 8 ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr) :
UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr) :
PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr);
#else
// PyPy segfaults when on PyUnicode_DecodeUTF16 (and possibly on PyUnicode_DecodeUTF32 as well),
// so bypass the whole thing by just passing the encoding as a string value, which works properly:
return PyUnicode_Decode(buffer, nbytes, UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr);
#endif
}
// When loading into a std::string or char*, accept a bytes object as-is (i.e.
// without any encoding/decoding attempt). For other C++ char sizes this is a no-op.
// which supports loading a unicode from a str, doesn't take this path.
template <typename C = CharT>
bool load_bytes(enable_if_t<std::is_same<C, char>::value, handle> src) {
if (PYBIND11_BYTES_CHECK(src.ptr())) {
// We were passed a Python 3 raw bytes; accept it into a std::string or char*
// without any encoding attempt.
const char *bytes = PYBIND11_BYTES_AS_STRING(src.ptr());
if (bytes) {
value = StringType(bytes, (size_t) PYBIND11_BYTES_SIZE(src.ptr()));
return true;
}
}
return false;
}
template <typename C = CharT>
bool load_bytes(enable_if_t<!std::is_same<C, char>::value, handle>) { return false; }
2016-03-02 05:59:39 +00:00
};
template <typename CharT, class Traits, class Allocator>
struct type_caster<std::basic_string<CharT, Traits, Allocator>, enable_if_t<is_std_char_type<CharT>::value>>
: string_caster<std::basic_string<CharT, Traits, Allocator>> {};
#ifdef PYBIND11_HAS_STRING_VIEW
template <typename CharT, class Traits>
struct type_caster<std::basic_string_view<CharT, Traits>, enable_if_t<is_std_char_type<CharT>::value>>
: string_caster<std::basic_string_view<CharT, Traits>, true> {};
#endif
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
// Type caster for C-style strings. We basically use a std::string type caster, but also add the
// ability to use None as a nullptr char* (which the string caster doesn't allow).
template <typename CharT> struct type_caster<CharT, enable_if_t<is_std_char_type<CharT>::value>> {
using StringType = std::basic_string<CharT>;
using StringCaster = type_caster<StringType>;
StringCaster str_caster;
bool none = false;
CharT one_char = 0;
2015-07-05 18:05:44 +00:00
public:
2016-03-26 22:38:46 +00:00
bool load(handle src, bool convert) {
if (!src) {
return false;
}
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
if (src.is_none()) {
// Defer accepting None to other overloads (if we aren't in convert mode):
if (!convert) {
return false;
}
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
none = true;
return true;
}
return str_caster.load(src, convert);
}
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
static handle cast(const CharT *src, return_value_policy policy, handle parent) {
if (src == nullptr) {
return pybind11::none().inc_ref();
}
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
return StringCaster::cast(StringType(src), policy, parent);
2015-07-05 18:05:44 +00:00
}
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
static handle cast(CharT src, return_value_policy policy, handle parent) {
if (std::is_same<char, CharT>::value) {
handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr);
if (!s) {
throw error_already_set();
}
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
return s;
}
return StringCaster::cast(StringType(1, src), policy, parent);
2015-07-05 18:05:44 +00:00
}
explicit operator CharT *() {
return none ? nullptr : const_cast<CharT *>(static_cast<StringType &>(str_caster).c_str());
}
explicit operator CharT &() {
if (none) {
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
throw value_error("Cannot convert None to a character");
}
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
auto &value = static_cast<StringType &>(str_caster);
size_t str_len = value.size();
if (str_len == 0) {
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
throw value_error("Cannot convert empty string to a character");
}
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
// If we're in UTF-8 mode, we have two possible failures: one for a unicode character that
// is too high, and one for multiple unicode characters (caught later), so we need to figure
// out how long the first encoded character is in bytes to distinguish between these two
// errors. We also allow want to allow unicode characters U+0080 through U+00FF, as those
// can fit into a single char value.
if (PYBIND11_SILENCE_MSVC_C4127(StringCaster::UTF_N == 8) && str_len > 1 && str_len <= 4) {
2020-09-11 03:20:47 +00:00
auto v0 = static_cast<unsigned char>(value[0]);
// low bits only: 0-127
// 0b110xxxxx - start of 2-byte sequence
// 0b1110xxxx - start of 3-byte sequence
// 0b11110xxx - start of 4-byte sequence
size_t char0_bytes = (v0 & 0x80) == 0 ? 1
: (v0 & 0xE0) == 0xC0 ? 2
: (v0 & 0xF0) == 0xE0 ? 3
: 4;
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
if (char0_bytes == str_len) {
// If we have a 128-255 value, we can decode it into a single char:
if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx
one_char = static_cast<CharT>(((v0 & 3) << 6) + (static_cast<unsigned char>(value[1]) & 0x3F));
return one_char;
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
}
// Otherwise we have a single character, but it's > U+00FF
throw value_error("Character code point not in range(0x100)");
}
}
2015-07-05 18:05:44 +00:00
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
// UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a
// surrogate pair with total length 2 instantly indicates a range error (but not a "your
// string was too long" error).
else if (PYBIND11_SILENCE_MSVC_C4127(StringCaster::UTF_N == 16) && str_len == 2) {
one_char = static_cast<CharT>(value[0]);
if (one_char >= 0xD800 && one_char < 0xE000) {
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
throw value_error("Character code point not in range(0x10000)");
}
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
}
if (str_len != 1) {
Unicode fixes and docs (#624) * Propagate unicode conversion failure If returning a std::string with invalid utf-8 data, we currently fail with an uninformative TypeError instead of propagating the UnicodeDecodeError that Python sets on failure. * Add support for u16/u32strings and literals This adds support for wchar{16,32}_t character literals and the associated std::u{16,32}string types. It also folds the character/string conversion into a single type_caster template, since the type casters for string and wstring were mostly the same anyway. * Added too-long and too-big character conversion errors With this commit, when casting to a single character, as opposed to a C-style string, we make sure the input wasn't a multi-character string or a single character with codepoint too large for the character type. This also changes the character cast op to CharT instead of CharT& (we need to be able to return a temporary decoded char value, but also because there's little gained by bothering with an lvalue return here). Finally it changes the char caster to 'has-a-string-caster' instead of 'is-a-string-caster' because, with the cast_op change above, there's nothing at all gained from inheritance. This also lets us remove the `success` from the string caster (which was only there for the char caster) into the char caster itself. (I also renamed it to 'none' and inverted its value to better reflect its purpose). The None -> nullptr loading also now takes place only under a `convert = true` load pass. Although it's unlikely that a function taking a char also has overloads that can take a None, it seems marginally more correct to treat it as a conversion. This commit simplifies the size assumptions about character sizes with static_asserts to back them up.
2017-02-14 10:08:19 +00:00
throw value_error("Expected a character, but multi-character string found");
}
2016-03-02 07:07:08 +00:00
one_char = value[0];
return one_char;
2016-03-26 22:38:46 +00:00
}
2016-03-02 07:07:08 +00:00
static constexpr auto name = const_name(PYBIND11_STRING_NAME);
template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>;
2016-03-02 07:07:08 +00:00
};
// Base implementation for std::tuple and std::pair
template <template<typename...> class Tuple, typename... Ts> class tuple_caster {
using type = Tuple<Ts...>;
static constexpr auto size = sizeof...(Ts);
using indices = make_index_sequence<size>;
public:
bool load(handle src, bool convert) {
if (!isinstance<sequence>(src)) {
return false;
}
const auto seq = reinterpret_borrow<sequence>(src);
if (seq.size() != size) {
return false;
}
return load_impl(seq, convert, indices{});
}
template <typename T>
static handle cast(T &&src, return_value_policy policy, handle parent) {
return cast_impl(std::forward<T>(src), policy, parent, indices{});
}
2016-09-06 04:02:29 +00:00
// copied from the PYBIND11_TYPE_CASTER macro
template <typename T>
static handle cast(T *src, return_value_policy policy, handle parent) {
if (!src) {
return none().release();
}
if (policy == return_value_policy::take_ownership) {
auto h = cast(std::move(*src), policy, parent);
delete src;
return h;
}
return cast(*src, policy, parent);
}
static constexpr auto name = const_name("Tuple[") + concat(make_caster<Ts>::name...) + const_name("]");
2015-07-26 14:33:49 +00:00
template <typename T> using cast_op_type = type;
explicit operator type() & { return implicit_cast(indices{}); }
explicit operator type() && { return std::move(*this).implicit_cast(indices{}); }
2015-07-26 14:33:49 +00:00
2015-07-05 18:05:44 +00:00
protected:
template <size_t... Is>
type implicit_cast(index_sequence<Is...>) & { return type(cast_op<Ts>(std::get<Is>(subcasters))...); }
template <size_t... Is>
type implicit_cast(index_sequence<Is...>) && { return type(cast_op<Ts>(std::move(std::get<Is>(subcasters)))...); }
static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; }
2015-07-05 18:05:44 +00:00
template <size_t... Is>
bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) {
#ifdef __cpp_fold_expressions
if ((... || !std::get<Is>(subcasters).load(seq[Is], convert))) {
return false;
}
#else
for (bool r : {std::get<Is>(subcasters).load(seq[Is], convert)...})
2015-07-05 18:05:44 +00:00
if (!r)
return false;
#endif
2015-07-05 18:05:44 +00:00
return true;
}
/* Implementation: Convert a C++ tuple into a Python tuple */
template <typename T, size_t... Is>
static handle cast_impl(T &&src, return_value_policy policy, handle parent, index_sequence<Is...>) {
PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(src, policy, parent);
PYBIND11_WORKAROUND_INCORRECT_GCC_UNUSED_BUT_SET_PARAMETER(policy, parent);
std::array<object, size> entries{{
reinterpret_steal<object>(make_caster<Ts>::cast(std::get<Is>(std::forward<T>(src)), policy, parent))...
2015-07-05 18:05:44 +00:00
}};
for (const auto &entry : entries) {
if (!entry) {
return handle();
}
}
tuple result(size);
int counter = 0;
for (auto &entry : entries) {
PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr());
}
return result.release();
2015-07-05 18:05:44 +00:00
}
Tuple<make_caster<Ts>...> subcasters;
2015-07-05 18:05:44 +00:00
};
template <typename T1, typename T2> class type_caster<std::pair<T1, T2>>
: public tuple_caster<std::pair, T1, T2> {};
template <typename... Ts> class type_caster<std::tuple<Ts...>>
: public tuple_caster<std::tuple, Ts...> {};
/// Helper class which abstracts away certain actions. Users can provide specializations for
/// custom holders, but it's only necessary if the type has a non-standard interface.
template <typename T>
struct holder_helper {
static auto get(const T &p) -> decltype(p.get()) { return p.get(); }
};
2015-07-05 18:05:44 +00:00
/// Type caster for holder types like std::shared_ptr, etc.
/// The SFINAE hook is provided to help work around the current lack of support
/// for smart-pointer interoperability. Please consider it an implementation
/// detail that may change in the future, as formal support for smart-pointer
/// interoperability is added into pybind11.
template <typename type, typename holder_type, typename SFINAE = void>
struct copyable_holder_caster : public type_caster_base<type> {
2015-07-05 18:05:44 +00:00
public:
2016-09-11 11:00:40 +00:00
using base = type_caster_base<type>;
static_assert(std::is_base_of<base, type_caster<type>>::value,
"Holder classes are only supported for custom types");
2016-09-11 11:00:40 +00:00
using base::base;
using base::cast;
using base::typeinfo;
using base::value;
bool load(handle src, bool convert) {
return base::template load_impl<copyable_holder_caster<type, holder_type>>(src, convert);
2016-09-11 11:00:40 +00:00
}
explicit operator type*() { return this->value; }
// static_cast works around compiler error with MSVC 17 and CUDA 10.2
// see issue #2180
explicit operator type&() { return *(static_cast<type *>(this->value)); }
explicit operator holder_type*() { return std::addressof(holder); }
explicit operator holder_type&() { return holder; }
static handle cast(const holder_type &src, return_value_policy, handle) {
const auto *ptr = holder_helper<holder_type>::get(src);
return type_caster_base<type>::cast_holder(ptr, &src);
}
2016-09-11 11:00:40 +00:00
protected:
friend class type_caster_generic;
void check_holder_compat() {
if (typeinfo->default_holder) {
throw cast_error("Unable to load a custom holder type from a default-holder instance");
}
2016-09-11 11:00:40 +00:00
}
Allow binding factory functions as constructors This allows you to use: cls.def(py::init(&factory_function)); where `factory_function` returns a pointer, holder, or value of the class type (or a derived type). Various compile-time checks (static_asserts) are performed to ensure the function is valid, and various run-time type checks where necessary. Some other details of this feature: - The `py::init` name doesn't conflict with the templated no-argument `py::init<...>()`, but keeps the naming consistent: the existing templated, no-argument one wraps constructors, the no-template, function-argument one wraps factory functions. - If returning a CppClass (whether by value or pointer) when an CppAlias is required (i.e. python-side inheritance and a declared alias), a dynamic_cast to the alias is attempted (for the pointer version); if it fails, or if returned by value, an Alias(Class &&) constructor is invoked. If this constructor doesn't exist, a runtime error occurs. - for holder returns when an alias is required, we try a dynamic_cast of the wrapped pointer to the alias to see if it is already an alias instance; if it isn't, we raise an error. - `py::init(class_factory, alias_factory)` is also available that takes two factories: the first is called when an alias is not needed, the second when it is. - Reimplement factory instance clearing. The previous implementation failed under python-side multiple inheritance: *each* inherited type's factory init would clear the instance instead of only setting its own type value. The new implementation here clears just the relevant value pointer. - dealloc is updated to explicitly set the leftover value pointer to nullptr and the `holder_constructed` flag to false so that it can be used to clear preallocated value without needing to rebuild the instance internals data. - Added various tests to test out new allocation/deallocation code. - With preallocation now done lazily, init factory holders can completely avoid the extra overhead of needing an extra allocation/deallocation. - Updated documentation to make factory constructors the default advanced constructor style. - If an `__init__` is called a second time, we have two choices: we can throw away the first instance, replacing it with the second; or we can ignore the second call. The latter is slightly easier, so do that.
2017-06-13 01:52:48 +00:00
bool load_value(value_and_holder &&v_h) {
if (v_h.holder_constructed()) {
value = v_h.value_ptr();
holder = v_h.template holder<holder_type>();
return true;
}
throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) "
#if defined(NDEBUG)
"(compile in debug mode for type information)");
#else
"of type '"
+ type_id<holder_type>() + "''");
#endif
}
2016-09-11 11:00:40 +00:00
template <typename T = holder_type, detail::enable_if_t<!std::is_constructible<T, const T &, type*>::value, int> = 0>
bool try_implicit_casts(handle, bool) { return false; }
template <typename T = holder_type, detail::enable_if_t<std::is_constructible<T, const T &, type*>::value, int> = 0>
bool try_implicit_casts(handle src, bool convert) {
for (auto &cast : typeinfo->implicit_casts) {
copyable_holder_caster sub_caster(*cast.first);
2016-09-11 11:00:40 +00:00
if (sub_caster.load(src, convert)) {
value = cast.second(sub_caster.value);
holder = holder_type(sub_caster.holder, (type *) value);
return true;
}
}
return false;
2015-07-05 18:05:44 +00:00
}
static bool try_direct_conversions(handle) { return false; }
2015-07-05 18:05:44 +00:00
holder_type holder;
};
/// Specialize for the common std::shared_ptr, so users don't need to
template <typename T>
class type_caster<std::shared_ptr<T>> : public copyable_holder_caster<T, std::shared_ptr<T>> { };
/// Type caster for holder types like std::unique_ptr.
/// Please consider the SFINAE hook an implementation detail, as explained
/// in the comment for the copyable_holder_caster.
template <typename type, typename holder_type, typename SFINAE = void>
struct move_only_holder_caster {
static_assert(std::is_base_of<type_caster_base<type>, type_caster<type>>::value,
"Holder classes are only supported for custom types");
static handle cast(holder_type &&src, return_value_policy, handle) {
auto *ptr = holder_helper<holder_type>::get(src);
return type_caster_base<type>::cast_holder(ptr, std::addressof(src));
}
static constexpr auto name = type_caster_base<type>::name;
};
template <typename type, typename deleter>
class type_caster<std::unique_ptr<type, deleter>>
: public move_only_holder_caster<type, std::unique_ptr<type, deleter>> { };
template <typename type, typename holder_type>
using type_caster_holder = conditional_t<is_copy_constructible<holder_type>::value,
copyable_holder_caster<type, holder_type>,
move_only_holder_caster<type, holder_type>>;
template <typename T, bool Value = false> struct always_construct_holder { static constexpr bool value = Value; };
/// Create a specialization for custom holder types (silently ignores std::shared_ptr)
#define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \
namespace pybind11 { namespace detail { \
template <typename type> \
struct always_construct_holder<holder_type> : always_construct_holder<void, ##__VA_ARGS__> { }; \
template <typename type> \
class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \
: public type_caster_holder<type, holder_type> { }; \
}}
// PYBIND11_DECLARE_HOLDER_TYPE holder types:
template <typename base, typename holder> struct is_holder_type :
std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {};
// Specialization for always-supported unique_ptr holders:
template <typename base, typename deleter> struct is_holder_type<base, std::unique_ptr<base, deleter>> :
std::true_type {};
template <typename T> struct handle_type_name { static constexpr auto name = const_name<T>(); };
template <> struct handle_type_name<bool_> { static constexpr auto name = const_name("bool"); };
template <> struct handle_type_name<bytes> { static constexpr auto name = const_name(PYBIND11_BYTES_NAME); };
template <> struct handle_type_name<int_> { static constexpr auto name = const_name("int"); };
template <> struct handle_type_name<iterable> { static constexpr auto name = const_name("Iterable"); };
template <> struct handle_type_name<iterator> { static constexpr auto name = const_name("Iterator"); };
template <> struct handle_type_name<float_> { static constexpr auto name = const_name("float"); };
template <> struct handle_type_name<none> { static constexpr auto name = const_name("None"); };
template <> struct handle_type_name<args> { static constexpr auto name = const_name("*args"); };
template <> struct handle_type_name<kwargs> { static constexpr auto name = const_name("**kwargs"); };
template <typename type>
struct pyobject_caster {
template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
bool load(handle src, bool /* convert */) { value = src; return static_cast<bool>(value); }
2016-09-12 15:36:43 +00:00
template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
bool load(handle src, bool /* convert */) {
#if PY_MAJOR_VERSION < 3 && !defined(PYBIND11_STR_LEGACY_PERMISSIVE)
// For Python 2, without this implicit conversion, Python code would
// need to be cluttered with six.ensure_text() or similar, only to be
// un-cluttered later after Python 2 support is dropped.
if (PYBIND11_SILENCE_MSVC_C4127(std::is_same<T, str>::value) && isinstance<bytes>(src)) {
PyObject *str_from_bytes = PyUnicode_FromEncodedObject(src.ptr(), "utf-8", nullptr);
if (!str_from_bytes) throw error_already_set();
value = reinterpret_steal<type>(str_from_bytes);
return true;
}
#endif
if (!isinstance<type>(src)) {
return false;
}
value = reinterpret_borrow<type>(src);
return true;
}
static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
return src.inc_ref();
2015-07-05 18:05:44 +00:00
}
PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name);
2015-07-05 18:05:44 +00:00
};
template <typename T>
class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> { };
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
// Our conditions for enabling moving are quite restrictive:
// At compile time:
// - T needs to be a non-const, non-pointer, non-reference type
// - type_caster<T>::operator T&() must exist
// - the type must be move constructible (obviously)
// At run-time:
// - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it
// must have ref_count() == 1)h
// If any of the above are not satisfied, we fall back to copying.
Numpy: better compilation errors, long double support (#619) * Clarify PYBIND11_NUMPY_DTYPE documentation The current documentation and example reads as though PYBIND11_NUMPY_DTYPE is a declarative macro along the same lines as PYBIND11_DECLARE_HOLDER_TYPE, but it isn't. The changes the documentation and docs example to make it clear that you need to "call" the macro. * Add satisfies_{all,any,none}_of<T, Preds> `satisfies_all_of<T, Pred1, Pred2, Pred3>` is a nice legibility-enhanced shortcut for `is_all<Pred1<T>, Pred2<T>, Pred3<T>>`. * Give better error message for non-POD dtype attempts If you try to use a non-POD data type, you get difficult-to-interpret compilation errors (about ::name() not being a member of an internal pybind11 struct, among others), for which isn't at all obvious what the problem is. This adds a static_assert for such cases. It also changes the base case from an empty struct to the is_pod_struct case by no longer using `enable_if<is_pod_struct>` but instead using a static_assert: thus specializations avoid the base class, POD types work, and non-POD types (and unimplemented POD types like std::array) get a more informative static_assert failure. * Prefix macros with PYBIND11_ numpy.h uses unprefixed macros, which seems undesirable. This prefixes them with PYBIND11_ to match all the other macros in numpy.h (and elsewhere). * Add long double support This adds long double and std::complex<long double> support for numpy arrays. This allows some simplification of the code used to generate format descriptors; the new code uses fewer macros, instead putting the code as different templated options; the template conditions end up simpler with this because we are now supporting all basic C++ arithmetic types (and so can use is_arithmetic instead of is_integral + multiple different specializations). In addition to testing that it is indeed working in the test script, it also adds various offset and size calculations there, which fixes the test failures under x86 compilations.
2017-01-31 16:00:15 +00:00
template <typename T> using move_is_plain_type = satisfies_none_of<T,
std::is_void, std::is_pointer, std::is_reference, std::is_const
>;
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
template <typename T, typename SFINAE = void> struct move_always : std::false_type {};
template <typename T> struct move_always<T, enable_if_t<all_of<
move_is_plain_type<T>,
negation<is_copy_constructible<T>>,
std::is_move_constructible<T>,
std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
>::value>> : std::true_type {};
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
template <typename T, typename SFINAE = void> struct move_if_unreferenced : std::false_type {};
template <typename T> struct move_if_unreferenced<T, enable_if_t<all_of<
move_is_plain_type<T>,
negation<move_always<T>>,
std::is_move_constructible<T>,
std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
>::value>> : std::true_type {};
template <typename T> using move_never = none_of<move_always<T>, move_if_unreferenced<T>>;
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
// Detect whether returning a `type` from a cast on type's type_caster is going to result in a
// reference or pointer to a local variable of the type_caster. Basically, only
// non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe;
// everything else returns a reference/pointer to a local variable.
template <typename type> using cast_is_temporary_value_reference = bool_constant<
(std::is_reference<type>::value || std::is_pointer<type>::value) &&
!std::is_base_of<type_caster_generic, make_caster<type>>::value &&
!std::is_same<intrinsic_t<type>, void>::value
>;
// When a value returned from a C++ function is being cast back to Python, we almost always want to
// force `policy = move`, regardless of the return value policy the function/method was declared
// with.
template <typename Return, typename SFINAE = void> struct return_value_policy_override {
static return_value_policy policy(return_value_policy p) { return p; }
};
template <typename Return> struct return_value_policy_override<Return,
detail::enable_if_t<std::is_base_of<type_caster_generic, make_caster<Return>>::value, void>> {
static return_value_policy policy(return_value_policy p) {
return !std::is_lvalue_reference<Return>::value &&
!std::is_pointer<Return>::value
? return_value_policy::move : p;
}
};
// Basic python -> C++ casting; throws if casting fails
template <typename T, typename SFINAE> type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) {
if (!conv.load(handle, true)) {
#if defined(NDEBUG)
throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)");
#else
throw cast_error("Unable to cast Python instance of type " +
(std::string) str(type::handle_of(handle)) + " to C++ type '" + type_id<T>() + "'");
#endif
}
return conv;
}
// Wrapper around the above that also constructs and returns a type_caster
template <typename T> make_caster<T> load_type(const handle &handle) {
make_caster<T> conv;
load_type(conv, handle);
return conv;
}
PYBIND11_NAMESPACE_END(detail)
// pytype -> C++ type
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
T cast(const handle &handle) {
using namespace detail;
static_assert(!cast_is_temporary_value_reference<T>::value,
"Unable to cast type to reference: value is local to type caster");
return cast_op<T>(load_type<T>(handle));
2015-07-05 18:05:44 +00:00
}
// pytype -> pytype (calls converting constructor)
template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0>
T cast(const handle &handle) { return T(reinterpret_borrow<object>(handle)); }
// C++ type -> py::object
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
object cast(T &&value, return_value_policy policy = return_value_policy::automatic_reference,
handle parent = handle()) {
using no_ref_T = typename std::remove_reference<T>::type;
if (policy == return_value_policy::automatic) {
policy = std::is_pointer<no_ref_T>::value ? return_value_policy::take_ownership :
std::is_lvalue_reference<T>::value ? return_value_policy::copy : return_value_policy::move;
} else if (policy == return_value_policy::automatic_reference) {
policy = std::is_pointer<no_ref_T>::value ? return_value_policy::reference
: std::is_lvalue_reference<T>::value ? return_value_policy::copy
: return_value_policy::move;
}
return reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(value), policy, parent));
2015-07-05 18:05:44 +00:00
}
2016-05-03 11:28:40 +00:00
template <typename T> T handle::cast() const { return pybind11::cast<T>(*this); }
2015-12-26 18:01:28 +00:00
template <> inline void handle::cast() const { return; }
2015-07-05 18:05:44 +00:00
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
template <typename T>
detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) {
if (obj.ref_count() > 1) {
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
#if defined(NDEBUG)
throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references"
" (compile in debug mode for details)");
#else
throw cast_error("Unable to move from Python " + (std::string) str(type::handle_of(obj)) +
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
" instance to C++ " + type_id<T>() + " instance: instance has multiple references");
#endif
}
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
// Move into a temporary and return that, because the reference may be a local value of `conv`
T ret = std::move(detail::load_type<T>(obj).operator T&());
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
return ret;
}
// Calling cast() on an rvalue calls pybind11::cast with the object rvalue, which does:
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
// - If we have to move (because T has no copy constructor), do it. This will fail if the moved
// object has multiple references, but trying to copy will fail to compile.
// - If both movable and copyable, check ref count: if 1, move; otherwise copy
// - Otherwise (not movable), copy.
template <typename T> detail::enable_if_t<detail::move_always<T>::value, T> cast(object &&object) {
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
return move<T>(std::move(object));
}
template <typename T> detail::enable_if_t<detail::move_if_unreferenced<T>::value, T> cast(object &&object) {
if (object.ref_count() > 1) {
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
return cast<T>(object);
}
return move<T>(std::move(object));
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
}
template <typename T> detail::enable_if_t<detail::move_never<T>::value, T> cast(object &&object) {
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
return cast<T>(object);
}
template <typename T> T object::cast() const & { return pybind11::cast<T>(*this); }
template <typename T> T object::cast() && { return pybind11::cast<T>(std::move(*this)); }
template <> inline void object::cast() const & { return; }
template <> inline void object::cast() && { return; }
PYBIND11_NAMESPACE_BEGIN(detail)
// Declared in pytypes.h:
template <typename T, enable_if_t<!is_pyobject<T>::value, int>>
object object_or_cast(T &&o) { return pybind11::cast(std::forward<T>(o)); }
struct override_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the PYBIND11_OVERRIDE_OVERRIDE macro
template <typename ret_type> using override_caster_t = conditional_t<
cast_is_temporary_value_reference<ret_type>::value, make_caster<ret_type>, override_unused>;
// Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then
// store the result in the given variable. For other types, this is a no-op.
template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o, make_caster<T> &caster) {
return cast_op<T>(load_type(caster, o));
}
template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&, override_unused &) {
pybind11_fail("Internal error: cast_ref fallback invoked"); }
// Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even
// though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in
// cases where pybind11::cast is valid.
template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&o) {
return pybind11::cast<T>(std::move(o)); }
template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) {
pybind11_fail("Internal error: cast_safe fallback invoked"); }
template <> inline void cast_safe<void>(object &&) {}
PYBIND11_NAMESPACE_END(detail)
Move support for return values of called Python functions Currently pybind11 always translates values returned by Python functions invoked from C++ code by copying, even when moving is feasible--and, more importantly, even when moving is required. The first, and relatively minor, concern is that moving may be considerably more efficient for some types. The second problem, however, is more serious: there's currently no way python code can return a non-copyable type to C++ code. I ran into this while trying to add a PYBIND11_OVERLOAD of a virtual method that returns just such a type: it simply fails to compile because this: overload = ... overload(args).template cast<ret_type>(); involves a copy: overload(args) returns an object instance, and the invoked object::cast() loads the returned value, then returns a copy of the loaded value. We can, however, safely move that returned value *if* the object has the only reference to it (i.e. if ref_count() == 1) and the object is itself temporary (i.e. if it's an rvalue). This commit does that by adding an rvalue-qualified object::cast() method that allows the returned value to be move-constructed out of the stored instance when feasible. This basically comes down to three cases: - For objects that are movable but not copyable, we always try the move, with a runtime exception raised if this would involve moving a value with multiple references. - When the type is both movable and non-trivially copyable, the move happens only if the invoked object has a ref_count of 1, otherwise the object is copied. (Trivially copyable types are excluded from this case because they are typically just collections of primitive types, which can be copied just as easily as they can be moved.) - Non-movable and trivially copy constructible objects are simply copied. This also adds examples to example-virtual-functions that shows both a non-copyable object and a movable/copyable object in action: the former raises an exception if returned while holding a reference, the latter invokes a move constructor if unreferenced, or a copy constructor if referenced. Basically this allows code such as: class MyClass(Pybind11Class): def somemethod(self, whatever): mt = MovableType(whatever) # ... return mt which allows the MovableType instance to be returned to the C++ code via its move constructor. Of course if you attempt to violate this by doing something like: self.value = MovableType(whatever) return self.value you get an exception--but right now, the pybind11-side of that code won't compile at all.
2016-07-22 01:31:05 +00:00
// The overloads could coexist, i.e. the #if is not strictly speaking needed,
// but it is an easy minor optimization.
#if defined(NDEBUG)
inline cast_error cast_error_unable_to_convert_call_arg() {
return cast_error(
"Unable to convert call argument to Python object (compile in debug mode for details)");
}
#else
inline cast_error cast_error_unable_to_convert_call_arg(const std::string &name,
const std::string &type) {
return cast_error("Unable to convert call argument '" + name + "' of type '" + type
+ "' to Python object");
}
#endif
template <return_value_policy policy = return_value_policy::automatic_reference>
tuple make_tuple() { return tuple(0); }
template <return_value_policy policy = return_value_policy::automatic_reference,
2016-05-03 11:28:40 +00:00
typename... Args> tuple make_tuple(Args&&... args_) {
constexpr size_t size = sizeof...(Args);
std::array<object, size> args {
{ reinterpret_steal<object>(detail::make_caster<Args>::cast(
std::forward<Args>(args_), policy, nullptr))... }
2015-07-05 18:05:44 +00:00
};
for (size_t i = 0; i < args.size(); i++) {
if (!args[i]) {
#if defined(NDEBUG)
throw cast_error_unable_to_convert_call_arg();
#else
2017-04-05 22:00:38 +00:00
std::array<std::string, size> argtypes { {type_id<Args>()...} };
throw cast_error_unable_to_convert_call_arg(std::to_string(i), argtypes[i]);
#endif
}
}
2016-04-12 22:56:17 +00:00
tuple result(size);
2015-07-05 18:05:44 +00:00
int counter = 0;
for (auto &arg_value : args) {
2016-04-12 22:56:17 +00:00
PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr());
}
2016-04-12 22:56:17 +00:00
return result;
}
/// \ingroup annotations
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
/// Annotation for arguments
struct arg {
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
/// Constructs an argument with the name of the argument; if null or omitted, this is a positional argument.
constexpr explicit arg(const char *name = nullptr) : name(name), flag_noconvert(false), flag_none(true) { }
/// Assign a value to this argument
template <typename T> arg_v operator=(T &&value) const;
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
/// Indicate that the type should not be converted in the type caster
arg &noconvert(bool flag = true) { flag_noconvert = flag; return *this; }
/// Indicates that the argument should/shouldn't allow None (e.g. for nullable pointer args)
arg &none(bool flag = true) { flag_none = flag; return *this; }
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
const char *name; ///< If non-null, this is a named kwargs argument
bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type caster!)
bool flag_none : 1; ///< If set (the default), allow None to be passed to this argument
};
/// \ingroup annotations
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
/// Annotation for arguments with values
struct arg_v : arg {
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
private:
template <typename T>
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
arg_v(arg &&base, T &&x, const char *descr = nullptr)
: arg(base),
value(reinterpret_steal<object>(
detail::make_caster<T>::cast(x, return_value_policy::automatic, {})
)),
descr(descr)
#if !defined(NDEBUG)
, type(type_id<T>())
#endif
{
// Workaround! See:
// https://github.com/pybind/pybind11/issues/2336
// https://github.com/pybind/pybind11/pull/2685#issuecomment-731286700
if (PyErr_Occurred()) {
PyErr_Clear();
}
}
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
public:
/// Direct construction with name, default, and description
template <typename T>
arg_v(const char *name, T &&x, const char *descr = nullptr)
: arg_v(arg(name), std::forward<T>(x), descr) { }
/// Called internally when invoking `py::arg("a") = value`
template <typename T>
arg_v(const arg &base, T &&x, const char *descr = nullptr)
: arg_v(arg(base), std::forward<T>(x), descr) { }
/// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg&
arg_v &noconvert(bool flag = true) { arg::noconvert(flag); return *this; }
/// Same as `arg::nonone()`, but returns *this as arg_v&, not arg&
arg_v &none(bool flag = true) { arg::none(flag); return *this; }
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
/// The default value
object value;
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
/// The (optional) description of the default value
const char *descr;
#if !defined(NDEBUG)
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
/// The C++ type name of the default value (only available when compiled in debug mode)
std::string type;
#endif
};
/// \ingroup annotations
/// Annotation indicating that all following arguments are keyword-only; the is the equivalent of an
/// unnamed '*' argument (in Python 3)
struct kw_only {};
/// \ingroup annotations
/// Annotation indicating that all previous arguments are positional-only; the is the equivalent of an
/// unnamed '/' argument (in Python 3.8)
struct pos_only {};
template <typename T>
arg_v arg::operator=(T &&value) const {
return {*this, std::forward<T>(value)};
}
2016-09-11 11:00:40 +00:00
/// Alias for backward compatibility -- to be removed in version 2.0
template <typename /*unused*/> using arg_t = arg_v;
inline namespace literals {
/** \rst
String literal version of `arg`
\endrst */
constexpr arg operator"" _a(const char *name, size_t) { return arg(name); }
} // namespace literals
PYBIND11_NAMESPACE_BEGIN(detail)
template <typename T> using is_kw_only = std::is_same<intrinsic_t<T>, kw_only>;
template <typename T> using is_pos_only = std::is_same<intrinsic_t<T>, pos_only>;
// forward declaration (definition in attr.h)
struct function_record;
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
/// Internal data associated with a single function call
struct function_call {
function_call(const function_record &f, handle p); // Implementation in attr.h
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
/// The function data:
const function_record &func;
/// Arguments passed to the function:
std::vector<handle> args;
/// The `convert` value the arguments should be loaded with
std::vector<bool> args_convert;
/// Extra references for the optional `py::args` and/or `py::kwargs` arguments (which, if
/// present, are also in `args` but without a reference).
object args_ref, kwargs_ref;
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
/// The parent, if any
handle parent;
/// If this is a call to an initializer, this argument contains `self`
handle init_self;
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
};
/// Helper class which loads arguments for C++ functions called from Python
template <typename... Args>
class argument_loader {
using indices = make_index_sequence<sizeof...(Args)>;
template <typename Arg> using argument_is_args = std::is_same<intrinsic_t<Arg>, args>;
template <typename Arg> using argument_is_kwargs = std::is_same<intrinsic_t<Arg>, kwargs>;
// Get kwargs argument position, or -1 if not present:
static constexpr auto kwargs_pos = constexpr_last<argument_is_kwargs, Args...>();
static_assert(kwargs_pos == -1 || kwargs_pos == (int) sizeof...(Args) - 1, "py::kwargs is only permitted as the last argument of a function");
Work around gcc 7 ICE Current g++ 7 snapshot fails to compile pybind under -std=c++17 with: ``` $ make [ 3%] Building CXX object tests/CMakeFiles/pybind11_tests.dir/pybind11_tests.cpp.o In file included from /home/jagerman/src/pybind11/tests/pybind11_tests.h:2:0, from /home/jagerman/src/pybind11/tests/pybind11_tests.cpp:10: /home/jagerman/src/pybind11/include/pybind11/pybind11.h: In instantiation of 'pybind11::cpp_function::initialize(Func&&, Return (*)(Args ...), const Extra& ...)::<lambda(pybind11::detail::function_record*, pybind11::handle, pybind11::handle, pybind11::handle)> [with Func = pybind11::cpp_function::cpp_function(Return (Class::*)(Arg ...), const Extra& ...) [with Return = int; Class = ConstructorStats; Arg = {}; Extra = {pybind11::name, pybind11::is_method, pybind11::sibling}]::<lambda(ConstructorStats*)>; Return = int; Args = {ConstructorStats*}; Extra = {pybind11::name, pybind11::is_method, pybind11::sibling}]': /home/jagerman/src/pybind11/include/pybind11/pybind11.h:120:22: required from 'struct pybind11::cpp_function::initialize(Func&&, Return (*)(Args ...), const Extra& ...) [with Func = pybind11::cpp_function::cpp_function(Return (Class::*)(Arg ...), const Extra& ...) [with Return = int; Class = ConstructorStats; Arg = {}; Extra = {pybind11::name, pybind11::is_method, pybind11::sibling}]::<lambda(ConstructorStats*)>; Return = int; Args = {ConstructorStats*}; Extra = {pybind11::name, pybind11::is_method, pybind11::sibling}]::<lambda(struct pybind11::detail::function_record*, class pybind11::handle, class pybind11::handle, class pybind11::handle)>' /home/jagerman/src/pybind11/include/pybind11/pybind11.h:120:19: required from 'void pybind11::cpp_function::initialize(Func&&, Return (*)(Args ...), const Extra& ...) [with Func = pybind11::cpp_function::cpp_function(Return (Class::*)(Arg ...), const Extra& ...) [with Return = int; Class = ConstructorStats; Arg = {}; Extra = {pybind11::name, pybind11::is_method, pybind11::sibling}]::<lambda(ConstructorStats*)>; Return = int; Args = {ConstructorStats*}; Extra = {pybind11::name, pybind11::is_method, pybind11::sibling}]' /home/jagerman/src/pybind11/include/pybind11/pybind11.h:62:9: required from 'pybind11::cpp_function::cpp_function(Return (Class::*)(Arg ...), const Extra& ...) [with Return = int; Class = ConstructorStats; Arg = {}; Extra = {pybind11::name, pybind11::is_method, pybind11::sibling}]' /home/jagerman/src/pybind11/include/pybind11/pybind11.h:984:22: required from 'pybind11::class_<type_, options>& pybind11::class_<type_, options>::def(const char*, Func&&, const Extra& ...) [with Func = int (ConstructorStats::*)(); Extra = {}; type_ = ConstructorStats; options = {}]' /home/jagerman/src/pybind11/tests/pybind11_tests.cpp:24:47: required from here /home/jagerman/src/pybind11/include/pybind11/pybind11.h:147:9: sorry, unimplemented: unexpected AST of kind cleanup_stmt }; ^ /home/jagerman/src/pybind11/include/pybind11/pybind11.h:147:9: internal compiler error: in potential_constant_expression_1, at cp/constexpr.c:5593 0x84c52a potential_constant_expression_1 ../../src/gcc/cp/constexpr.c:5593 0x84c3c0 potential_constant_expression_1 ../../src/gcc/cp/constexpr.c:5154 0x645511 finish_function(int) ../../src/gcc/cp/decl.c:15527 0x66e80b instantiate_decl(tree_node*, int, bool) ../../src/gcc/cp/pt.c:22558 0x6b61e2 instantiate_class_template_1 ../../src/gcc/cp/pt.c:10444 0x6b61e2 instantiate_class_template(tree_node*) ../../src/gcc/cp/pt.c:10514 0x75a676 complete_type(tree_node*) ../../src/gcc/cp/typeck.c:133 0x67d5a4 tsubst_copy_and_build(tree_node*, tree_node*, int, tree_node*, bool, bool) ../../src/gcc/cp/pt.c:17516 0x67ca19 tsubst_copy_and_build(tree_node*, tree_node*, int, tree_node*, bool, bool) ../../src/gcc/cp/pt.c:16655 0x672cce tsubst_expr(tree_node*, tree_node*, int, tree_node*, bool) ../../src/gcc/cp/pt.c:16140 0x6713dc tsubst_expr(tree_node*, tree_node*, int, tree_node*, bool) ../../src/gcc/cp/pt.c:15408 0x671915 tsubst_expr(tree_node*, tree_node*, int, tree_node*, bool) ../../src/gcc/cp/pt.c:15394 0x671fc0 tsubst_expr(tree_node*, tree_node*, int, tree_node*, bool) ../../src/gcc/cp/pt.c:15618 0x66e97f tsubst_expr(tree_node*, tree_node*, int, tree_node*, bool) ../../src/gcc/cp/pt.c:15379 0x66e97f instantiate_decl(tree_node*, int, bool) ../../src/gcc/cp/pt.c:22536 0x6ba0cb instantiate_pending_templates(int) ../../src/gcc/cp/pt.c:22653 0x6fd7f8 c_parse_final_cleanups() ../../src/gcc/cp/decl2.c:4512 ``` which looks a lot like https://gcc.gnu.org/bugzilla/show_bug.cgi?id=77545. The error seems to be that it gets confused about the `std::tuple<...> value` in argument_loader: it is apparently not being initialized properly. Adding a default constructor with an explicit default-initialization of `value` works around the problem.
2016-12-14 00:11:36 +00:00
public:
static constexpr bool has_kwargs = kwargs_pos != -1;
// py::args argument position; -1 if not present.
static constexpr int args_pos = constexpr_last<argument_is_args, Args...>();
static_assert(args_pos == -1 || args_pos == constexpr_first<argument_is_args, Args...>(), "py::args cannot be specified more than once");
static constexpr auto arg_names = concat(type_descr(make_caster<Args>::name)...);
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
bool load_args(function_call &call) {
return load_impl_sequence(call, indices{});
}
template <typename Return, typename Guard, typename Func>
// NOLINTNEXTLINE(readability-const-return-type)
enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) && {
return std::move(*this).template call_impl<remove_cv_t<Return>>(std::forward<Func>(f), indices{}, Guard{});
}
template <typename Return, typename Guard, typename Func>
enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) && {
std::move(*this).template call_impl<remove_cv_t<Return>>(std::forward<Func>(f), indices{}, Guard{});
return void_type();
}
private:
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
static bool load_impl_sequence(function_call &, index_sequence<>) { return true; }
template <size_t... Is>
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
bool load_impl_sequence(function_call &call, index_sequence<Is...>) {
#ifdef __cpp_fold_expressions
if ((... || !std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is]))) {
return false;
}
#else
for (bool r : {std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is])...}) {
if (!r) {
return false;
}
}
#endif
return true;
}
template <typename Return, typename Func, size_t... Is, typename Guard>
2020-01-05 14:49:24 +00:00
Return call_impl(Func &&f, index_sequence<Is...>, Guard &&) && {
return std::forward<Func>(f)(cast_op<Args>(std::move(std::get<Is>(argcasters)))...);
}
std::tuple<make_caster<Args>...> argcasters;
};
/// Helper class which collects only positional arguments for a Python function call.
/// A fancier version below can collect any argument, but this one is optimal for simple calls.
template <return_value_policy policy>
class simple_collector {
public:
template <typename... Ts>
explicit simple_collector(Ts &&...values)
: m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) { }
const tuple &args() const & { return m_args; }
dict kwargs() const { return {}; }
tuple args() && { return std::move(m_args); }
/// Call a Python function and pass the collected arguments
object call(PyObject *ptr) const {
PyObject *result = PyObject_CallObject(ptr, m_args.ptr());
if (!result) {
throw error_already_set();
}
return reinterpret_steal<object>(result);
}
private:
tuple m_args;
};
/// Helper class which collects positional, keyword, * and ** arguments for a Python function call
template <return_value_policy policy>
class unpacking_collector {
public:
template <typename... Ts>
explicit unpacking_collector(Ts &&...values) {
// Tuples aren't (easily) resizable so a list is needed for collection,
// but the actual function call strictly requires a tuple.
auto args_list = list();
using expander = int[];
(void) expander{0, (process(args_list, std::forward<Ts>(values)), 0)...};
m_args = std::move(args_list);
}
const tuple &args() const & { return m_args; }
const dict &kwargs() const & { return m_kwargs; }
tuple args() && { return std::move(m_args); }
dict kwargs() && { return std::move(m_kwargs); }
/// Call a Python function and pass the collected arguments
object call(PyObject *ptr) const {
PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr());
if (!result) {
throw error_already_set();
}
return reinterpret_steal<object>(result);
}
private:
template <typename T>
void process(list &args_list, T &&x) {
auto o = reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(x), policy, {}));
if (!o) {
#if defined(NDEBUG)
throw cast_error_unable_to_convert_call_arg();
#else
throw cast_error_unable_to_convert_call_arg(
std::to_string(args_list.size()), type_id<T>());
#endif
}
args_list.append(o);
}
void process(list &args_list, detail::args_proxy ap) {
for (auto a : ap) {
args_list.append(a);
}
}
void process(list &/*args_list*/, arg_v a) {
if (!a.name) {
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
#if defined(NDEBUG)
nameless_argument_error();
#else
nameless_argument_error(a.type);
#endif
}
if (m_kwargs.contains(a.name)) {
#if defined(NDEBUG)
multiple_values_error();
#else
multiple_values_error(a.name);
#endif
}
if (!a.value) {
#if defined(NDEBUG)
throw cast_error_unable_to_convert_call_arg();
#else
throw cast_error_unable_to_convert_call_arg(a.name, a.type);
#endif
}
m_kwargs[a.name] = a.value;
}
void process(list &/*args_list*/, detail::kwargs_proxy kp) {
if (!kp) {
return;
}
for (auto k : reinterpret_borrow<dict>(kp)) {
if (m_kwargs.contains(k.first)) {
#if defined(NDEBUG)
multiple_values_error();
#else
multiple_values_error(str(k.first));
#endif
}
m_kwargs[k.first] = k.second;
}
}
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
[[noreturn]] static void nameless_argument_error() {
throw type_error("Got kwargs without a name; only named arguments "
"may be passed via py::arg() to a python function call. "
"(compile in debug mode for details)");
}
[[noreturn]] static void nameless_argument_error(const std::string &type) {
Add support for non-converting arguments This adds support for controlling the `convert` flag of arguments through the py::arg annotation. This then allows arguments to be flagged as non-converting, which the type_caster is able to use to request different behaviour. Currently, AFAICS `convert` is only used for type converters of regular pybind11-registered types; all of the other core type_casters ignore it. We can, however, repurpose it to control internal conversion of converters like Eigen and `array`: most usefully to give callers a way to disable the conversion that would otherwise occur when a `Eigen::Ref<const Eigen::Matrix>` argument is passed a numpy array that requires conversion (either because it has an incompatible stride or the wrong dtype). Specifying a noconvert looks like one of these: m.def("f1", &f, "a"_a.noconvert() = "default"); // Named, default, noconvert m.def("f2", &f, "a"_a.noconvert()); // Named, no default, no converting m.def("f3", &f, py::arg().noconvert()); // Unnamed, no default, no converting (The last part--being able to declare a py::arg without a name--is new: previous py::arg() only accepted named keyword arguments). Such an non-convert argument is then passed `convert = false` by the type caster when loading the argument. Whether this has an effect is up to the type caster itself, but as mentioned above, this would be extremely helpful for the Eigen support to give a nicer way to specify a "no-copy" mode than the custom wrapper in the current PR, and moreover isn't an Eigen-specific hack.
2017-01-23 08:50:00 +00:00
throw type_error("Got kwargs without a name of type '" + type + "'; only named "
"arguments may be passed via py::arg() to a python function call. ");
}
[[noreturn]] static void multiple_values_error() {
throw type_error("Got multiple values for keyword argument "
"(compile in debug mode for details)");
}
[[noreturn]] static void multiple_values_error(const std::string &name) {
throw type_error("Got multiple values for keyword argument '" + name + "'");
}
private:
tuple m_args;
dict m_kwargs;
};
fix: Intel ICC C++17 compatibility (#2729) * CI: Intel icc/icpc via oneAPI Add testing for Intel icc/icpc via the oneAPI images. Intel oneAPI is in a late beta stage, currently shipping oneAPI beta09 with ICC 20.2. CI: Skip Interpreter Tests for Intel Cannot find how to add this, neiter the package `libc6-dev` nor `intel-oneapi-mkl-devel` help when installed to solve this: ``` -- Looking for C++ include pthread.h -- Looking for C++ include pthread.h - not found CMake Error at /__t/cmake/3.18.4/x64/cmake-3.18.4-Linux-x86_64/share/cmake-3.18/Modules/FindPackageHandleStandardArgs.cmake:165 (message): Could NOT find Threads (missing: Threads_FOUND) Call Stack (most recent call first): /__t/cmake/3.18.4/x64/cmake-3.18.4-Linux-x86_64/share/cmake-3.18/Modules/FindPackageHandleStandardArgs.cmake:458 (_FPHSA_FAILURE_MESSAGE) /__t/cmake/3.18.4/x64/cmake-3.18.4-Linux-x86_64/share/cmake-3.18/Modules/FindThreads.cmake:234 (FIND_PACKAGE_HANDLE_STANDARD_ARGS) tests/test_embed/CMakeLists.txt:17 (find_package) ``` CI: libc6-dev from GCC for ICC CI: Run bare metal for oneAPI CI: Ubuntu 18.04 for oneAPI CI: Intel +Catch -Eigen CI: CMake from Apt (ICC tests) CI: Replace Intel Py with GCC Py CI: Intel w/o GCC's Eigen CI: ICC with verbose make [Debug] Find core dump tests: use arg{} instead of arg() for Intel tests: adding a few more missing {} fix: sync with @tobiasleibner's branch fix: try ubuntu 20-04 fix: drop exit 1 docs: Apply suggestions from code review Co-authored-by: Tobias Leibner <tobias.leibner@googlemail.com> Workaround for ICC enable_if issues Another workaround for ICC's enable_if issues fix error in previous commit Disable one test for the Intel compiler in C++17 mode Add back one instance of py::arg().noconvert() Add NOLINT to fix clang-tidy check Work around for ICC internal error in PYBIND11_EXPAND_SIDE_EFFECTS in C++17 mode CI: Intel ICC with C++17 docs: pybind11/numpy.h does not require numpy at build time. (#2720) This is nice enough to be mentioned explicitly in the docs. docs: Update warning about Python 3.9.0 UB, now that 3.9.1 has been released (#2719) Adjusting `type_caster<std::reference_wrapper<T>>` to support const/non-const propagation in `cast_op`. (#2705) * Allow type_caster of std::reference_wrapper<T> to be the same as a native reference. Before, both std::reference_wrapper<T> and std::reference_wrapper<const T> would invoke cast_op<type>. This doesn't allow the type_caster<> specialization for T to distinguish reference_wrapper types from value types. After, the type_caster<> specialization invokes cast_op<type&>, which allows reference_wrapper to behave in the same way as a native reference type. * Add tests/examples for std::reference_wrapper<const T> * Add tests which use mutable/immutable variants This test is a chimera; it blends the pybind11 casters with a custom pytype implementation that supports immutable and mutable calls. In order to detect the immutable/mutable state, the cast_op needs to propagate it, even through e.g. std::reference<const T> Note: This is still a work in progress; some things are crashing, which likely means that I have a refcounting bug or something else missing. * Add/finish tests that distinguish const& from & Fixes the bugs in my custom python type implementation, demonstrate test that requires const& and reference_wrapper<const T> being treated differently from Non-const. * Add passing a const to non-const method. * Demonstrate non-const conversion of reference_wrapper in tests. Apply formatting presubmit check. * Fix build errors from presubmit checks. * Try and fix a few more CI errors * More CI fixes. * More CI fixups. * Try and get PyPy to work. * Additional minor fixups. Getting close to CI green. * More ci fixes? * fix clang-tidy warnings from presubmit * fix more clang-tidy warnings * minor comment and consistency cleanups * PyDECREF -> Py_DECREF * copy/move constructors * Resolve codereview comments * more review comment fixes * review comments: remove spurious & * Make the test fail even when the static_assert is commented out. This expands the test_freezable_type_caster a bit by: 1/ adding accessors .is_immutable and .addr to compare identity from python. 2/ Changing the default cast_op of the type_caster<> specialization to return a non-const value. In normal codepaths this is a reasonable default. 3/ adding roundtrip variants to exercise the by reference, by pointer and by reference_wrapper in all call paths. In conjunction with 2/, this demonstrates the failure case of the existing std::reference_wrpper conversion, which now loses const in a similar way that happens when using the default cast_op_type<>. * apply presubmit formatting * Revert inclusion of test_freezable_type_caster There's some concern that this test is a bit unwieldly because of the use of the raw <Python.h> functions. Removing for now. * Add a test that validates const references propagation. This test verifies that cast_op may be used to correctly detect const reference types when used with std::reference_wrapper. * mend * Review comments based changes. 1. std::add_lvalue_reference<type> -> type& 2. Simplify the test a little more; we're never returning the ConstRefCaster type so the class_ definition can be removed. * formatted files again. * Move const_ref_caster test to builtin_casters * Review comments: use cast_op and adjust some comments. * Simplify ConstRefCasted test I like this version better as it moves the assertion that matters back into python. ci: drop pypy2 linux, PGI 20.7, add Python 10 dev (#2724) * ci: drop pypy2 linux, add Python 10 dev * ci: fix mistake * ci: commented-out PGI 20.11, drop 20.7 fix: regression with installed pybind11 overriding local one (#2716) * fix: regression with installed pybind11 overriding discovered one Closes #2709 * docs: wording incorrect style: remove redundant instance->owned = true (#2723) which was just before set to True in instance->allocate_layout() fix: also throw in the move-constructor added by the PYBIND11_OBJECT macro, after the argument has been moved-out (if necessary) (#2701) Make args_are_all_* ICC workarounds unconditional Disable test_aligned on Intel ICC Fix test_aligned on Intel ICC Skip test_python_alreadyset_in_destructor on Intel ICC Fix test_aligned again ICC CI: Downgrade pytest pytest 6 does not capture the `discard_as_unraisable` stderr and just writes a warning with its content instead. * refactor: simpler Intel workaround, suggested by @laramiel * fix: try version with impl to see if it is easier to compile * docs: update README for ICC Co-authored-by: Axel Huebl <axel.huebl@plasma.ninja> Co-authored-by: Henry Schreiner <henryschreineriii@gmail.com>
2021-01-18 00:53:07 +00:00
// [workaround(intel)] Separate function required here
// We need to put this into a separate function because the Intel compiler
// fails to compile enable_if_t<!all_of<is_positional<Args>...>::value>
// (tested with ICC 2021.1 Beta 20200827).
template <typename... Args>
constexpr bool args_are_all_positional()
{
return all_of<is_positional<Args>...>::value;
}
/// Collect only positional arguments for a Python function call
template <return_value_policy policy, typename... Args,
fix: Intel ICC C++17 compatibility (#2729) * CI: Intel icc/icpc via oneAPI Add testing for Intel icc/icpc via the oneAPI images. Intel oneAPI is in a late beta stage, currently shipping oneAPI beta09 with ICC 20.2. CI: Skip Interpreter Tests for Intel Cannot find how to add this, neiter the package `libc6-dev` nor `intel-oneapi-mkl-devel` help when installed to solve this: ``` -- Looking for C++ include pthread.h -- Looking for C++ include pthread.h - not found CMake Error at /__t/cmake/3.18.4/x64/cmake-3.18.4-Linux-x86_64/share/cmake-3.18/Modules/FindPackageHandleStandardArgs.cmake:165 (message): Could NOT find Threads (missing: Threads_FOUND) Call Stack (most recent call first): /__t/cmake/3.18.4/x64/cmake-3.18.4-Linux-x86_64/share/cmake-3.18/Modules/FindPackageHandleStandardArgs.cmake:458 (_FPHSA_FAILURE_MESSAGE) /__t/cmake/3.18.4/x64/cmake-3.18.4-Linux-x86_64/share/cmake-3.18/Modules/FindThreads.cmake:234 (FIND_PACKAGE_HANDLE_STANDARD_ARGS) tests/test_embed/CMakeLists.txt:17 (find_package) ``` CI: libc6-dev from GCC for ICC CI: Run bare metal for oneAPI CI: Ubuntu 18.04 for oneAPI CI: Intel +Catch -Eigen CI: CMake from Apt (ICC tests) CI: Replace Intel Py with GCC Py CI: Intel w/o GCC's Eigen CI: ICC with verbose make [Debug] Find core dump tests: use arg{} instead of arg() for Intel tests: adding a few more missing {} fix: sync with @tobiasleibner's branch fix: try ubuntu 20-04 fix: drop exit 1 docs: Apply suggestions from code review Co-authored-by: Tobias Leibner <tobias.leibner@googlemail.com> Workaround for ICC enable_if issues Another workaround for ICC's enable_if issues fix error in previous commit Disable one test for the Intel compiler in C++17 mode Add back one instance of py::arg().noconvert() Add NOLINT to fix clang-tidy check Work around for ICC internal error in PYBIND11_EXPAND_SIDE_EFFECTS in C++17 mode CI: Intel ICC with C++17 docs: pybind11/numpy.h does not require numpy at build time. (#2720) This is nice enough to be mentioned explicitly in the docs. docs: Update warning about Python 3.9.0 UB, now that 3.9.1 has been released (#2719) Adjusting `type_caster<std::reference_wrapper<T>>` to support const/non-const propagation in `cast_op`. (#2705) * Allow type_caster of std::reference_wrapper<T> to be the same as a native reference. Before, both std::reference_wrapper<T> and std::reference_wrapper<const T> would invoke cast_op<type>. This doesn't allow the type_caster<> specialization for T to distinguish reference_wrapper types from value types. After, the type_caster<> specialization invokes cast_op<type&>, which allows reference_wrapper to behave in the same way as a native reference type. * Add tests/examples for std::reference_wrapper<const T> * Add tests which use mutable/immutable variants This test is a chimera; it blends the pybind11 casters with a custom pytype implementation that supports immutable and mutable calls. In order to detect the immutable/mutable state, the cast_op needs to propagate it, even through e.g. std::reference<const T> Note: This is still a work in progress; some things are crashing, which likely means that I have a refcounting bug or something else missing. * Add/finish tests that distinguish const& from & Fixes the bugs in my custom python type implementation, demonstrate test that requires const& and reference_wrapper<const T> being treated differently from Non-const. * Add passing a const to non-const method. * Demonstrate non-const conversion of reference_wrapper in tests. Apply formatting presubmit check. * Fix build errors from presubmit checks. * Try and fix a few more CI errors * More CI fixes. * More CI fixups. * Try and get PyPy to work. * Additional minor fixups. Getting close to CI green. * More ci fixes? * fix clang-tidy warnings from presubmit * fix more clang-tidy warnings * minor comment and consistency cleanups * PyDECREF -> Py_DECREF * copy/move constructors * Resolve codereview comments * more review comment fixes * review comments: remove spurious & * Make the test fail even when the static_assert is commented out. This expands the test_freezable_type_caster a bit by: 1/ adding accessors .is_immutable and .addr to compare identity from python. 2/ Changing the default cast_op of the type_caster<> specialization to return a non-const value. In normal codepaths this is a reasonable default. 3/ adding roundtrip variants to exercise the by reference, by pointer and by reference_wrapper in all call paths. In conjunction with 2/, this demonstrates the failure case of the existing std::reference_wrpper conversion, which now loses const in a similar way that happens when using the default cast_op_type<>. * apply presubmit formatting * Revert inclusion of test_freezable_type_caster There's some concern that this test is a bit unwieldly because of the use of the raw <Python.h> functions. Removing for now. * Add a test that validates const references propagation. This test verifies that cast_op may be used to correctly detect const reference types when used with std::reference_wrapper. * mend * Review comments based changes. 1. std::add_lvalue_reference<type> -> type& 2. Simplify the test a little more; we're never returning the ConstRefCaster type so the class_ definition can be removed. * formatted files again. * Move const_ref_caster test to builtin_casters * Review comments: use cast_op and adjust some comments. * Simplify ConstRefCasted test I like this version better as it moves the assertion that matters back into python. ci: drop pypy2 linux, PGI 20.7, add Python 10 dev (#2724) * ci: drop pypy2 linux, add Python 10 dev * ci: fix mistake * ci: commented-out PGI 20.11, drop 20.7 fix: regression with installed pybind11 overriding local one (#2716) * fix: regression with installed pybind11 overriding discovered one Closes #2709 * docs: wording incorrect style: remove redundant instance->owned = true (#2723) which was just before set to True in instance->allocate_layout() fix: also throw in the move-constructor added by the PYBIND11_OBJECT macro, after the argument has been moved-out (if necessary) (#2701) Make args_are_all_* ICC workarounds unconditional Disable test_aligned on Intel ICC Fix test_aligned on Intel ICC Skip test_python_alreadyset_in_destructor on Intel ICC Fix test_aligned again ICC CI: Downgrade pytest pytest 6 does not capture the `discard_as_unraisable` stderr and just writes a warning with its content instead. * refactor: simpler Intel workaround, suggested by @laramiel * fix: try version with impl to see if it is easier to compile * docs: update README for ICC Co-authored-by: Axel Huebl <axel.huebl@plasma.ninja> Co-authored-by: Henry Schreiner <henryschreineriii@gmail.com>
2021-01-18 00:53:07 +00:00
typename = enable_if_t<args_are_all_positional<Args...>()>>
simple_collector<policy> collect_arguments(Args &&...args) {
return simple_collector<policy>(std::forward<Args>(args)...);
}
/// Collect all arguments, including keywords and unpacking (only instantiated when needed)
template <return_value_policy policy, typename... Args,
fix: Intel ICC C++17 compatibility (#2729) * CI: Intel icc/icpc via oneAPI Add testing for Intel icc/icpc via the oneAPI images. Intel oneAPI is in a late beta stage, currently shipping oneAPI beta09 with ICC 20.2. CI: Skip Interpreter Tests for Intel Cannot find how to add this, neiter the package `libc6-dev` nor `intel-oneapi-mkl-devel` help when installed to solve this: ``` -- Looking for C++ include pthread.h -- Looking for C++ include pthread.h - not found CMake Error at /__t/cmake/3.18.4/x64/cmake-3.18.4-Linux-x86_64/share/cmake-3.18/Modules/FindPackageHandleStandardArgs.cmake:165 (message): Could NOT find Threads (missing: Threads_FOUND) Call Stack (most recent call first): /__t/cmake/3.18.4/x64/cmake-3.18.4-Linux-x86_64/share/cmake-3.18/Modules/FindPackageHandleStandardArgs.cmake:458 (_FPHSA_FAILURE_MESSAGE) /__t/cmake/3.18.4/x64/cmake-3.18.4-Linux-x86_64/share/cmake-3.18/Modules/FindThreads.cmake:234 (FIND_PACKAGE_HANDLE_STANDARD_ARGS) tests/test_embed/CMakeLists.txt:17 (find_package) ``` CI: libc6-dev from GCC for ICC CI: Run bare metal for oneAPI CI: Ubuntu 18.04 for oneAPI CI: Intel +Catch -Eigen CI: CMake from Apt (ICC tests) CI: Replace Intel Py with GCC Py CI: Intel w/o GCC's Eigen CI: ICC with verbose make [Debug] Find core dump tests: use arg{} instead of arg() for Intel tests: adding a few more missing {} fix: sync with @tobiasleibner's branch fix: try ubuntu 20-04 fix: drop exit 1 docs: Apply suggestions from code review Co-authored-by: Tobias Leibner <tobias.leibner@googlemail.com> Workaround for ICC enable_if issues Another workaround for ICC's enable_if issues fix error in previous commit Disable one test for the Intel compiler in C++17 mode Add back one instance of py::arg().noconvert() Add NOLINT to fix clang-tidy check Work around for ICC internal error in PYBIND11_EXPAND_SIDE_EFFECTS in C++17 mode CI: Intel ICC with C++17 docs: pybind11/numpy.h does not require numpy at build time. (#2720) This is nice enough to be mentioned explicitly in the docs. docs: Update warning about Python 3.9.0 UB, now that 3.9.1 has been released (#2719) Adjusting `type_caster<std::reference_wrapper<T>>` to support const/non-const propagation in `cast_op`. (#2705) * Allow type_caster of std::reference_wrapper<T> to be the same as a native reference. Before, both std::reference_wrapper<T> and std::reference_wrapper<const T> would invoke cast_op<type>. This doesn't allow the type_caster<> specialization for T to distinguish reference_wrapper types from value types. After, the type_caster<> specialization invokes cast_op<type&>, which allows reference_wrapper to behave in the same way as a native reference type. * Add tests/examples for std::reference_wrapper<const T> * Add tests which use mutable/immutable variants This test is a chimera; it blends the pybind11 casters with a custom pytype implementation that supports immutable and mutable calls. In order to detect the immutable/mutable state, the cast_op needs to propagate it, even through e.g. std::reference<const T> Note: This is still a work in progress; some things are crashing, which likely means that I have a refcounting bug or something else missing. * Add/finish tests that distinguish const& from & Fixes the bugs in my custom python type implementation, demonstrate test that requires const& and reference_wrapper<const T> being treated differently from Non-const. * Add passing a const to non-const method. * Demonstrate non-const conversion of reference_wrapper in tests. Apply formatting presubmit check. * Fix build errors from presubmit checks. * Try and fix a few more CI errors * More CI fixes. * More CI fixups. * Try and get PyPy to work. * Additional minor fixups. Getting close to CI green. * More ci fixes? * fix clang-tidy warnings from presubmit * fix more clang-tidy warnings * minor comment and consistency cleanups * PyDECREF -> Py_DECREF * copy/move constructors * Resolve codereview comments * more review comment fixes * review comments: remove spurious & * Make the test fail even when the static_assert is commented out. This expands the test_freezable_type_caster a bit by: 1/ adding accessors .is_immutable and .addr to compare identity from python. 2/ Changing the default cast_op of the type_caster<> specialization to return a non-const value. In normal codepaths this is a reasonable default. 3/ adding roundtrip variants to exercise the by reference, by pointer and by reference_wrapper in all call paths. In conjunction with 2/, this demonstrates the failure case of the existing std::reference_wrpper conversion, which now loses const in a similar way that happens when using the default cast_op_type<>. * apply presubmit formatting * Revert inclusion of test_freezable_type_caster There's some concern that this test is a bit unwieldly because of the use of the raw <Python.h> functions. Removing for now. * Add a test that validates const references propagation. This test verifies that cast_op may be used to correctly detect const reference types when used with std::reference_wrapper. * mend * Review comments based changes. 1. std::add_lvalue_reference<type> -> type& 2. Simplify the test a little more; we're never returning the ConstRefCaster type so the class_ definition can be removed. * formatted files again. * Move const_ref_caster test to builtin_casters * Review comments: use cast_op and adjust some comments. * Simplify ConstRefCasted test I like this version better as it moves the assertion that matters back into python. ci: drop pypy2 linux, PGI 20.7, add Python 10 dev (#2724) * ci: drop pypy2 linux, add Python 10 dev * ci: fix mistake * ci: commented-out PGI 20.11, drop 20.7 fix: regression with installed pybind11 overriding local one (#2716) * fix: regression with installed pybind11 overriding discovered one Closes #2709 * docs: wording incorrect style: remove redundant instance->owned = true (#2723) which was just before set to True in instance->allocate_layout() fix: also throw in the move-constructor added by the PYBIND11_OBJECT macro, after the argument has been moved-out (if necessary) (#2701) Make args_are_all_* ICC workarounds unconditional Disable test_aligned on Intel ICC Fix test_aligned on Intel ICC Skip test_python_alreadyset_in_destructor on Intel ICC Fix test_aligned again ICC CI: Downgrade pytest pytest 6 does not capture the `discard_as_unraisable` stderr and just writes a warning with its content instead. * refactor: simpler Intel workaround, suggested by @laramiel * fix: try version with impl to see if it is easier to compile * docs: update README for ICC Co-authored-by: Axel Huebl <axel.huebl@plasma.ninja> Co-authored-by: Henry Schreiner <henryschreineriii@gmail.com>
2021-01-18 00:53:07 +00:00
typename = enable_if_t<!args_are_all_positional<Args...>()>>
unpacking_collector<policy> collect_arguments(Args &&...args) {
// Following argument order rules for generalized unpacking according to PEP 448
static_assert(
constexpr_last<is_positional, Args...>() < constexpr_first<is_keyword_or_ds, Args...>()
&& constexpr_last<is_s_unpacking, Args...>() < constexpr_first<is_ds_unpacking, Args...>(),
"Invalid function call: positional args must precede keywords and ** unpacking; "
"* unpacking must precede ** unpacking"
);
return unpacking_collector<policy>(std::forward<Args>(args)...);
}
template <typename Derived>
template <return_value_policy policy, typename... Args>
object object_api<Derived>::operator()(Args &&...args) const {
#if !defined(NDEBUG) && PY_VERSION_HEX >= 0x03060000
if (!PyGILState_Check()) {
pybind11_fail("pybind11::object_api<>::operator() PyGILState_Check() failure.");
}
#endif
return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr());
2015-07-05 18:05:44 +00:00
}
template <typename Derived>
template <return_value_policy policy, typename... Args>
object object_api<Derived>::call(Args &&...args) const {
return operator()<policy>(std::forward<Args>(args)...);
}
PYBIND11_NAMESPACE_END(detail)
template<typename T>
handle type::handle_of() {
static_assert(
std::is_base_of<detail::type_caster_generic, detail::make_caster<T>>::value,
"py::type::of<T> only supports the case where T is a registered C++ types."
);
return detail::get_type_handle(typeid(T), true);
}
#define PYBIND11_MAKE_OPAQUE(...) \
2016-04-28 14:25:24 +00:00
namespace pybind11 { namespace detail { \
template<> class type_caster<__VA_ARGS__> : public type_caster_base<__VA_ARGS__> { }; \
2016-04-28 14:25:24 +00:00
}}
/// Lets you pass a type containing a `,` through a macro parameter without needing a separate
/// typedef, e.g.: `PYBIND11_OVERRIDE(PYBIND11_TYPE(ReturnType<A, B>), PYBIND11_TYPE(Parent<C, D>), f, arg)`
#define PYBIND11_TYPE(...) __VA_ARGS__
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)