Under gcc, the `static internals *internals_ptr` is shared across .so's,
which breaks for obvious reasons.
This commit fixes it by moving the static pointer declaration into a
pybind-version-templated function.
Currently, `py::int_(1).cast<variant<double, int>>()` fills the `double`
slot of the variant. This commit switches the loader to a 2-pass scheme
in order to correctly fill the `int` slot.
Many of our `is_none()` checks in type caster loading return true, but
this should really be considered a deferral so that, for example, an
overload with a `py::none` argument would win over one that takes
`py::none` as a null option.
This keeps None-accepting for the `!convert` pass only for std::optional
and void casters. (The `char` caster already deferred None; this just
extends that behaviour to other casters).
Under gcc 7 with -std=c++11, compilation results in several of the
following warnings:
In file included from /home/jagerman/src/pybind11/tests/test_sequences_and_iterators.cpp:13:0:
/home/jagerman/src/pybind11/include/pybind11/operators.h: In function ‘pybind11::detail::op_<(pybind11::detail::op_id)0, (pybind11::detail::op_type)0, pybind11::detail::self_t, pybind11::detail::self_t> pybind11::detail::operator+(const pybind11::detail::self_t&, const pybind11::detail::self_t&)’:
/home/jagerman/src/pybind11/include/pybind11/operators.h:78:76: warning: inline declaration of ‘pybind11::detail::op_<(pybind11::detail::op_id)0, (pybind11::detail::op_type)0, pybind11::detail::self_t, pybind11::detail::self_t> pybind11::detail::operator+(const pybind11::detail::self_t&, const pybind11::detail::self_t&)’ follows declaration with attribute noinline [-Wattributes]
inline op_<op_##id, op_l, self_t, self_t> op(const self_t &, const self_t &) { \
^
/home/jagerman/src/pybind11/include/pybind11/operators.h:109:1: note: in expansion of macro ‘PYBIND11_BINARY_OPERATOR’
PYBIND11_BINARY_OPERATOR(add, radd, operator+, l + r)
^~~~~~~~~~~~~~~~~~~~~~~~
In file included from /home/jagerman/src/pybind11/include/pybind11/cast.h:15:0,
from /home/jagerman/src/pybind11/include/pybind11/attr.h:13,
from /home/jagerman/src/pybind11/include/pybind11/pybind11.h:36,
from /home/jagerman/src/pybind11/tests/pybind11_tests.h:2,
from /home/jagerman/src/pybind11/tests/test_sequences_and_iterators.cpp:11:
/home/jagerman/src/pybind11/include/pybind11/descr.h:116:36: note: previous definition of ‘pybind11::detail::descr pybind11::detail::operator+(pybind11::detail::descr&&, pybind11::detail::descr&&)’ was here
PYBIND11_NOINLINE descr friend operator+(descr &&d1, descr &&d2) {
^~~~~~~~
This appears to be happening because gcc is considering implicit
construction of `descr` in some places using addition of two
`descr`-compatible arguments in the `descr.h` c++11 fallback code.
There's no particular reason that this operator needs to be a friend
function: this commit changes it to an rvalue-context member function
operator, which avoids the warning.
This exposed a few underlying issues:
1. is_pod_struct was too strict to allow this. I've relaxed it to
require only trivially copyable and standard layout, rather than POD
(which additionally requires a trivial constructor, which std::complex
violates).
2. format_descriptor<std::complex<T>>::format() returned numpy format
strings instead of PEP3118 format strings, but register_dtype
feeds format codes of its fields to _dtype_from_pep3118. I've changed it
to return PEP3118 format codes. format_descriptor is a public type, so
this may be considered an incompatible change.
3. register_structured_dtype tried to be smart about whether to mark
fields as unaligned (with ^). However, it's examining the C++ alignment,
rather than what numpy (or possibly PEP3118) thinks the alignment should
be. For complex values those are different. I've made it mark all fields
as ^ unconditionally, which should always be safe even if they are
aligned, because we explicitly mark the padding.
Resolves#800.
Both C++ arrays and std::array are supported, including mixtures like
std::array<int, 2>[4]. In a multi-dimensional array of char, the last
dimension is used to construct a numpy string type.
The PYBIND11_CPP14 macro started out as a guard for the compile-time
path code in `descr.h`, but has since come to mean other things. This
means that while the `descr.h` check has just checked the
`PYBIND11_CPP14` macro, various other places now check `PYBIND11_CPP14
|| _MSC_VER`. This reverses that by now setting the CPP14 macro when
MSVC is trying to support C++14, but disabling the `descr.h` C++14 code
(which still fails under MSVC 2017).
The CPP17 macro also gets enabled when MSVC 2017 is compiling with
/std:c++latest (the default is /std:c++14), which enables
`std::optional` and `std::variant` support under MSVC.
GCC 7 generates (when compiling in C++11/14 mode) warnings such as:
mangled name for ‘pybind11::class_<type_, options>&
pybind11::class_<type_, options>::def(const char*, Func&&, const Extra&
...) [with Func = int (test_exc_sp::C::*)(int) noexcept; Extra = {};
type_ = test_exc_sp::C; options = {}]’ will change in C++17 because the
exception specification is part of a function type [-Wnoexcept-type]
There's nothing we can actually do in the code to avoid this, so just
disable the warning.
GCC supports `deprecated(msg)` since v4.5 and VS supports the standard
[[deprecated(msg)]] since 2015 RTM.
The deprecated constructor change from `= default` to `{}` is
a workaround for a VS2015 bug.
We're current copy by creating an Eigen::Map into the input numpy
array, then assigning that to the basic eigen type, effectively having
Eigen do the copy. That doesn't work for negative strides, though:
Eigen doesn't allow them.
This commit makes numpy do the copying instead by allocating the eigen
type, then having numpy copy from the input array into a numpy reference
into the eigen object's data. This also saves a copy when type
conversion is required: numpy can do the conversion on-the-fly as part
of the copy.
Finally this commit also makes non-reference parameters respect the
convert flag, declining the load when called in a noconvert pass with a
convertible, but non-array input or an array with the wrong dtype.
`EigenConformable::stride_compatible` returns false if the strides are
negative. In this case, do not use `EigenConformable::stride`, as it
is {0,0}. We cannot write negative strides in this element, as Eigen
will throw an assertion if we do.
The `type_caster` specialization for regular, dense Eigen matrices now
does a second `array_t::ensure` to copy data in case of negative strides.
I'm not sure that this is the best way to implement this.
I have added "TODO" tags linking these changes to Eigen bug #747, which,
when fixed, will allow Eigen to accept negative strides.
If a bound std::function is invoked with a bound method, the implicit
bound self is lost because we use `detail::get_function` to unbox the
function. This commit amends the code to use py::function and only
unboxes in the special is-really-a-c-function case. This makes bound
methods stay bound rather than unbinding them by forcing extraction of
the c function.
Enumerations on Python 2.7 were not always implicitly converted to
integers (depending on the target size). This patch adds a __long__
conversion function (only enabled on 2.7) which fixes this issue.
The attached test case fails without this patch.
This removes the convert-from-arithemtic-scalar constructor of
any_container as it can result in ambiguous calls, as in:
py::array_t<float>({ 1, 2 })
which could be intepreted as either of:
py::array_t<float>(py::array_t<float>(1, 2))
py::array_t<float>(py::detail::any_container({ 1, 2 }))
Removing the convert-from-arithmetic constructor reduces the number of
implicit conversions, avoiding the ambiguity for array and array_t.
This also re-adds the array/array_t constructors taking a scalar
argument for backwards compatibility.
Python 3's `PyInstanceMethod_Type` hides itself via its `tp_descr_get`,
which prevents aliasing methods via `cls.attr("m2") = cls.attr("m1")`:
instead the `tp_descr_get` returns a plain function, when called on a
class, or a `PyMethod`, when called on an instance. Override that
behaviour for pybind11 types with a special bypass for
`PyInstanceMethod_Types`.
The Unicode support added in 2.1 (PR #624) inadvertently broke accepting
`bytes` as std::string/char* arguments. This restores it with a
separate path that does a plain conversion (i.e. completely bypassing
all the encoding/decoding code), but only for single-byte string types.
The numpy API constants can check past the end of the API array if the
numpy version is too old thus causing a segfault. The current list of
functions requires numpy >= 1.7.0, so this adds a check and exception if
numpy is too old.
The added feature version API element was added in numpy 1.4.0, so this
could still segfault if loaded in 1.3.0 or earlier, but given that
1.4.0 was released at the end of 2009, it seems reasonable enough to
not worry about that case. (1.7.0 was released in early 2013).
This commits adds base class pointers of offset base classes (i.e. due
to multiple inheritance) to `registered_instances` so that if such a
pointer is returned we properly recognize it as an existing instance.
Without this, returning a base class pointer will cast to the existing
instance if the pointer happens to coincide with the instance pointer,
but constructs a new instance (quite possibly with a segfault, if
ownership is applied) for unequal base class pointers due to multiple
inheritance.
When we are returned a base class pointer (either directly or via
shared_from_this()) we detect its runtime type (using `typeid`), then
end up essentially reinterpret_casting the pointer to the derived type.
This is invalid when the base class pointer was a non-first base, and we
end up with an invalid pointer. We could dynamic_cast to the
most-derived type, but if *that* type isn't pybind11-registered, the
resulting pointer given to the base `cast` implementation isn't necessarily valid
to be reinterpret_cast'ed back to the backup type.
This commit removes the "backup" type argument from the many-argument
`cast(...)` and instead does the derived-or-pointer type decision and
type lookup in type_caster_base, where the dynamic_cast has to be to
correctly get the derived pointer, but also has to do the type lookup to
ensure that we don't pass the wrong (derived) pointer when the backup
type (i.e. the type caster intrinsic type) pointer is needed.
Since the lookup is needed before calling the base cast(), this also
changes the input type to a detail::type_info rather than doing a
(second) lookup in cast().
This breaks up the instance management functions in class_support.h a
little bit so that other pybind11 code can use it. In particular:
- added make_new_instance() which does what pybind11_object_new does,
but also allows instance allocation without `value` allocation. This
lets `cast.h` use the same instance allocation rather than having its
own separate implementation.
- instance registration is now moved to a
`register_instance()`/deregister_instance()` pair (rather than having
individual code add or remove things from `registered_instances`
directory).
- clear_instance() does everything `pybind11_object_dealloc()` needs
except for the deallocation; this is helpful for factory construction
which needs to be able to replace the internals of an instance without
deallocating it.
- clear_instance() now also calls `dealloc` when `holder_constructed`
is true, even if `value` is false. This can happen in factory
construction when the pointer is moved from one instance to another,
but the holder itself is only copied (i.e. for a shared_ptr holder).
I got some unexpected errors from code using `overload_cast` until I
realized that I'd configured the build with -std=c++11.
This commit adds a fake `overload_cast` class in C++11 mode that
triggers a static_assert failure indicating that C++14 is needed.
We currently fail at runtime when trying to call a method that is
overloaded with both static and non-static methods. This is something
python won't allow: the object is either a function or an instance, and
can't be both.
This further reduces the constructors required in buffer_info/numpy by
removing the need for the constructors that take a single size_t and
just forward it on via an initializer_list to the container-accepting
constructor.
Unfortunately, in `array` one of the constructors runs into an ambiguity
problem with the deprecated `array(handle, bool)` constructor (because
both the bool constructor and the any_container constructor involve an
implicit conversion, so neither has precedence), so a forwarding
constructor is kept there (until the deprecated constructor is
eventually removed).
This adds support for constructing `buffer_info` and `array`s using
arbitrary containers or iterator pairs instead of requiring a vector.
This is primarily needed by PR #782 (which makes strides signed to
properly support negative strides, and will likely also make shape and
itemsize to avoid mixed integer issues), but also needs to preserve
backwards compatibility with 2.1 and earlier which accepts the strides
parameter as a vector of size_t's.
Rather than adding nearly duplicate constructors for each stride-taking
constructor, it seems nicer to simply allow any type of container (or
iterator pairs). This works by replacing the existing vector arguments
with a new `detail::any_container` class that handles implicit
conversion of arbitrary containers into a vector of the desired type.
It can also be explicitly instantiated with a pair of iterators (e.g.
by passing {begin, end} instead of the container).
Upcoming changes to buffer_info make it need some things declared in
common.h; it also feels a bit misplaced in common.h (which is arguably
too large already), so move it out. (Separating this and the subsequent
changes into separate commits to make the changes easier to distinguish
from the move.)
When attempting to get a raw array pointer we return nullptr if given a
nullptr, which triggers an error_already_set(), but we haven't set an
exception message, which results in "Unknown internal error".
Callers that want explicit allowing of a nullptr here already handle it
(by clearing the exception after the call).
Many of the Eigen type casters' name() methods weren't wrapping the type
description in a `type_descr` object, which thus wasn't adding the
"{...}" annotation used to identify an argument which broke the help
output by skipping eigen arguments.
The test code I had added even had some (unnoticed) broken output (with
the "arg0: " showing up in the return value).
This commit also adds test code to ensure that named eigen arguments
actually work properly, despite the invalid help output. (The added
tests pass without the rest of this commit).
The holder casters assume but don't check that a `holder<type>`'s `type`
is really a `type_caster_base<type>`; this adds a static_assert to make
sure this is really the case, to turn things like
`std::shared_ptr<array>` into a compilation failure.
Fixes#785
Fixes#775.
Assignments of the form `Type.static_prop = value` should be translated to
`Type.static_prop.__set__(value)` except when `isinstance(value, static_prop)`.
PR #771 deprecated them as they can cause linking failures (#770), but
the deprecation tags cause warnings on GCC 5.x through 6.2.x. Removing
them entirely will break backwards-compatibility consequences, but the
effects should be minimal (only code that was inheriting from `object`
could get at them at all as they are protected).
Fixes#777
When make_tuple fails (for example, when print() is called with a
non-convertible argument, as in #778) the error message a less helpful
than it could be:
make_tuple(): unable to convert arguments of types 'std::tuple<type1, type2>' to Python object
There is no actual std::tuple involved (only a parameter pack and a
Python tuple), but it also doesn't immediately reveal which type caused
the problem.
This commit changes the debugging mode output to show just the
problematic type:
make_tuple(): unable to convert argument of type 'type2' to Python object
This commit adds `error_already_set::matches()` convenience method to
check if the exception trapped by `error_already_set` matches a given
Python exception type. This will address #700 by providing a less
verbose way to check exceptions.
The constexpr static instances can cause linking failures if the
compiler doesn't optimize away the reference, as reported in #770.
There's no particularly nice way of fixing this in C++11/14: we can't
inline definitions to match the declaration aren't permitted for
non-templated static variables (C++17 *does* allows "inline" on
variables, but that obviously doesn't help us.)
One solution that could work around it is to add an extra inherited
subclass to `object`'s hierarchy, but that's a bit of a messy solution
and was decided against in #771 in favour of just deprecating (and
eventually dropping) the constexpr statics.
Fixes#770.
The extends the previous unchecked support with the ability to
determine the dimensions at runtime. This incurs a small performance
hit when used (versus the compile-time fixed alternative), but is still considerably
faster than the full checks on every call that happen with
`.at()`/`.mutable_at()`.
This adds bounds-unchecked access to arrays through a `a.unchecked<Type,
Dimensions>()` method. (For `array_t<T>`, the `Type` template parameter
is omitted). The mutable version (which requires the array have the
`writeable` flag) is available as `a.mutable_unchecked<...>()`.
Specifying the Dimensions as a template parameter allows storage of an
std::array; having the strides and sizes stored that way (as opposed to
storing a copy of the array's strides/shape pointers) allows the
compiler to make significant optimizations of the shape() method that it
can't make with a pointer; testing with nested loops of the form:
for (size_t i0 = 0; i0 < r.shape(0); i0++)
for (size_t i1 = 0; i1 < r.shape(1); i1++)
...
r(i0, i1, ...) += 1;
over a 10 million element array gives around a 25% speedup (versus using
a pointer) for the 1D case, 33% for 2D, and runs more than twice as fast
with a 5D array.
This extends the trivial handling to support trivial handling for
Fortran-order arrays (i.e. column major): if inputs aren't all
C-contiguous, but *are* all F-contiguous, the resulting array will be
F-contiguous and we can do trivial processing.
For anything else (e.g. C-contiguous, or inputs requiring non-trivial
processing), the result is in (numpy-default) C-contiguous layout.
The only part of the vectorize code that actually needs c-contiguous is
the "trivial" broadcast; for non-trivial arguments, the code already
uses strides properly (and so handles C-style, F-style, neither, slices,
etc.)
This commit rewrites `broadcast` to additionally check for C-contiguous
storage, then takes off the `c_style` flag for the arguments, which
will keep the functionality more or less the same, except for no longer
requiring an array copy for non-c-contiguous input arrays.
Additionally, if we're given a singleton slice (e.g. a[0::4, 0::4] for a
4x4 or smaller array), we no longer fail triviality because the trivial
code path never actually uses the strides on a singleton.
Instead of a segfault. Fixes#751.
This covers the case of loading a custom holder from a default-holder
instance. Attempting to load one custom holder from a different custom
holder (i.e. not `std::unique_ptr`) yields undefined behavior, just as
#588 established for inheritance.
py::arg() doesn't only specify named arguments anymore, so the error
message was misleading (e.g. when using `py::arg().noconvert()` and
forgetting `py::arg()` for a second positional argument).
We now require (and enforce at compile time):
- GCC 4.8+
- clang 3.3+ (5.0+ for Apple's renumbered clang)
- MSVC 2015u3+
- ICC 15+
This also updates the versions listed in the README, and removes a
now-redundant MSVC version check.
This adds brief API documentation for make_iterator/make_key_iterator,
specifically mentioning that it requires InputIterators.
Closes#734.
[skip ci] (no code change here)
We can't support this for classes from imported modules (which is the
primary purpose of a ctor argument base class) because we *have* to
have both parent and derived to properly extract a multiple-inheritance
base class pointer from a derived class pointer.
We could support this for actual `class_<Base, ...> instances, but since
in that case the `Base` is already present in the code, it seems more
consistent to simply always require MI to go via template options.
This puts the fold expressions behind the feature macro instead of a
general C++17 macro.
It also adds a fold expression optimization to constexpr_sum (guarded
by the same feature macro).
Fixes#738
The current check for conformability fails when given a 2D, 1xN or Nx1
input to a row-major or column-major, respectively, Eigen::Ref, leading
to a copy-required state in the type_caster, but this later failed
because the copy was also non-conformable because it had the same shape
and strides (because a 1xN or Nx1 is both F and C contiguous).
In such cases we can safely ignore the stride on the "1" dimension since
it'll never be used: only the "N" dimension stride needs to match the
Eigen::Ref stride, which both fixes the non-conformable copy problem,
but also avoids a copy entirely as long as the "N" dimension has a
compatible stride.
Allows use of vectors as python buffers, so for example they can be adopted without a copy by numpy.asarray
Allows faster conversion of buffers to vectors by copying instead of individually casting the elements
* Add value_type member alias to py::array_t (resolve#632)
* Use numpy scalar name in py::array_t function signatures (e.g. float32/64 instead of just float)
The `decltype(...)` in the template parameter that gives us SFINAE
matching for a lambda makes MSVC 2017 ICE; this works around if by
changing the test to an explicit not-a-function-or-pointer test, which
seems to work everywhere.
Some versions of Python 2.7 reportedly (#713) have issues with
PyUnicode_Decode being passed the encoding string, so just skip it
entirely by calling the PyUnicode_DecodeUTF* function directly. This
will also be slightly more efficient by avoiding having to check the
encoding string, and (for python 2) going through the unicode class's
decode (python 3 fast-tracks this for all utf-{8,16,32} encodings;
python 2 only fast-tracked for the exact string "utf-8", which we
weren't passing anyway (we had "utf8")).
This doesn't work for PyPy, however: its `PyUnicode_DecodeUTF{8,16,32}`
appear rather broken: the UTF8 one segfaults, while the 16/32 require
recasting into a non-const `char *` (and might segfault; I didn't get
far enough to find out). Just avoid the whole thing by keeping the
encoding-passed-as-string version for PyPy, which seems to work
reliably.
The duration calculation was using %, but that's only supported on
duration objects when the arithmetic type supports %, and hence fails
for floats. Fixed by subtracting off the calculated values instead.
When using pybind::options to disable function signatures, user-defined
docstrings only get appended if they exist, but newlines were getting
appended unconditionally, so the docstring could end up with blank lines
(depending on which overloads, in particular, provided docstrings).
This commit suppresses the empty lines by only adding newlines for
overloads when needed.
This makes array_t respect overload resolution and noconvert by failing
to load when `convert = false` if the src isn't already an array of the
correct type.
Added in 6fb48490ef
The second constructor can't be doing anything--the signatures are
exactly the same, and so the first is always going to be the one
invoked by the dispatcher.
Commit 11a337f1 added major and minor python version
checking to cast.h but does not use the macros defined
via the Python.h inclusion. This may be due to an
intention to use the variables defined by the cmake
module FindPythonInterpreter, but nothing in the
pybind11 repo does anything to convert the cmake
variables to preprocessor defines.
* The definition of `PySequence_Fast` is more restrictive on PyPy, so
use the slow path instead.
* `PyDict_Next` has been fixed in PyPy -> remove workaround.
Before this, `py::iterator` didn't do any error handling, so code like:
```c++
for (auto item : py::int_(1)) {
// ...
}
```
would just silently skip the loop. The above now throws `TypeError` as
expected. This is a breaking behavior change, but any code which relied
on the silent skip was probably broken anyway.
Also, errors returned by `PyIter_Next()` are now properly handled.
This commit largely rewrites the Eigen dense matrix support to avoid
copying in many cases: Eigen arguments can now reference numpy data, and
numpy objects can now reference Eigen data (given compatible types).
Eigen::Ref<...> arguments now also make use of the new `convert`
argument use (added in PR #634) to avoid conversion, allowing
`py::arg().noconvert()` to be used when binding a function to prohibit
copying when invoking the function. Respecting `convert` also means
Eigen overloads that avoid copying will be preferred during overload
resolution to ones that require copying.
This commit also rewrites the Eigen documentation and test suite to
explain and test the new capabilities.
Eigen::Ref objects, when returned, are almost always returned as
rvalues; what's important is the data they reference, not the outer
shell, and so we want to be able to use `::copy`,
`::reference_internal`, etc. to refer to the data the Eigen::Ref
references (in the following commits), rather than the Eigen::Ref
instance itself.
This moves the policy override into a struct so that code that wants to
avoid it (or wants to provide some other Return-type-conditional
override) can create a specialization of
return_value_policy_override<Return> in order to override the override.
This lets an Eigen::Ref-returning function be bound with `rvp::copy`,
for example, to specify that the data should be copied into a new numpy
array rather than referenced, or `rvp::reference_internal` to indicate
that it should be referenced, but a keep-alive used (actually, we used
the array's `base` rather than a py::keep_alive in such a case, but it
accomplishes the same thing).
Numpy raises ValueError when attempting to modify an array, while
py::array is raising a RuntimeError. This changes the exception to a
std::domain_error, which gets mapped to the expected ValueError in
python.
numpy arrays aren't currently properly setting base: by setting `->base`
directly, the base doesn't follow what numpy expects and documents (that
is, following chained array bases to the root array).
This fixes the behaviour by using numpy's PyArray_SetBaseObject to set
the base instead, and then updates the tests to reflect the fixed
behaviour.
A few of pybind's numpy constants are using the numpy-deprecated names
(without "ARRAY_" in them); updated our names to be consistent with
current numpy code.
`is_template_base_of<T>` fails when `T` is `const` (because its
implementation relies on being able to convert a `T*` to a `Base<U>*`,
which won't work when `T` is const).
(This also agrees with std::is_base_of, which ignores cv qualification.)
Currently when we do a conversion between a numpy array and an Eigen
Vector, we allow the conversion only if the Eigen type is a
compile-time vector (i.e. at least one dimension is fixed at 1 at
compile time), or if the type is dynamic on *both* dimensions.
This means we can run into cases where MatrixXd allow things that
conforming, compile-time sizes does not: for example,
`Matrix<double,4,Dynamic>` is currently not allowed, even when assigning
from a 4-element vector, but it *is* allowed for a
`Matrix<double,Dynamic,Dynamic>`.
This commit also reverts the current behaviour of using the matrix's
storage order to determine the structure when the Matrix is fully
dynamic (i.e. in both dimensions). Currently we assign to an eigen row
if the storage order is row-major, and column otherwise: this seems
wrong (the storage order has nothing to do with the shape!). While
numpy doesn't distinguish between a row/column vector, Eigen does, but
it makes more sense to consistently choose one than to produce
something with a different shape based on the intended storage layout.
With the previous commit, output can be very confusing because you only
see positional arguments in the "invoked with" line, but you can have a
failure from kwargs as well (in particular, when a value is invalidly
specified via both via positional and kwargs). This commits adds
kwargs to the output, and updates the associated tests to match.
* Make string conversion stricter
The string conversion logic added in PR #624 for all std::basic_strings
was derived from the old std::wstring logic, but that was underused and
turns out to have had a bug in accepting almost anything convertible to
unicode, while the previous std::string logic was much stricter. This
restores the previous std::string logic by only allowing actual unicode
or string types.
Fixes#685.
* Added missing 'requires numpy' decorator
(I forgot that the change to a global decorator here is in the
not-yet-merged Eigen PR)